Solving a 40-year-old Problem: 11D Superfields

Yangrui Hu and S.-N. Hazel Mak

Brown University

Strings 2021 Gong Show

In collaboration with: S. James Gates, Jr. [arXiv: 1911.00807, 2002.08502, 2006.03609, 2007.05097, 2007.07390]

Yangrui Hu and S.-N. Hazel Mak

Solving a 40-year-old Problem: 11D Superfields

Motivation

1974: first 4D superfield written down! [Salam, Strathdee 1974]

- 1978: first 11D on-shell supergravity! [Cremmer, Julia, Scherk 1978]
- 2020: 11D superfield!!! [Gates, YH, SNHM, arXiv:2002.08502]

¹LieART [Feger, Kephart, 2012], SUSYno [Fonseca, 2011]

Yangrui Hu and S.-N. Hazel Mak

The Question

In 11D, we have 32 Grassmann coordinate θ 's. Since $\theta^2 = 0$,

$$\mathcal{V}(x,\theta) = \mathbf{v}^{(0)}(x) + \sum_{n=1}^{32} \mathbf{v}^{(n)}_{\alpha_1 \cdots \alpha_n}(x) \,\theta^{\alpha_1} \cdots \theta^{\alpha_n}$$

Question:

How to write components / θ -monomials in $\mathfrak{so}(1, 10)$ irreducible representations?

Difficulties:

- 2³² = 4, 294, 967, 296 total degrees of freedom
- many Fierz identities...
- Lorentz covariant θ -monomials at higher levels

Step 1: Young Tableaux

Totally antisymmetric product as YT:

Theorem:

YT
$$\stackrel{1-1}{\iff}$$
 Irreducible representation of $\mathfrak{su}(32)$

Yangrui Hu and S.-N. Hazel Mak

Solving a 40-year-old Problem: 11D Superfields

Step 2: Branching Rules

$$\mathfrak{su}(32) \supset \mathfrak{so}(1,10) \quad \Rightarrow \quad \mathcal{R}_{\mathfrak{su}(32)} \xrightarrow{\text{branching rules}} \bigoplus \mathcal{R}_{\mathfrak{so}(1,10)}$$

Examples:

Dictionary & Graphical Rules in [Gates, YH, SNHM, arXiv:2006.03609]

Vangruu	HU DOG		3701	
La le lu		3 - 1 9 - 1		

11D Scalar Superfield

- Level-0 to level-32, symmetric about level-16
- Breitenlohner's method: $\mathcal{V}_{[\mathcal{R}]} = \mathcal{V} \otimes [\mathcal{R}]$ [Breitenlohner 1977]

11D Supergravity Surprise!

- $\mathcal{V} \Rightarrow$ linearized Nordström SG [Gates, YH, Jiang, SNHM 2019]
- Semi-prepotential candidate: $\mathcal{V} = D^{\alpha} \mathcal{V}_{\alpha}$

Physical Component	Irrep	Level
graviton h _{ab}	{65}, {1}	16
gravitino $\psi_{\underline{a}}{}^{eta}$	{320}, {32}	17
3-form <i>B</i> _[3]	{165}	16

Prepotential candidate: V_{α} contains 2-form $h_{[\underline{ab}]} = \{55\}$ at level-17 \Rightarrow Poincaré vielbein

THANK YOU!!

Backup: More Background

Our work leads to a formalism demonstrating a manefest linear realization of so(1, 10)!

- GS-formalism [Green and Sethi 1999]: started with a complex chiral spinor in so(1,9) ⇒ coset symmetry so(1,10)/so(1,9) realized in some non-linear manner
- [Becker and Butter 2003]: coset symmetry so(1, 10)/so(1, 3) realized in some *non-linear* manner
- A lot of previous work focused on modified SUGRA covariant derivatives, field strengths, Bianchi identities, etc. They are "orthogonal" to our current efforts.
- [Gates, Vashakidze 1987] showed the relationship between off-shell superfields and higher derivative terms in the *open string* effective action

Backup: 11D Adynkra

Yangrui Hu and S.-N. Hazel Mak

Backup: Poincaré vielbein & Gravitino

Decompositions of the inverse frame and gravitino fields in 11D yield

$$\begin{array}{ll} e_{\underline{a}}^{\underline{m}} &= \ \left\{ h_{(\underline{a}\underline{b})} + \eta_{\underline{a}\underline{b}} h + h_{[\underline{a}\underline{b}]} \right\} \eta^{\underline{b}\underline{m}} \\ \left\{ 121 \right\} & \left\{ 65 \right\} & \left\{ 1 \right\} & \left\{ 55 \right\} \end{array}$$

where $h_{(\underline{ab})}$ is the conformal graviton, h is the trace, and $h_{[\underline{ab}]}$ is the two-form; and

$$\tilde{\psi}_{\underline{a}}^{\ \alpha} = \psi_{\underline{a}}^{\ \alpha} - \frac{1}{11} (\gamma_{\underline{a}})^{\alpha\beta} \psi_{\beta}$$

$$\{352\} \quad \{320\} \quad \{32\}$$

where $\psi_{\underline{a}}^{\alpha}$ is the conformal gravitino and $\psi_{\beta} \equiv (\gamma^{\underline{a}})_{\alpha\beta} \tilde{\psi}_{\underline{a}}^{\alpha}$ is the γ -trace.

Solving a 40-year-old Problem: 11D Superfields