Some new developments in Fractional Quantum Hall Effect

Dam T. Son (University of Chicago)
Strings 2021 São Paolo, June 28, 202 I

Plan

- Formulation of the problem
- Nature of the $\nu=5 / 2$ state
- Magnetoroton: a spin-2 excitation
- (Two gravitons in Jain's sequences around $\nu=\frac{1}{4}$)

The Theory of Everything

R. B. Laughlin* and David Pines ${ }^{\dagger \ddagger \S}$
*Department of Physics, Stanford University, Stanford, CA 94305; ${ }^{\dagger}$ Institute for Complex Adaptive Matter, University of California Office of the President, Oakland, CA 94607; ${ }^{\ddagger}$ Science and Technology Center for Superconductivity, University of Illinois, Urbana, IL 61801; and §Los Alamos Neutron Science Center Division, Los Alamos National Laboratory, Los Alamos, NM 87545

[^0]
The Theory of Everything

R. B. Laughlin* and David Pines ${ }^{\dagger \ddagger \S}$
*Department of Physics, Stanford University, Stanford, CA 94305; ${ }^{\dagger}$ Institute for Complex Adaptive Matter, University of California Office of the President, Oakland, CA 94607; \ddagger Science and Technology Center for Superconductivity, University of Illinois, Urbana, IL 61801; and SLos Alamos Neutron Science Center Division, Los Alamos National Laboratory, Los Alamos, NM 87545

Contributed by David Pines, November 18, 1999

$$
\begin{aligned}
\mathscr{H}= & -\sum_{j}^{N_{e}} \frac{\hbar^{2}}{2 m} \nabla_{j}^{2}-\sum_{\alpha}^{N_{i}} \frac{\hbar^{2}}{2 M_{\alpha}} \nabla_{\alpha}^{2} \\
& -\sum_{j}^{N_{e}} \sum_{\alpha}^{N_{i}} \frac{Z_{\alpha} e^{2}}{\left|\vec{r}_{j}-\vec{R}_{\alpha}\right|}+\sum_{j \ll k}^{N_{e}} \frac{e^{2}}{\left|\vec{r}_{j}-\vec{r}_{k}\right|}+\sum_{\alpha \ll \beta}^{N_{j}} \frac{Z_{\alpha} Z_{\beta} e^{2}}{\left|\vec{R}_{\alpha}-\vec{r}_{\beta}\right|}
\end{aligned}
$$

Lowest Landau level limit

$$
H=\sum_{a} \frac{\left(\mathbf{p}_{a}+e \mathbf{A}_{a}\right)^{2}}{2 m}+\sum_{\langle a, b\rangle} \frac{e^{2}}{\left.\right|_{a}-\mathbf{x}_{b} \mid}
$$

Lowest Landau level limit

$$
H=\sum_{a} \frac{\left(\mathbf{p}_{a}+e \mathbf{A}_{a}\right)^{2}}{2 m}+\sum_{\langle a, b\rangle} \frac{e^{2}}{\left|\mathbf{x}_{a}-\mathbf{x}_{b}\right|}
$$

$m \rightarrow 0$

Lowest Landau level limit

$$
H=\sum_{a} \frac{\left(\mathbf{p}_{a}+e \mathbf{A}_{a}\right)^{2}}{2 m}+\sum_{\langle a, b\rangle} \frac{e^{2}}{\left|x_{a}-\mathbf{x}_{b}\right|}
$$

Microscopic theory

$$
\begin{aligned}
S & =\int d t d^{2} x\left(i \psi^{\dagger}\left(\partial_{t}-i A_{0}\right) \psi-\frac{1}{2 m}\left|\left(\partial_{i}-i A_{i}\right) \psi\right|^{2}+\frac{g B}{2 m} \psi^{\dagger} \psi\right) \\
& -\frac{1}{2} \int d t d^{2} x d^{2} y \psi^{\dagger}(x) \psi^{\dagger}(y) V(x-y) \psi(y) \psi(x)
\end{aligned}
$$

Background magnetic field $B \neq 0$
$g=2$: Schroedinger equation has $N_{\phi}=\frac{1}{2 \pi} \int d^{2} x B$ zero modes
Problem: what is the effective theory of the LLL?

$$
\lim _{m \rightarrow 0} Z\left[A_{0}, A_{i}\right]=?
$$

(nemR-sinnonstherym

filling factor
$\nu=\frac{\text { number of electrons }}{\text { degeneracy of a LL }}$

