Ten dimensional symmetry of $\mathcal{N} = 4$ SYM correlators

Frank Coronado

McGill University

[with Simon Caron-Huot]

arxiv: 2106.03892

Strings 2021 ICTP-SAIFR

A triality in planar $\mathcal{N} = 4$ SYM

(Square of) null Wilson loop

Generalization for massive amplitude

(Square of) massive amplitude

- Massive amplitude in the Coulomb branch (turned on VEVs for scalar fields).
- Amplitude (integrand) has a higher dimensional symmetry that acts on the vector (p_i, m_i) . [Alday, Henn, Plefka, Schuster; Caron-Huot, O'Connell; Bern, Carrasco, Dennen, Huang, Ita]

Generalization for massive amplitude

(Square of) massive amplitude (p_1, m_1) Need object with higher-dimensional structure Candidates: BPS operators dual to KK modes (p_2, m_2) in $AdS_5 \times S_5$ Massive amplitude in the Coulomb Vector of six scalars branch (turned on VEVs for scalar $= \frac{\mathbf{L}}{k} \operatorname{Tr}(y.\Phi(x))^{k}$ fields). Amplitude (integrand) has a higher dimensional symmetry that acts on the vector (p_i, m_i) . 4D position 6D null polarization vector $y \cdot y = 0$ # fields = Scaling dimension

- In SUGRA a 10D symmetry emerges when summing all (four-point) correlators of $\mathcal{O}_k(x,\,y)$

[Caron-Huot, Trinh, 2018; Aprile, Drummond, Heslop, Paul]

• This talk: similar 10D structure in a different coupling regime.

Generalization of correlator/massive amplitude

The four-point function of the "master operator" $O(x,y) \equiv \sum_{k=1}^{\infty} O_k(x,y)$ has an

emergent 10-dimensional structure that combines spacetime and R-charge distances:

$$X_{i,i+1}^2 \equiv (x_i - x_{i+1})^2 + (y_i - y_{i+1})^2 \stackrel{duality}{=} p_i^2 + m_i^2$$

• The 10D null limit of the "master" correlator is equal to a massive amplitude in the Coulomb branch.

Generating function of all four-point correlators

(Square of) four-point massive amplitude

• Checked at various loop orders.

Outline

• Ten dimensional structure of free correlators.

Weak Coupling

- 10D symmetry of loop integrands.
- 10D null limit: massive amplitude = large R-charge correlator (octagon).
- Amplitude/octagon from integrability and massless limit.

Free correlators

 $Tr(y_i \cdot \Phi(x_i))^k$

- Computed by Wick contractions: $\langle \mathcal{O}_k(x_i, y_i) \mathcal{O}_k(x_j, y_j) \rangle = \frac{1}{k} \left(\frac{-y_{ij}^2}{x_{ij}^2} \right)^k + O(1/N_c^2)$ $x_{ij}^2 \equiv (x_i - x_j)^2, y_{ij}^2 \equiv (y_i - y_j)^2$
 - The free four-point correlator of the "master operator" $O(x, y) = \sum_{k=1}^{\infty} O_k(x, y)$

 $G^{free} = D_{12}D_{23}D_{34}D_{41} + D_{12}D_{23}D_{34}D_{41}(2D_{13} + D_{13}^2) + 2D_{12}D_{13}D_{14}D_{23}D_{24}D_{34} + \text{perm.}$

• Emergente 10D structure :

$$D_{ij} \equiv \frac{-y_{ij}^2}{x_{ij}^2 + y_{ij}^2} = \sum_{k=1}^{\infty} \left(\frac{-y_{ij}^2}{x_{ij}^2}\right)^k$$

Loop integrands

• Perturbative series in the 't Hooft coupling $g^2 \equiv rac{g_{
m YM}^2 N_c}{16\pi^2}$

$$\langle \mathcal{O}_{k_1} \mathcal{O}_{k_2} \mathcal{O}_{k_3} \mathcal{O}_{k_4} \rangle_{\mathrm{c}} = G_{k_1 k_2 k_3 k_4}^{\mathrm{free}} + \sum_{\ell=1}^{\infty} G_{k_1 k_2 k_3 k_4}^{(\ell)} + O(1/N_c^2)$$

