Ten dimensional symmetry of $\mathcal{N}=4$ SYM correlators

Frank Coronado

McGill University

[with Simon Caron-Huot] arxiv : 2106.03892

A triality in planar $\mathcal{N}=4$ SYM

Correlation function of protected
Dimension-2 operators

[Alday, Eden, Korchemsky,
Maldacena, Sokatchev; 2010]
(Square of) massless amplitude

(Square of) null Wilson loop

Generalization for massive amplitude

(Square of) massive amplitude

- Massive amplitude in the Coulomb branch (turned on VEVs for scalar fields).
- Amplitude (integrand) has a higher dimensional symmetry that acts on the vector $\left(p_{i}, m_{i}\right)$. [Alday, Henn, Plefka, Schuster; Caron-Huot,O'Connell; Bern, Carrasco, Dennen, Huang, Ita]

Generalization for massive amplitude

- Need object with higher-dimensional structure
- Candidates: BPS operators dual to KK modes in $A d S_{5} \times S_{5}$

(Square of) massive amplitude

- Massive amplitude in the Coulomb branch (turned on VEVs for scalar fields).
- Amplitude (integrand) has a higher dimensional symmetry that acts on the vector $\left(p_{i}, m_{i}\right)$.
- In SUGRA a 10D symmetry emerges when summing all (four-point) correlators of $\mathcal{O}_{k}(x, y)$
- This talk: similar 10D structure in a different coupling regime.

Generalization of correlator/massive amplitude

- The four-point function of the "master operator" $\mathrm{O}(x, y) \equiv \sum_{k}^{\infty} \mathcal{O}_{k}(x, y)$ has an emergent 10-dimensional structure that combines spacetime and R-charge distances:

$$
X_{i, i+1}^{2} \equiv \underbrace{\left(x_{i}-x_{i+1}\right)^{2}}+\left(y_{i}-y_{i+1}\right)^{2} \stackrel{\text { duality }}{=}{ }_{i}^{2}+m_{i}^{2}
$$

- The 10D null limit of the "master" correlator is equal to a massive amplitude in the Coulomb branch.

Generating function of all
four-point correlators
$\mathrm{O}\left(x_{1}, y_{1}\right)$

- $\mathrm{O}\left(x_{3}, y_{3}\right)$
massive on-shell condition

(Square of) four-point massive amplitude

- Checked at various loop orders.

Outline

- Ten dimensional structure of free correlators.
- 10D symmetry of loop integrands.
- 10D null limit: massive amplitude = large R-charge correlator (octagon).
- Amplitude/octagon from integrability and massless limit.

Free correlators

- Computed by Wick contractions:

$$
\begin{aligned}
& \left\langle\mathcal{O}_{k}\left(x_{i}, y_{i}\right) \mathcal{O}_{k}\left(x_{j}, y_{j}\right)\right\rangle=\frac{1}{k}\left(\frac{-y_{i j}^{2}}{x_{i j}^{2}}\right)^{k}+O\left(1 / N_{c}^{2}\right) \\
& x_{i j}^{2} \equiv\left(x_{i}-x_{j}\right)^{2}, y_{i j}^{2} \equiv\left(y_{i}-y_{j}\right)^{2}
\end{aligned}
$$

- The free four-point correlator of the "master operator" $\mathrm{O}(x, y)=\sum_{k}^{\infty} \mathcal{O}_{k}(x, y)$

$$
G^{\text {free }} \equiv\left\langle\mathrm{O}\left(x_{1}, y_{1}\right) \mathrm{O}\left(x_{2}, y_{2}\right) \mathrm{O}\left(x_{3}, y_{3}\right) \mathrm{O}\left(x_{4}, y_{4}\right)\right\rangle^{(0)}=\sum_{l_{i j}}^{\infty} C_{\left\{l_{i j}\right\}} \prod_{1 \leq i<j \leq 4}\left(\frac{-y_{i j}^{2}}{x_{i j}^{2}}\right)^{l_{i j}}
$$

$G^{\text {free }}=D_{12} D_{23} D_{34} D_{41}+D_{12} D_{23} D_{34} D_{41}\left(2 D_{13}+D_{13}^{2}\right)+2 D_{12} D_{13} D_{14} D_{23} D_{24} D_{34}+$ perm.

