Theory-Changing Interfaces and Quantum Algebras

Mykola Dedushenko ${ }^{1}$

${ }^{1}$ Simons Center for Geometry and Physics

$$
06 / 30 / 2021
$$

Based on work with N.Nekrasov
To appear in 2107. ${ }^{* * * * *}$

Photographic evidence:

Introduction

The topic of this talk lies at the intersection of several general ideas.

- QFTs come in families.
- Interfaces between different members of the family, ${ }^{1}$ their OPE:
$\mathrm{QFT}_{1}\left|\mathrm{QFT}_{2}\right| \mathrm{QFT}_{3} \cdots \mathrm{QFT}_{1} \mid \mathrm{QFT}_{3}$
- "Symmetries" acting on families. They can act between different QFTs, with the generators realized via interfaces.
- Extend usual symmetries acting within a theory (via codim-1 defects).
- SUSY interfaces \Rightarrow maps in the Q-cohomology.
- More generally, derived structures, higher operations, etc.

[^0]
Introduction

A few ideas that play role:
■ Wall-crossing.

- How spaces of SUSY vacua transform as we vary mass/FI parameters across walls.
- Mirror symmetry and symplectic duality in 3d $\mathcal{N}=4$.
- Interfaces (walls) between Higgs, Coulomb, mixed, and CFT phases.

Introduction

■ Main motivation: Bethe-Gauge correspondence [Nekrasov-Shatashvili]

- Hilbert space on the left $\cong \oplus_{i}\left(\right.$ SUSY vacua in QFT $\left._{i}\right)$ on the right.
- \cong rep of \mathcal{A} (spectrum-generating algebra, $\left.Y_{\hbar}(\mathfrak{g}), U_{\hbar}(L \mathfrak{g}), U_{\hbar}(E \mathfrak{g})\right)$
- Can we realize the action of \mathcal{A} on the family of QFTs via interfaces?
- The main example of a family of QFTs:

$\rightarrow X X X, X X Y$, or $X Y Z$ spin chain (depending on d and Q)

Introduction

- Another big motivation comes from geometric constructions:
- Stable envelopes [Maulik-Okounkov'12, Aganagic-Okounkov'16]
- Geometric building blocks, from which R-matrices can be constructed.
- Once R-matrix interfaces are known, you know the \mathcal{A}-action.
- For X a Nakajima quiver variety, such that the quiver diagram determines an algebra \mathfrak{g} :
- Nakajima constructed the action of $U_{\hbar}(L \mathfrak{g})$ on $\oplus_{i} K_{T}\left(X_{i}\right)$
- Varagnolo constructed the action of $Y_{\hbar}(\mathfrak{g})$ on $\oplus_{i} H_{T}\left(X_{i}\right)$
- Both constructions are via Lagrangian correspondences $L \subset X_{i} \times X_{j}$, which look like (B, A, A) branes.

Introduction

- Some literature:
- [Nakajima'00] and [Varagnolo'00] constructions as precursors.
- Bethe-Gauge correspondence [Nekrasov-Shatashvili'09]. The idea to realize \mathcal{A} via branes, already proposed in [Nekrasov, Strings-2009 talk].
- A big advance: geometric construction of [Maulik-Okounkov'12]; elliptic case in [Aganagic-Okounkov'16]; K-theoretic case e.g. in [Okounkov-Smirnov'16]. Physics construction remained open.
- Theory-changing interfaces played role in [Gaiotto-Moore-Witten'15], who explored structures relevant to \mathcal{Q}_{A} in 2d.
- See [Bullimore-Kim-Lukowski'17] for a discussion on R-matrices in the context of Bethe/Gauge correspondence.
- Connection to half-indices in 3d and factorization [Beem-Dimofte-Pasquetti'12,Gadde-Gukov-Putrov'13,Dimofte-Gaiotto-Paquette'17,Bullimore-Crew-Zhang-Dorey'20,Okazaki'20]
- Some ideas from [MD'18,"Gluing II'] initially played role.
- Use some tools from [Bullimore-Dimofte-Gaiotto-Hilburn'16], as well as earlier [Hori-Iqbal-Vafa'00]. Also relation to [Cecotti-Vafa'10].

