Solving a 40-year-old Problem: 11D Superfields

Yangrui Hu and S.-N. Hazel Mak

Brown University
Strings 2021 Gong Show

In collaboration with: S. James Gates, Jr.
[arXiv: 1911.00807, 2002.08502, 2006.03609, 2007.05097, 2007.07390]

Motivation

- 1974: first 4D superfield written down! [Salam, Strathdee 1974]

■ 1978: first 11D on-shell supergravity! [Cremmer, Julia, Scherk 1978]

■ 2020: 11D superfield!!! [Gates, YH, SNHM, arXiv:2002.08502]
${ }^{1}$ LieART [Feger, Kephart, 2012], SUSYno [Fonseca, 2011]

The Question

In 11D, we have 32 Grassmann coordinate θ^{\prime} s. Since $\theta^{2}=0$,

$$
\mathcal{V}(x, \theta)=v^{(0)}(x)+\sum_{n=1}^{32} v_{\alpha_{1} \cdots \alpha_{n}}^{(n)}(x) \theta^{\alpha_{1}} \cdots \theta^{\alpha_{n}}
$$

Question:

How to write components / θ-monomials in $\mathfrak{s o}(1,10)$ irreducible representations?

Difficulties:

- $2^{32}=4,294,967,296$ total degrees of freedom
- many Fierz identities...

■ Lorentz covariant θ-monomials at higher levels

Step 1: Young Tableaux

Totally antisymmetric product as YT :

Theorem:
$\mathrm{YT} \quad \stackrel{1-1}{\Longleftrightarrow}$ Irreducible representation of $\mathfrak{s u}(32)$

Step 2: Branching Rules

$$
\mathfrak{s u}(32) \supset \mathfrak{s o}(1,10) \quad \Rightarrow \quad \mathcal{R}_{\mathfrak{s u}(32)} \xrightarrow{\text { branching rules }} \bigoplus \mathcal{R}_{\mathfrak{s o}(1,10)}
$$

Examples:

Dictionary \& Graphical Rules in [Gates, YH, SNHM, arXiv:2006.03609]

11D Scalar Superfield

- Level-0 to level-32, symmetric about level-16
- Breitenlohner's method: $\mathcal{V}_{[\mathcal{R}]}=\mathcal{V} \otimes[\mathcal{R}]$ [Breitenlohner 1977]

11D Supergravity Surprise!

■ $\mathcal{V} \Rightarrow$ linearized Nordström SG [Gates, YH, Jiang, SNHM 2019]
■ Semi-prepotential candidate: $\mathcal{V}=\mathrm{D}^{\alpha} \mathcal{V}_{\alpha}$

Physical Component	Irrep	Level
graviton $h_{a b}$	$\{65\},\{1\}$	16
gravitino $\psi_{\underline{a}}{ }^{\beta}$	$\{320\},\{32\}$	17
3-form $B_{[3]}$	$\{165\}$	16

- Prepotential candidate: \mathcal{V}_{α}
contains 2-form $h_{[a b]}=\{55\}$ at level-17 \Rightarrow Poincaré vielbein

THANK YOU!!

Backup: More Background

- Our work leads to a formalism demonstrating a manefest linear realization of $\mathfrak{s o}(1,10)$!

■ GS-formalism [Green and Sethi 1999]: started with a complex chiral spinor in $\mathfrak{s o}(1,9) \Rightarrow$ coset symmetry $\mathfrak{s o}(1,10) / \mathfrak{s o}(1,9)$ realized in some non-linear manner
■ [Becker and Butter 2003]: coset symmetry $\mathfrak{s o}(1,10) / \mathfrak{s o}(1,3)$ realized in some non-linear manner

- A lot of previous work focused on modified SUGRA covariant derivatives, field strengths, Bianchi identities, etc. They are "orthogonal" to our current efforts.

■ [Gates, Vashakidze 1987] showed the relationship between off-shell superfields and higher derivative terms in the open string effective action

Backup: 11D Adynkra

Backup: Poincaré vielbein \& Gravitino

Decompositions of the inverse frame and gravitino fields in 11D yield

$$
\begin{aligned}
& e_{a_{a}}=\left\{h_{(\underline{a b})}+\eta_{a_{b} b} h+h_{[a b]}\right\} \eta^{b m} \\
& \{121\} \quad\{65\} \quad\{1\} \quad\{55\}
\end{aligned}
$$

where $h_{(\underline{a b})}$ is the conformal graviton, h is the trace, and $h_{[a b]}$ is the two-form; and

$$
\begin{aligned}
& \tilde{\psi}_{\underline{a}}^{\alpha}=\psi_{\underline{a}}^{\alpha}-\frac{1}{11}\left(\gamma_{\underline{a}}\right)^{\alpha \beta} \psi_{\beta} \\
& \{352\}\{320\} \quad\{32\}
\end{aligned}
$$

where $\psi_{\underline{a}}{ }^{\alpha}$ is the conformal gravitino and $\psi_{\beta} \equiv\left(\gamma^{\underline{a}}\right)_{\alpha \beta} \tilde{\psi}_{\underline{a}}{ }^{\alpha}$ is the γ-trace.