- Emergente 10D structure : $\quad D_{i j} \equiv \frac{-y_{i j}^{2}}{x_{i j}^{2}+y_{i j}^{2}}=\sum_{k=1}^{\infty}\left(\frac{-y_{i j}^{2}}{x_{i j}^{2}}\right)^{k}$

Loop integrands

- Perturbative series in the 't Hooft coupling $g^{2} \equiv \frac{g_{\mathrm{YM}}^{2} N_{c}}{16 \pi^{2}}$

$$
\left\langle\mathcal{O}_{k_{1}} \mathcal{O}_{k_{2}} \mathcal{O}_{k_{3}} \mathcal{O}_{k_{4}}\right\rangle_{\mathrm{c}}=G_{k_{1} k_{2} k_{3} k_{4}}^{\mathrm{free}}+\sum_{\ell=1}^{\infty} G_{k_{1} k_{2} k_{3} k_{4}}^{(\ell)}+O\left(1 / N_{c}^{2}\right)
$$

- We can define an integrand by the Lagrangian insertion method:

$$
G_{k_{1} k_{2} k_{3} k_{4}}^{(\ell)}=\frac{\left(-g^{2}\right)^{\ell}}{\ell!} \int \frac{d^{4} x_{5}}{\pi^{2}} \cdots \frac{d^{4} x_{4+\ell}}{\pi^{2}} \mathcal{G}_{k_{1} k_{2} k_{3} k_{4}}^{(\ell)}
$$

- The ℓ-loop integrand is a $(4+\ell)$-point correlator evaluated at leading order:

$$
\begin{array}{rlc}
\mathcal{G}_{k_{1} k_{2} k_{3} k_{4}}^{(\ell)} & =\left\langle\mathcal{O}_{k_{1}} \mathcal{O}_{k_{2}} \mathcal{O}_{k_{3}} \mathcal{O}_{k_{4}} \mathcal{L}\left(x_{5}\right) \cdots \mathcal{L}\left(x_{4+\ell}\right)\right\rangle^{(0)} & R_{1234}=\frac{\left(y_{13}^{2} y_{24}^{2}\right)^{2}}{x_{13}^{2} x_{24}^{2}+\frac{y_{12}^{2} y_{23}^{2} y_{34}^{2} y_{41}^{2}}{x_{12}^{2} x_{23}^{2} x_{34}^{2} x_{41}^{2}}\left(x_{13}^{2} x_{24}^{2}-x_{12}^{2} x_{34}^{2}-x_{14}^{2} x_{23}^{2}\right)} \\
& \stackrel{S U S Y}{=} R_{1234}\left(2 x_{12}^{2} x_{13}^{2} x_{14}^{2} x_{23}^{2} x_{24}^{2} x_{34}^{2}\right) \mathcal{H}_{k_{1} k_{2} k_{3} k_{4} .}^{(\ell)} & \text { [Eden, Petkou, Schubert. Sokatchev] }
\end{array}
$$

- Advantage: integrand is a rational function with simple poles. It treats external and integration points almost in the same footing (e.g. \mathcal{H}_{2222} has a full permutation symmetry). ${ }^{\text {Eden, Heslop, Korchemsky, Sokatchev, } 2011 \text { 1] }}$
- Decomposition in R-charge:

$$
\mathcal{H}_{k_{1} k_{2} k_{3} k_{4}}^{(\ell)}=\sum_{k_{i}-2=\sum_{j} b_{i j}} \mathcal{F}_{\left\{b_{i j}\right\}}^{(\ell)}\left(x_{i j}^{2}\right) \times \prod_{1 \leq i<j \leq 4}\left(\frac{-y_{i j}^{2}}{x_{i j}^{2}}\right)^{b_{i j}}
$$

The number of inequivalent structures $\mathcal{F}_{\left\{b_{i j}\right\}}^{(\ell)}$ is finite and depends on the loop order.