Basic setup

Gauge theory with eight supercharges. The flavor group is G_{H}. Fix $\mathrm{A} \subset G_{H}$ - a maximal torus; $U(1)_{\hbar}$ - R-symmetry that is flavor symmetry for theory with four supercharges. $\mathbf{T}=\mathbf{A} \times U(1)_{\hbar}$.

3d $\mathcal{N}=4$ on $\mathbb{E}_{\tau} \times \overbrace{\mathbb{R}}$. Interface is wrapped on the elliptic curve \mathbb{E}_{τ}, acts on the space of ground states $\mathcal{V}\left[\mathbb{E}_{\tau}\right] \subset \mathcal{H}\left[\mathbb{E}_{\tau}\right]$.

$$
\text { 2d } \mathcal{N}=(4,4) \text { on } S^{1} \times \mathbb{R} . \text { Interface on } S^{1} \text { acts on } \mathcal{V}\left[S^{1}\right] \subset \mathcal{H}\left[S^{1}\right] .
$$

1d $\mathcal{N}=8$ on \mathbb{R}. Interface is a local operator acting on $\mathcal{V}[p t] \subset \mathcal{H}[p t]$.
In 3d: also "Coulomb" G_{C}; the maximal torus $A^{\prime} \subset G_{C}$ is given by topological symmetries, whose currents, for every $U(1)$ gauge group, are

$$
J=\star F .
$$

Basic setup

The structures we study exist in the \mathcal{Q}-cohomology. Which \mathcal{Q} ?

■ 2d (2, 2) supercharges:

- \bar{Q}_{+}and $\mathcal{Q}_{B} \rightarrow$ "holomorphic-topological" Q in $3 \mathrm{~d}^{2}$
- $\mathcal{Q}_{A} \rightarrow$ lifts to " 3 d A-twist" in $3 \mathrm{~d}^{3}$
- $\mathcal{Q}=\mathcal{Q}_{A}+\mathcal{Q}_{A}^{\dagger}=\mathcal{Q}_{B}+\mathcal{Q}_{B}^{\dagger}$ - the Omega-deformation Q

$$
\text { In 3d: } \quad \mathcal{Q}^{2}=\underbrace{2 D_{\bar{z}}}_{\text {along } \mathbb{E}_{\tau}}
$$

Operators in the \mathcal{Q}-cohomology are interfaces on \mathbb{E}_{τ}.

One more description: \mathcal{Q} is a $3 \mathrm{~d} \mathcal{N}=1$ supercharge.

Today: realize stable envelopes as such interfaces.

[^1]
Basic setup

Turn on flat connections on \mathbb{E}_{τ} :
Equivariant parameters

$$
\begin{gathered}
\overbrace{x \in \operatorname{Hom}\left(\pi_{1}\left(\mathbb{E}_{\tau}\right), G_{H}\right) / G_{H} ; \quad} \begin{array}{c}
\\
z \in \operatorname{Hom}\left(\pi_{1}\left(\mathbb{E}_{\tau}\right), U(1)_{\hbar}\right)
\end{array} ; \\
\underbrace{z \in \operatorname{Hom}\left(\pi_{1}\left(\mathbb{E}_{\tau}\right), G_{C}\right) / G_{C}}_{\text {Kähler parameters }}
\end{gathered}
$$

In 2d: z gets replaced by the θ-angles
In 1d: z completely disappears.