- For gapped states, EFT below the gap is typically a CS theory, i.e., for $\nu=1 / 3$ state

$$
L=\frac{3}{4 \pi} a d a+\frac{1}{2 \pi} A d a \rightarrow \frac{1}{3} \frac{1}{4 \pi} A d A+\nu \mathcal{S} \omega d A
$$

- More difficult questions: gapless or states with small gap (<< natural energy scale) for example $\nu=1 / 2$ or $1 / 4$

EFT near half filling

- Near half-filling the low-energy effective theory is that of a "Dirac composite fermion"

$$
L=i \psi_{\mathrm{cf}}^{\dagger} \gamma^{\mu}\left(\partial_{\mu}-i a_{\mu}\right) \psi_{\mathrm{cf}}-\frac{1}{4 \pi} A d a+\frac{1}{8 \pi} A d A+\cdots
$$

Particle-vortex duality: $\quad \rho_{\mathrm{cf}}=\frac{B}{4 \pi} \quad \rho_{\mathrm{e}}=\frac{B}{4 \pi}-\frac{b}{4 \pi}$

Half-filled Landau level of electrons = Fermi liquid of CFs FQHE with

An experimental realized example of duality

$$
L[\psi, a]-\frac{1}{2} \frac{1}{4 \pi} a d a+\frac{1}{2 \pi} a d b-\frac{2}{4 \pi} b d b+\frac{1}{2 \pi} A d b
$$

DTS 2015
Metlitskii,Viswanath 2015
Wang, Senthil 2015
Karch, Tong 2016
Seiberg, Senthil,Wang,Witten 2016

Nature of $\nu=5 / 2$ state

- $\nu=5 / 2$: the only even-dominator gapped quantum Hall state
- a half-filled Landau level $\nu=2+\frac{1}{2}$
- Most well-known proposal: Moore-Read (Pfaffian) alternative: anti-Pfaffian state
- From the point of view of the composite fermion theory: BCS pairing of composite fermions

Pairing channels

- Simplest pairing:"s-wave" $\left\langle\varepsilon^{\alpha \beta} \psi_{\alpha} \psi_{\beta}\right\rangle \neq 0$ corresponds to the PH-Pfaffian state
- "d-wave" pairing channels $\left\langle\varepsilon^{\alpha \beta} \psi_{\alpha}\left(\partial_{x} \pm i \partial_{y}\right)^{2} \psi_{\beta}\right\rangle \neq 0$: Pfaffian and anti-Pfaffian
- Numerical simulations: favor anti-Pfaffian or Pfaffian
- but recent experiments prefer PH-Pfaffian (edge thermal conductivity)
- Tension between numerics and experiment has not been resolved

Magnetoroton

- Lowest neutral excitation of a gapped FQH state is the magnetoroton
- studied variationally by Girvin, MacDonald, Platzman 1986, also in numerics

$$
\nu=7 / 3
$$

Jolicoeur, 2017

- Q: what operator creates the magnetoroton?
- Magnetoroton: pole in the density-density correlation function, but the residue at the pole goes to 0 at small q

$$
\langle\rho \rho\rangle_{\omega, q} \sim \frac{q^{4}}{\omega^{2}-\Delta^{2}(q)}
$$

- We will now see that q^{4} is a consequence of a higher-rank conservation law
(gauge invariance requires only q^{2})

Conservation laws

- Conservation of particle number and momentum

$$
\begin{aligned}
& \partial_{t} \rho+\vec{\nabla} \cdot \vec{j}=0 \\
& \partial_{t}\left(m j_{i}\right)+\partial_{k} T_{i k}=(j \times B)_{i}
\end{aligned}
$$

$m=0$: force balance $\quad \mathbf{j} \sim \frac{1}{B} \partial T$

$$
\dot{\rho}+\partial^{2} T=0
$$

a higher-rank symmetry

Higher-rank symmetry

- A FQH system in fixed background B field can be coupled to A_{0} and $g_{i j}$
- LLL physics invariant under volume-preserving diff

$$
\begin{aligned}
& g_{i j} \rightarrow g_{i j}+\partial_{i} \xi_{j}+\partial_{j} \xi_{j}, \quad \xi^{i}=\varepsilon^{i j} \partial_{j} \lambda \\
& A_{0} \rightarrow A_{0}+\dot{\lambda}
\end{aligned}
$$