- Saturation: thanks to planarity, a bridge becomes uncrossable when the number of propagators is larger than the loop order.

$$
\begin{aligned}
& \mathcal{F}_{\left\{b_{12}, \cdots\right\}}^{(\ell)} \equiv \mathcal{F}_{\{\ell-1, \cdots\}}^{(\ell)} \\
& \text { if } b_{12} \geq \ell-1
\end{aligned}
$$

[Chicherin, Drummond, Heslop, Sokatchev, 2015]

- After saturation, we have an infinite tail forming a geometric series.

One-loop integrands

- At one loop, saturation implies that all R-charge structures are identical:

$$
\mathcal{F}_{\left\{b_{i j}\right\}}^{(1)}=\mathcal{F}_{\{0,0,0,0,0,0\}}^{(1)}
$$

- The reduced integrands:

$$
\mathcal{H}_{2222}^{(1)}=\mathcal{F}_{\{0,0,0,0,0,0\}}^{(1)}=\frac{1}{\prod_{1 \leq i<j \leq 5} x_{i j}^{2}}
$$

$$
\mathcal{H}_{k_{1} k_{2} k_{3} k_{4}}^{(1)}=\sum_{\substack{\left\{b_{i j}\right\} \\ k_{i}-2=\sum_{j} b_{i j}}} \frac{1}{\prod_{1 \leq i<j \leq 5} x_{i j}^{2}} \times \prod_{1 \leq i<j \leq 4}\left(\frac{-y_{i j}^{2}}{x_{i j}^{2}}\right)^{b_{i j}}
$$

- Resumming the geometric series:

$$
\mathcal{H}^{(1)}=\sum_{k_{i} \geq 2} \mathcal{H}_{k_{1} k_{2} k_{3} k_{4}}^{(1)}=\frac{1}{\prod_{1 \leq i<j \leq 5}\left(x_{i j}^{2}+y_{i j}^{2}\right)}
$$

with $y_{5 i}^{2}=0$

- Higher-loop data shows similar pattern.

10D symmetry of loop integrands

- At each loop order, all (reduced) integrands form a geometric series that resums into a function which depends only on $X_{i j}^{2} \equiv x_{i j}^{2}+y_{i j}^{2}$.

$$
\mathcal{H}_{k_{1} k_{2} k_{3} k_{4}}^{(\ell)}\left(x_{i j}^{2}, y_{i j}^{2}\right)=\mathrm{coefficient} \mathrm{of}\left(\prod_{i=1}^{4} \beta_{i}^{k_{i}-2}\right) \text { in }\left.\mathcal{H}^{(\ell)}\left(X_{i j}^{2}\right)\right|_{y_{i j}^{2} \rightarrow \beta_{i} \beta_{j} y_{i j}^{2}}
$$

- This generating function can be uplifted from the known case \mathcal{H}_{2222} by replacing all four-dimensional distances $x_{i j}^{2}$ by ten-dimensional ones $X_{i j}^{2}$

$$
\begin{aligned}
\mathcal{H}^{(1)} & =\frac{1}{\prod_{1 \leq i<j \leq 5} X_{i j}^{2}} \\
\mathcal{H}^{(2)} & =\frac{1}{48} \frac{X_{12}^{2} X_{34}^{2} X_{56}^{2}+S_{6} \text { permutations }}{\prod_{1 \leq i<j \leq 6} X_{i j}^{2}} \\
\mathcal{H}^{(3)} & =\frac{1}{20} \frac{\left(X_{12}^{2}\right)^{2}\left(X_{34}^{2} X_{45}^{2} X_{56}^{2} X_{67}^{2} X_{73}^{2}\right)+S_{7} \text { permutations }}{\prod_{1 \leq i<j \leq 7} X_{i j}^{2}}
\end{aligned}
$$

[Eden, Heslop,
Korchemsky,
Sokatchev; 2012]

- It inherits the full permutation symmetry of \mathcal{H}_{2222}.