Basic setup

Focus on the Higgs phase, $X=$ Higgs branch. It is well-known that:
■ $\mathcal{V}[\mathrm{pt}] \cong H_{\mathbf{T}}(X)$. [Witten'82]

- Similarly, one can identify $\mathcal{V}\left[S^{1}\right]$ with $K_{\mathrm{T}}(X)$.
$\square \mathcal{V}\left[\mathbb{E}_{\tau}\right]$ is related to the equivariant elliptic cohomology $\operatorname{Ell}_{\mathbf{T}}(X)$.
$\operatorname{Ell}_{\mathbf{T}}(X)$ is a scheme; an elliptic generalization of $\operatorname{Spec} H_{\mathbf{T}}(X)$ and Spec $K_{\mathrm{T}}(X)$. However, it is not affine, i.e., not a Spec of anything \Rightarrow should study bundles on $\operatorname{Ell}_{\mathbf{T}}(X)$, and $\mathcal{V}\left[\mathbb{E}_{\tau}\right]$ are sections of a "bundle of vacua". No time for this story.

We will focus on the cohomological case in the following. Elliptic generalization (3d lift) comes with two new phenomena: Kähler parameters and boundary anomalies.

Stable envelopes

Let \mathbf{A} be a torus of flavor group, and $X^{\mathbf{A}} \subset X$ a set of \mathbf{A}-fixed points.
To $p \in X^{\mathbf{A}}$, attach its full A-attractor Attr $_{p}$ (with "broken" trajectories):

There exists a natural map:

$$
\text { Stab : } H_{\mathbf{T}}\left(X^{\mathbf{A}}\right) \rightarrow H_{\mathbf{T}}(X)
$$

which extends cohomology classes from fixed locus along the full attractor. [Maulik-Okounkov'12]
(Similarly in the K-theoretic case, while in the elliptic case, one extends sections of line bundles on Ell \mathbf{T})

Janus interface

$X^{\mathbf{A}}$ can be identified with the Higgs branch of the theory with large generic real masses for the flavor symmetry \mathbf{A} turned on.

It is possible to vary real masses in the $y \in \mathbb{R}$ direction while preserving half of SUSY. ${ }^{4}$ In particular, we can have:

Proposal: such an interface (call it mass Janus) gives a physics realization of the map Stab.
${ }^{4}$ This requires an extra term $-\bar{\phi} m^{\prime}(y) \phi$ in the Euclideanaction.

Janus interface

The reason: BPS equations for \mathcal{Q} include $\mathbf{A}_{\mathbb{C}}$ flows parametrized by y.

$$
\left(D_{y}+\sigma+m(y)\right) \phi=0, \quad D_{y} \sigma=\mu_{\mathbb{R}}
$$

This is a gradient flow for the function

$$
\bar{\phi}(m(y)+\sigma) \phi=m(y) \cdot \mu_{\mathbb{R}}^{\mathrm{f}}+\sigma \cdot \mu_{\mathbb{R}}^{\mathrm{g}}
$$

On the Higgs branch, it restricts to the Morse function

$$
f=\bar{\phi} m(y) \phi
$$

For theories with eight supercharges, all critical points of this function (if isolated) have indices equal to half the target dimension.

Remark: Such gradient trajectories do not contribute to the differential of the MSW complex, i.e., critical points give the exact vacua.

Time-dependent Morse function

So, we need to consider SQM as in [Witten'82] (NLSM into the Higgs branch + the Morse function f representing the effect of masses. ${ }^{5}$)

But with time-dependent Morse function.

With time-independent f, the action is \mathcal{Q}-exact, up to a "topological term", $S=\{\mathcal{Q}, \ldots\}-\mathrm{d} f$.
We still want to use this action when f is time-dependent \Rightarrow need to include $-\frac{\partial f}{\partial y}$ in the action. ${ }^{6}$

Variations δf that vanish at $y \rightarrow \pm \infty$ correspond to \mathcal{Q}-exact deformations.
${ }^{5}$ In practice, all our computations are done in gauge theory.
${ }^{6}$ This is the term $-\bar{\phi} m^{\prime}(y) \phi$ we added earlier.