• We can define an integrand by the Lagrangian insertion method:

$$G_{k_1k_2k_3k_4}^{(\ell)} = \frac{(-g^2)^{\ell}}{\ell!} \int \frac{d^4x_5}{\pi^2} \cdots \frac{d^4x_{4+\ell}}{\pi^2} \,\mathcal{G}_{k_1k_2k_3k_4}^{(\ell)} \,,$$

• The ℓ -loop integrand is a (4 + ℓ)-point correlator evaluated at leading order:

$$\begin{aligned} \mathcal{G}_{k_{1}k_{2}k_{3}k_{4}}^{(\ell)} &= \langle \mathcal{O}_{k_{1}}\mathcal{O}_{k_{2}}\mathcal{O}_{k_{3}}\mathcal{O}_{k_{4}}\mathcal{L}(x_{5})\cdots\mathcal{L}(x_{4+\ell})\rangle^{(0)} \\ &= R_{1234} = \frac{(y_{13}^{2}y_{24}^{2})^{2}}{x_{13}^{2}x_{24}^{2}} + \frac{y_{12}^{2}y_{23}^{2}y_{34}^{2}y_{41}^{2}}{x_{12}^{2}x_{23}^{2}x_{24}^{2}x_{41}^{2}}(x_{13}^{2}x_{24}^{2} - x_{12}^{2}x_{34}^{2} - x_{14}^{2}x_{23}^{2}) \\ &+ (1\leftrightarrow 2) + (1\leftrightarrow 4) \,. \end{aligned}$$

$$\begin{aligned} &= R_{1234} \left(2x_{12}^{2}x_{13}^{2}x_{14}^{2}x_{23}^{2}x_{24}^{2}x_{34}^{2}\right)\mathcal{H}_{k_{1}k_{2}k_{3}k_{4}}^{(\ell)}. \end{aligned}$$

• Advantage: integrand is a rational function with simple poles. It treats external and integration points almost in the same footing (e.g. \mathcal{H}_{2222} has a full permutation symmetry). ^[Eden, Heslop, Korchemsky, Sokatchev, 2011]

• Decomposition in R-charge:

$$\mathcal{H}_{k_1k_2k_3k_4}^{(\ell)} = \sum_{k_i-2=\sum_j b_{ij}} \mathcal{F}_{\{b_{ij}\}}^{(\ell)}(x_{ij}^2) \times \prod_{1 \le i < j \le 4} \left(\frac{-y_{ij}^2}{x_{ij}^2}\right)^{b_{ij}}$$

The number of inequivalent structures $\mathcal{F}^{(\ell)}_{\{b_{ij}\}}$ is finite and depends on the loop order.

• **Saturation:** thanks to planarity, a bridge becomes uncrossable when the number of propagators is larger than the loop order.

• After saturation, we have an infinite tail forming a geometric series.

One-loop integrands

- At one loop, saturation implies that all R-charge structures are identical: $\mathcal{F}^{(1)}_{\{b_{ij}\}} = \mathcal{F}^{(1)}_{\{0,0,0,0,0\}}$
- The reduced integrands:

• Resumming the geometric series:

$$\mathcal{H}^{(1)} = \sum_{k_i \ge 2} \mathcal{H}^{(1)}_{k_1 k_2 k_3 k_4} = \frac{1}{\prod_{1 \le i < j \le 5} (x_{ij}^2 + y_{ij}^2)} \qquad \text{with } y_{5i}^2 = 0$$

• Higher-loop data shows similar pattern.

10D symmetry of loop integrands

• At each loop order, all (reduced) integrands form a geometric series that resums into a function which depends only on $X_{ij}^2 \equiv x_{ij}^2 + y_{ij}^2$.

$$\mathcal{H}_{k_1k_2k_3k_4}^{(\ell)}(x_{ij}^2, y_{ij}^2) = \text{coefficient of} \left(\prod_{i=1}^4 \beta_i^{k_i - 2} \right) \text{ in } \mathcal{H}^{(\ell)}(X_{ij}^2) \left|_{y_{ij}^2 \to \beta_i \beta_j \, y_{ij}^2} \right.,$$