The dimension-2 operator and the chiral Lagrangian belong to the stress-tensor super-multiplet.

10D structure of four-point correlators

- We set the 6D null condition for the external points and turn off the R -charge of the internal points.

$$
\begin{aligned}
& \qquad y_{i} \cdot y_{i}=0 \quad \text { when } i=1,2,3,4 \quad \text { and } \quad y_{i}=0 \quad \text { when } \quad i=5, \cdots, 4+\ell \\
& \text { and integrate: } \quad G^{(\ell)} \equiv \sum_{k_{i} \geq 2} G_{k_{1} k_{2} k_{3} k_{4}}^{(\ell)}=\frac{\left(-g^{2}\right)^{\ell}}{\ell!} R_{1234}\left(2 x_{12}^{2} x_{13}^{2} x_{14}^{2} x_{23}^{2} x_{24}^{2} x_{34}^{2}\right) \int \frac{d x_{5}^{4}}{\pi^{2}} \cdots \frac{d x_{4+\ell}^{4}}{\pi^{2}} \mathcal{H}^{(\ell)} .
\end{aligned}
$$

- One and two-loop examples:
$G^{(1)}=-2 g^{2} R_{1234} g_{1234} \prod_{1 \leq i<j \leq 4} \frac{1}{1-d_{i j}}$,
$G^{(2)}=2 g^{4} R_{1234}\left(c_{h}^{1} h_{12 ; 34}+c_{h}^{2} h_{13 ; 24}+c_{h}^{3} h_{14 ; 23}+\frac{1}{2}\left(c_{g g}^{1} x_{12}^{2} x_{34}^{2}+c_{g g}^{2} x_{13}^{2} x_{24}^{2}+c_{g g}^{3} x_{14}^{2} x_{23}^{2}\right)\left[g_{1234}\right]^{2}\right)$

$$
\begin{gathered}
c_{h}^{1}=\frac{\left(1-d_{12}\right)+\left(1-d_{34}\right)}{\prod_{1 \leq i<j \leq 4}\left(1-d_{i j}\right)} \quad \text { and } \quad c_{g g}^{1}=\frac{\left(1-d_{12}\right)\left(1-d_{34}\right)}{\prod_{1 \leq i<j \leq 4}\left(1-d_{i j}\right)} \quad \text { with } d_{i j} \equiv \frac{-y_{i j}^{2}}{x_{i j}^{2}} . \\
g_{1234}=\frac{1}{\pi^{2}} \int \frac{d^{4} x_{5}}{x_{15}^{2} x_{25}^{2} x_{35}^{2} x_{45}^{2}} \quad \text { and } \quad h_{13 ; 24}=\frac{x_{24}^{2}}{\pi^{4}} \int \frac{d^{4} x_{5} d^{4} x_{6}}{\left(x_{15}^{2} x_{25}^{2} x_{45}^{2}\right) x_{56}^{2}\left(x_{26}^{2} x_{36}^{2} x_{46}^{2}\right)} .
\end{gathered}
$$