Tension between SUSY and unitarity

This modifies the standard formulas:
$\mathcal{Q}=\mathrm{d}+\mathrm{d} f, \quad \mathcal{Q}^{\dagger}=\mathrm{d}^{*}+\iota \nabla f, \quad H=\frac{1}{2}\left\{\mathcal{Q}, \mathcal{Q}^{\dagger}\right\}-i \frac{\partial f}{\partial t}, \quad i\{H, \mathcal{Q}\}+\frac{\partial \mathcal{Q}}{\partial t}=0$.

Unitary, no SUSY

Without $\frac{\partial f}{\partial t}$ in H , the evolution is unitary, but SUSY is broken if $\frac{\partial f}{\partial t} \neq 0$.

Non-unitary, SUSY preserved

With $\frac{\partial f}{\partial t}, \mathcal{Q}$ is conserved, but the evolution is non-unitary if $\frac{\partial f}{\partial t} \neq 0$.
We want a \mathcal{Q}-closed interface between theories with different f 's. There is no reason for the corresponding operator to be unitary.

Hence, choose option 2. Have to be very careful: make sure the operator is well-defined!

Time-dependent Morse function, cont'd

$$
\text { Conjugate by } e^{f}: \mathbb{Q}=e^{f} \mathcal{Q} e^{-f}=\mathrm{d}, \mathbb{G}=e^{f} \mathcal{Q}^{\dagger} e^{-f}=\mathrm{d}^{*}+2 \iota_{\nabla f},
$$

$$
\mathbb{H}=e^{f} \mathrm{He}^{-f}+i \frac{\partial f}{\partial t}, \text { so that } \mathbb{H}=\frac{1}{2}\{\mathbb{Q}, \mathbb{G}\} .
$$

(This corresponds to dropping the topological term, and using the Q-exact action $\left.S=\delta(\ldots)=\frac{1}{2}(\dot{x}+\nabla f)^{2}+\ldots\right)$
H is d-exact, \Rightarrow naively, evolution is trivial in the de Rham cohomology. This logic is correct if the target manifold is compact.

The story gets much richer if the target is non-compact.
Non-unitary evolution can make an L^{2} function unnormalizable. Yet, matrix elements between L^{2} functions are well-defined.

Toy example

Let the target be \mathbb{C}, with $f=\frac{m}{2}|z|^{2}$, where $m \in \mathbb{R}$ can have either sign. Two states are in the kernel of H :
L^{2} only if $m>0 \quad L^{2}$ only if $m<0$
$\overbrace{\psi_{0}=e^{-f}}, \overbrace{\psi_{2}=e^{f} d z \wedge d \bar{z}} .\left(\psi_{0}\right.$ is a solution even for time-dependent $\left.f!\right)$
Consider $m(t)$, s.t. $m(-\infty)>0$ and $m(+\infty)=0$. Start with $\psi_{0}=e^{-f}$ in the past. It evolves into $e^{-\left.f\right|_{t \rightarrow+\infty}}=1$, which is not L^{2}. Are we in trouble? Equivariance saves the day. Replace d by $D=\mathrm{d}+\iota_{\epsilon \partial_{\varphi}}$.

$$
\mathbb{Q}=\mathrm{d}+\iota \iota_{\varepsilon}, \quad \mathbb{G}=\mathrm{d}^{*}+V_{\varepsilon}^{b} \wedge+2 \iota \nabla f, \quad V_{\varepsilon}=\varepsilon \partial_{\varphi} .
$$

Toy example, cont'd

Define $\omega^{2}=m^{2}+|\varepsilon|^{2}$. For constant m (including $m=0$), the normalizable ground state is

$$
\Psi^{(m)}=e^{-f} \Omega^{(m)}, \quad \Omega^{(m)}=\frac{\epsilon}{\sqrt{2 \pi(\omega-m)}} e^{-\frac{1}{2}(\omega-m)\left(x^{2}+y^{2}\right)-\frac{\omega-m}{\epsilon} \mathrm{~d} x \wedge \mathrm{~d} y},
$$

where $z=x+i y$. To compute the transition amplitude, use: (1) shape independence of $m(y)$ to assume

$$
m(t)=m \Theta(-t)
$$

(2) continuity of $\Omega=e^{f} \psi$ across the jump. This results in

$$
\left\langle\Omega^{(0)} \mid \Omega^{(m)}\right\rangle=\int \star \bar{\Omega}^{(0)} \wedge \Omega^{(m)}=\sqrt{\frac{|\varepsilon|}{\omega-m}}
$$