• This generating function can be uplifted from the known case \mathcal{H}_{2222} by replacing all four-dimensional distances x_{ij}^2 by ten-dimensional ones X_{ij}^2

$$\begin{aligned} \mathcal{H}^{(1)} &= \frac{1}{\prod_{1 \le i < j \le 5} X_{ij}^2}, \\ \mathcal{H}^{(2)} &= \frac{1}{48} \frac{X_{12}^2 X_{34}^2 X_{56}^2 + S_6 \text{ permutations}}{\prod_{1 \le i < j \le 6} X_{ij}^2}, \\ \mathcal{H}^{(3)} &= \frac{1}{20} \frac{(X_{12}^2)^2 \left(X_{34}^2 X_{45}^2 X_{56}^2 X_{67}^2 X_{73}^2\right) + S_7 \text{ permutations}}{\prod_{1 \le i < j \le 7} X_{ij}^2}. \end{aligned}$$

• It inherits the full permutation symmetry of \mathcal{H}_{2222} . The dimension-2 operator and the chiral Lagrangian belong to the stress-tensor super-multiplet.

10D structure of four-point correlators

• We set the 6D null condition for the external points and turn off the R-charge of the internal points.

$$y_i.y_i=0$$
 when $i=1,2,3,4$ and $y_i=0$ when $i=5,\cdots,4+\ell$

and integrate:
$$G^{(\ell)} \equiv \sum_{k_i \ge 2} G^{(\ell)}_{k_1 k_2 k_3 k_4} = \frac{(-g^2)^{\ell}}{\ell!} R_{1234} \left(2 x_{12}^2 x_{13}^2 x_{14}^2 x_{23}^2 x_{24}^2 x_{34}^2 \right) \int \frac{dx_5^4}{\pi^2} \cdots \frac{dx_{4+\ell}^4}{\pi^2} \mathcal{H}^{(\ell)} \,.$$

• One and two-loop examples:

$G^{(1)} = -2g^2 R_{1234} g_{1234} \prod_{1 \leq i < j \leq 4} rac{1}{1-d_{ij}} ,$	$\{b_{ij}\}$
$1\leq i< j\leq 4$ $1-d_{ij}$	$\{0, 0, 0, 0, 0, 0, 0\}$
$G^{(2)} = 2g^4 R_{1234} igg(c_h^1 h_{12;34} + c_h^2 h_{13;24} + c_h^3 h_{14;23} + rac{1}{2} ig(c_{gg}^1 x_{12}^2 x_{34}^2 + c_{gg}^2 x_{13}^2 x_{24}^2 + c_{gg}^3 x_{14}^2 x_{23}^2 ig) [g_{1234}]^2 ig)$	$\{eta_1,0,0,0,0,0\}$
$G^{++} = 2g n_{1234} \left(\frac{c_h n_{12;34} + c_h n_{13;24} + c_h n_{14;23} + \frac{1}{2} \left(\frac{c_{gg} x_{12} x_{34} + c_{gg} x_{13} x_{24} + c_{gg} x_{14} x_{23} \right) \left[g_{1234} \right] \right)$	$\{eta_1,eta_2,\ 0\ ,\ 0\ ,\ 0\ ,\ 0\ \}$
$(1, 1) + (1, 1)$ $(1, 1) (1, 1)$ a^2	$egin{array}{llllllllllllllllllllllllllllllllllll$
$c_h^1 = rac{(1-d_{12})+(1-d_{34})}{\prod \ (1-d_{ij})} ext{and} c_{gg}^1 = rac{(1-d_{12})(1-d_{34})}{\prod \ (1-d_{ij})} ext{with} \ \ d_{ij} \equiv rac{-y_{ij}^2}{x_{ij}^2}.$	$\{ \ 0 \ , \ 0 \ , \beta_1, \beta_2, \ 0 \ , \ 0 \ \}$
$\prod_{1 \leq i < j \leq 4} (1 - u_{ij})$ $\prod_{1 \leq i < j \leq 4} (1 - u_{ij})$ u_{ij}	$\{eta_1,\ 0\ ,eta_2,eta_3,\ 0\ ,\ 0\ \}$
1 $\int d^4 r$	$\{eta_1,eta_2,eta_3,eta_4,\ 0\ ,\ 0\ \}$
$g_{1234} = rac{1}{\pi^2} \int rac{d^4 x_5}{x_{15}^2 x_{25}^2 x_{35}^2 x_{45}^2} ext{and} h_{13;24} = rac{x_{24}^2}{\pi^4} \int rac{d^4 x_5 d^4 x_6}{(x_{15}^2 x_{25}^2 x_{45}^2) x_{56}^2 (x_{26}^2 x_{36}^2 x_{46}^2)}.$	$\{ \ 0 \ , \beta_1, \beta_2, \beta_3, \beta_4, \ 0 \ \}$
	$\{\beta_1, \beta_2, \beta_3, \beta_4, \beta_5, 0\}$
	$\{eta_1,eta_2,eta_3,eta_4,eta_5,eta_6\}$
x_5 x_6	$\beta_i \ge 1$