- The Ward-Takahashi identity is the higher-rank conservation law $\partial_{t} \rho+\partial^{2} T=0$ Yi-Hsien Du, Umang Mehta, Dung Nguyen, DTS, 2103.09826

Operator creating magnetoroton

- ρ is not efficient in creating magnetoroton with

$$
q=0
$$

- The operators that can create $q=0$ magnetoroton is the stress tensor

$$
T_{z z}, T_{\bar{z} \bar{z}}
$$

- spin of the magnetoroton is either 2 or -2
- which one?
- $\nu=1 / 3$ state: strong suppression of spin-(-2) spectral density compared to that of spin-2

Liou et al. PRL 2019

A spectral sum rule

$\begin{array}{rlrl}\rho(\omega) & \left.=N_{e}^{-1} \sum_{n}|\langle n| T| 0\right\rangle\left.\right|^{2} \delta\left(\omega_{n}-\omega\right) & & T \equiv \int d \mathbf{x} T_{z z}(\mathbf{x}) \\ & \left.\bar{\rho}(\omega)=N_{e}^{-1} \sum_{n}|\langle n| \bar{T}| 0\right\rangle\left.\right|^{2} \delta\left(\omega_{n}-\omega\right) & \bar{T} \equiv \int d \mathbf{x} T_{\bar{z} \bar{z}}(\mathbf{x})\end{array}$

- $\int_{0}^{\infty} \frac{d \omega}{\omega^{2}}\left[(\rho(\omega)-\bar{\rho}(\omega)]=\frac{\mathcal{S}-1}{8}, \quad \mathcal{S}=\right.$ shift
- If the integral is dominated by one mode:

$$
\begin{aligned}
& \mathcal{S}>1: \text { spin-2 } \\
& \mathcal{S}<1: \text { spin- }-2)
\end{aligned}
$$

Polarized Raman scattering

can in principle be used to determine the spin of the magnetoroton experimentally

Dung Nguyen and DTS, 2101.02213 also Haldane, Rezayi, Kun Yang

Distinguishing $\nu=5 / 2$ states by polarized Raman scattering

- Argument based on sum rule suggests that
- Pfaffian state $\mathcal{S}=3: s=2$
- anti-Pfaffian state $\mathcal{S}=-1: \quad s=-2$
- PH-Pfaffian $\mathcal{S}=1$: both $s=2$ and $s=-2$ magnetorotons
- Polarized Raman scattering: a bulk probe that complements boundary probes

SSF and Haldane bound

- Static structure factor $S(q)=\int e^{i q x}\langle\rho(0, x) \rho(0,0)\rangle$
- $S(q)=s_{4} q^{4}+\cdots$
- Haldane bound:
- $s_{4} \geq \frac{s}{4}=\frac{\mathcal{S}^{\text {shift }}-1}{8}$
- saturated in Dirac CF theory near $\nu=1 / 2$

Jain's states near $\nu=1 / 4$

- Near $\nu=\frac{1}{4}:$ CF $=$ electron +4 flux quanta
- Effective field theory: CF coupled to dynamical CS gauge field
- Fails to satisfy the Haldane bound!

$$
\begin{gathered}
s_{4} \geq \frac{\mathcal{S}-1}{8} \\
\nu=\frac{N}{4 N+1} \quad \frac{N+1}{8} \geq \frac{N+3}{8}
\end{gathered}
$$

Solution to the puzzle

- To solve the problem with the Haldane bound for Jain's states near $\nu=1 / 4$, one requires at least one additional magnetoroton
- For $\nu=N /(4 N \pm 1)$: one magnetoroton with energy $O(1 / N)$, one with energy $O(1)$
- opposite chiralities for $\nu=N /(4 N-1)$, the same chirality for $\nu=N /(4 N+1)$
- can be in principle verified numerically and hopefully, experimentally

Conclusion

- FQHE is an important theoretical problem
- Nature of $\nu=5 / 2$ state: still an open question
- $q=0$ magnetoroton has spin 2 or -2 depending on the QH state
- Polarized Raman scattering can distinguish different FQH states, in particular different $\nu=5 / 2$ candidates
- Extra magnetoroton mode(s) at and near $\nu=1 / 4$

Thank you

[^0]: Contributed by David Pines, November 18, 1999