Toy example, cont'd

- We can compute all possible transitions:

$$
\begin{array}{rlr}
\bullet & {[0 \mid+m] \longrightarrow\left\langle\Omega^{(0)} \mid \Omega^{(m)}\right\rangle=\sqrt{\frac{|\varepsilon|}{\omega-m}}} & =S_{m} \\
\rightarrow & {[+m \mid 0] \longrightarrow\left\langle\Omega^{(m)}\right| e^{-m|z|^{2}}\left|\Omega^{(0)}\right\rangle=\sqrt{\frac{\omega-m}{|\varepsilon|}}} & =S_{m}^{-1} \\
\rightarrow & {[0 \mid-m] \longrightarrow\left\langle\Omega^{(0)} \mid \Omega^{(-m)}\right\rangle=\sqrt{\frac{\omega-m}{|\varepsilon|}}} & =S_{-m} \\
> & {[-m \mid 0] \longrightarrow\left\langle\Omega^{(-m)}\right| e^{m|z|^{2}}\left|\Omega^{(0)}\right\rangle=\sqrt{\frac{|\varepsilon|}{\omega-m}}} & =S_{-m}^{-1} \\
\rightarrow & {[-m \mid m] \longrightarrow\left\langle\Omega^{(-m)}\right| e^{m|z|^{2}}\left|\Omega^{(m)}\right\rangle=\frac{|\varepsilon|}{\omega-m}} & =R_{m}
\end{array}
$$

Here $S_{ \pm m}$ is the analog of $\mathrm{Stab}_{ \pm m}$, and R_{m} is the analog of R -matrix. The relation:

$$
R_{m}=S_{-m}^{-1} \circ S_{m}
$$

is exactly how the R-matrix is built from stable envelopes.
This confirms our expectations, e.g., independence on the shape of $m(t)$.

General Idea

In general, the region with masses prepares an equivariant form, which (in the limit of large masses and metric) looks like a delta-form supported on the attractor of a fixed point.

We then compute its overlap with a "probe" equivariant form representing some vacuum in the massless region.

Less simplified view

- What we actually do:
- Like in the toy example, but the target has many fixed points, S_{m} are non-trivial upper-triangular matrices.
- In practice, all computations are done in gauge theory.
- ... Via SUSY localization.
- Which is also why the (Euclidean) time \mathbb{R} is replaced by an interval.
- And the choice of vacua at $t \rightarrow \pm \infty$ is represented by special boundary conditions. (Thimble boundary conditions [Hori-Iqbal-Vafa'10,Gaiotto-Moore-Witten'15,Bullimore-Dimofte-Gaiotto-Hilburn'16])
(It is problematic to localize on a non-compact spacetime. Interval is more straightforward, but still can be a challenge, depending on the boundary conditions.)

Executive summary of the interval

■ Key ideas:

- Theory on the left: our gauge theory T.
- Theory on the right: turn on large real masses $m \in \mathfrak{C}$, integrate out fields that are massive in vacuum β, the remaining gauge theory is T^{m}.
- Boundary conditions B_{m} on fields that "terminate" at the middle are naturally induced by the SUSY jump of masses.
- On the left: boundary condition corresponding to vacuum α realized via Dirichlet b.c. for gauge fields (exceptional Dirichlet)
- On the right: vacuum β realized via Neumann boundary conditions for the gauge fields.
- The \mathcal{N}_{β} boundary contains extra matter to cancel anomalies in 3d case.

