THE ENTANGLEMENT ENTROPY OF TYPICAL PURE STATES AND REPLICA WORMHOLES

Erez Y. Urbach

Based on 2105.15059.

Strings 2021 Gong Show

WEIZMANN INSTITUTE OF SCIENCE

The goal

- In a $1+1$ dimensional QFT on a S^{1}, we consider the von Neumann entanglement entropy of an interval $A=[0, \varphi]$ for typical pure states.
- Typically expect a "Page curve" in $S_{v N}(\varphi)$.
- We will reproduce it using a holographic calculation of " $\overline{S_{v N}(\varphi)}$ ": the entropy averaged over a specific ensemble of high energy pure states with $E \sim \frac{1}{\beta} \gg 1$.

Reminder: thermal entanglement entropy

For $\rho_{\text {th }}=\frac{1}{2} \exp (-\beta H)$, the replica trick reduces to

The holographic dual of the replica trick [Lewkowycz, Maldacena] gives [Azeyanagi,Nishioka,Takayanagi]

Typical pure state - CFT side

For a specific ensemble of pure states, the averaged entropy is given by a similar path integral in the CFT replica trick.
Singular geometry that further identifies all the replicas together:

Typical pure state - gravity side

The dual gravitational calculation has two saddles due to the singular geometry:

A thermal saddle with increasing entropy.

A "wormhole" saddle with decreasing entropy. Connects the replicas "behind the horizon".

Result - a Page curve

(This is not an evaporation process!)

THANK YOU!
QUESTIONS?