- Similar checks up to 5 loops. [Chicherin, Georgoudis, Goncalves, Pereira, 2018]
- [Chicherin, Drummond, Heslop, Sokatchev, 2015]

 $\begin{array}{c}1 & 1 & 2\\ 4 & 3 \\ 4 & 3\end{array}$

•••

N N

 \square

 \bowtie

 \bowtie

 \bowtie

 c_{gg}^1

 c_{gg}^2

 c_{gg}^3

[Bourjaily, Heslop, Tran, 2016]

 c_h^2

 $\mathbf{2}$

 $\mathbf{2}$

 c_h^3

 c_h^1

 $\mathbf{2}$

 $\mathbf{2}$

 $\mathbf{2}$

- Predictions at higher loops (up to ten loops from knowledge of the seed \mathcal{H}_{2222})
- Higher loop integrals are hard to evaluate.
- A tractable problem using integrability: correlators with large R-charge (octagons). [FC 2018]

10D null limit: octagon = amplitude

- The simplest correlators factorized into squares (octagons).
- Their integrands receive contributions only from $\mathcal{F}_{\{a,\infty,\infty,\infty,\infty,\infty,b\}}$

- **III. OCLAGON = A** $K \rightarrow \infty$ 1 2 4 3
- $O_1 = \operatorname{Tr}(\bar{X}^{2K+a})$

 $O_2 = \text{Tr}(X^K \bar{Z}^K \bar{Y}^b) + \text{cyclic permutations}$

 $O_3 = \operatorname{Tr}(Z^{2K} X^a) + \operatorname{cyclic permutations}$

 $O_4 = \text{Tr}(Z^K \, \bar{X}^K Y^b) + \text{cyclic permutations}$

Only the terms of "G" with the four poles $\frac{1}{X_{12}^2 X_{23}^2 X_{34}^2 X_{41}^2}$ contribute to the simplest correlators. We can select them by taking the 10D null limit:

• Octagon and amplitude are identical at the integrand and integrated level. They are IR finite.

Octagon from Integrability

$$\mathbb{O} = \mathbb{O}_0 + \sum_{l=1}^{\infty} (d_{13})^l \mathbb{O}_l + (d_{24})^l \mathbb{O}_l$$

 \mathcal{O}_{A}

Gluing two hexagons by summing over mirror particles:

[Basso, Komatsu, Vieira 2013; Fleury, Komatsu; Eden, Sfondrini 2016; FC 2018]

ψ : complete basis of states in the two-dimensional world sheet

Octagon is given by an infinite determinant

 $\mathbb{O}_l(z, \bar{z}, d_{13}, d_{24}) = \lim_{X^2_{i,i+1} \to 0} \sum_{\psi}$

$$\mathbb{O}_l = \det(1 - \mathbb{K}_l)$$

 \mathcal{O}_2

 \mathcal{O}_3

[Kostov, Petkova, Serban; Belitsky, Korchemsky; 2019-2021]

$$(\mathbb{K}_l)_{ij} = (-1)^{i-j} (2j+l-1) \int_0^\infty d\tau \, \chi(\tau) \, \frac{J_{2i+l-1}(2g\tau) \, J_{2j+l-1}(2g\tau)}{\tau}$$

$$\chi(\tau) = \frac{(1 - d_{13}d_{24})}{\sqrt{z\bar{z}(1 - z)(1 - \bar{z})}} \frac{1}{\cosh(\sqrt{\zeta^2 + \tau^2}) - \cos\phi}, \text{ with } e^{-2\zeta} = \frac{z\bar{z}}{(1 - z)(1 - \bar{z})}, e^{2i\phi} = \frac{z(1 - \bar{z})}{\bar{z}(1 - z)}.$$
$$z\bar{z} = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2}, (1 - z)(1 - \bar{z}) = \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}.$$

Steinmann condition for amplitudes:

Massless limit

Coulomb-branch amplitudes with double logarithmic scaling:

Controlled by functions of the coupling satisfying a deformed BES equation:

- Relation to 10D sym. in SUGRA?
- Integrability in the Coulomb branch?