Interval index

In $d \geq 2$ spacetime dimensions, we can regard the interval direction as space, and one of the circles as time.

Then the answer can be more conventionally interpreted as the index in a certain soliton sector.

But in 1d, the interval direction can only be time.

R-matrices

R-matrices are realized as $\operatorname{Stab}_{m_{2}}^{-1} \circ \operatorname{Stab}_{m_{1}}$, i.e., instead of changing mass from m to 0 , we change it from $m_{1} \in \mathfrak{C}_{1}$ to $m_{2} \in \mathfrak{C}_{2}$ (different chambers).

If there is only one mass, and the chambers are $m>0, m<0$, then the R-matrix is realized by

Let me explain how to construct an interface realizing a raising operator of the $\mathfrak{s l}_{2}$ Yangian. We want an interface between theories:

$$
\begin{array}{l|l}
L-U(N) & L-U(N+1)
\end{array}
$$

R-matrix and Higgsing

Inspired by [Maulik-Okounkov'12], consider a larger theory T :

$$
L+1-U(N+1) \text {. }
$$

It has an extra $U(1)$ flavor symmetry that rotates the added hyper. Let m be the real mass for it. Then at $m \rightarrow \infty$, the theory decomposes into

In sector $B, U(N+1)$ is broken to $U(N) \times U(1)$ via Higgsing.

R-matrix

Consider an R-matrix R_{m} constructed as above via changing mass from $m \gg 0$ to $m \ll 0$. It has a block form:

$$
R_{m}(u)=\begin{gathered}
A \\
A \\
B
\end{gathered} \begin{array}{c|c}
* \\
\hline * & * \\
\hline * & *
\end{array}
$$

The $A B$ and $B A$ blocks represent interfaces that change the gauge group (we can "forget" the $1-U(1)$ factor). They provide realization of the basic raising and lowering operators in the Yangian $Y_{\hbar}\left(\mathfrak{s l}_{2}\right)$ (in the 1d case).

Generalizations are clear...

Further comments

- Didn't have time to talk about:
- The elliptic case in details.
- Details of interval computations.
- Construction of general R-matrices for general quiver varieties.
- Janus for FI parameters.
- Half-index. Can stretch the 3d index and half-index, proving that the squashing parameter b is a trivial deformation of the THF using techniques of [Closset-Dumitrescu-Festuccia-Komargodski'13].
- It connects holomorphic blocks [B-D-P'12] to half-indices [G-G-P'13,D-G-P'17].
- Our interfaces describe wall-crossing of the half-index. Acting with an interface, one can transport half-index between chambers, or from the Higgs to the Coulomb phase.
- Brane constructions of our systems via Type IIA on the ALE spaces. Dualities: relation between supercharges and also to 4d CS approach.

What else?

- For the future:
- We construct interfaces "up to quasi-isomorphism" \Rightarrow can we study derived structure, higher operations?
- Generalization to fewer supercharges?
- \mathcal{Q} in d -dim can be lifted to \mathcal{Q}_{A} in $d+1$. Analogs of our constructions in quantum cohomology theories?
- Lifting \mathcal{Q} in 1 d to \mathcal{Q}_{A} in 2 d , explore connections to [Gaiotto-Moore-Witten'15]?

What else?

- For the future:
- We construct interfaces "up to quasi-isomorphism" \Rightarrow can we study derived structure higher operations?

Thank you!
Questions?
Litting \mathcal{U} in 1 d to \mathcal{L}_{A} in $\underset{2}{ } \mathrm{~d}$, explore connections to [Gaiotto-Moore-Witten'15]?

[^0]: ${ }^{1}$ Interface for us is any codimention-1 defect.

[^1]: ${ }^{2}$ known from [Aganagic-Costello-McNamara-Vafa'17,Costello-Dimofte-Gaiotto'20]
 ${ }^{3}$ [Benini-Zaffaroni, Closset-Kim-Willett, Baulieu-Losev-Nekrasov]