$\left\{b_{i j}\right\}$		$c_{g g}^{1}$	$c_{g g}^{2}$	$c_{g g}^{3}$	c_{h}^{1}	c_{h}^{2}	c_{h}^{3}
$\{0,0,0,0,0,0\}$. .	1	1	1	2	2	2
$\left\{\beta_{1}, 0,0,0,0,0\right\}$. .	0	1	1	1	2	2
$\left\{\beta_{1}, \beta_{2}, 0,0,0,0\right\}$.	0	0	1	1	1	2
$\begin{aligned} & \left\{\beta_{1}, \beta_{2}, 0, \beta_{3}, 0,0\right\} \\ & \left\{\beta_{1}, \beta_{2}, \beta_{3}, 0,0,0\right\} \end{aligned}$	$\stackrel{\nabla}{N}$	0	0	0	1	1	1
$\left\{0,0, \beta_{1}, \beta_{2}, 0,0\right\}$	I	1	1	0	2	2	0
$\left\{\beta_{1}, 0, \beta_{2}, \beta_{3}, 0,0\right\}$	\square	0	1	0	1	2	0
$\left\{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, 0,0\right\}$	\wedge	0	0	0	1	1	0
$\left\{0, \beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, 0\right\}$	M	1	0	0	2	0	0
$\left\{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}, 0\right\}$	\}	0	0	0	1	0	0
$\left\{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}, \beta_{6}\right\}$	区	0	0	0	0	0	0

- Similar checks up to 5 loops. [Chicherin, Georgoudis, Goncalves, Pereira, 2018]
[Chicherin, Drummond, Heslop, Sokatchev, 2015]
- Predictions at higher loops (up to ten loops from knowledge of the seed \mathcal{H}_{2222}) [Bourjaily, Heslop, Tran, 2016]
- Higher loop integrals are hard to evaluate.
- A tractable problem using integrability: correlators with large R-charge (octagons).

10D null limit: octagon = amplitude

- The simplest correlators factorized into squares (octagons).
- Their integrands receive contributions only from

$$
\mathcal{F}_{\{a, \infty, \infty, \infty, \infty, b\}}
$$

$$
\begin{aligned}
& O_{1}=\operatorname{Tr}\left(\bar{X}^{2 K+a}\right) \\
& O_{2}=\operatorname{Tr}\left(X^{K} \bar{Z}^{K} \bar{Y}^{b}\right)+\text { cyclic permutations } \\
& O_{3}=\operatorname{Tr}\left(Z^{2 K} X^{a}\right)+\text { cyclic permutations } \\
& O_{4}=\operatorname{Tr}\left(Z^{K} \bar{X}^{K} Y^{b}\right)+\text { cyclic permutations }
\end{aligned}
$$

- Only the terms of " G " with the four poles $\frac{1}{X_{12}^{2} X_{23}^{2} X_{34}^{2} X_{41}^{2}}$ contribute to the simplest correlators. We can select them by taking the 10D null limit:

$$
\lim G=\sum^{\bullet \mathcal{L}_{4+\ell}}{ }^{2} \mathcal{L}_{5} L^{b}=\sum_{p_{i}^{\mu} \equiv x_{i, i+1}^{\mu}} \text { and } m_{i}^{2} \equiv y_{i, i+1}^{2}
$$

- Octagon and amplitude are identical at the integrand and integrated level. They are IR finite.

Octagon from Integrability

$$
\mathbb{O}=\mathbb{O}_{0}+\sum_{l=1}^{\infty}\left(d_{13}\right)^{l} \mathbb{O}_{l}+\left(d_{24}\right)^{l} \mathbb{O}_{l}
$$

Gluing two hexagons by summing over mirror particles:

$$
\mathbb{O}_{l}\left(z, \bar{z}, d_{13}, d_{24}\right)=\lim _{X_{i, i+1} \rightarrow 0} \sum_{\psi}
$$

[Basso, Komatsu, Vieira 2013;
Fleury, Komatsu; Eden, Sfondrini 2016; FC 2018]
$\psi:$ complete basis of states in the two-dimensional world sheet

Octagon is given by an infinite determinant $\mathbb{O}_{l}=\operatorname{det}\left(1-\mathbb{K}_{l}\right)$
[Kostov, Petkova, Serban;
Belitsky, Korchemsky;
2019-2021]

$$
\left(\mathbb{K}_{l}\right)_{i j}=(-1)^{i-j}(2 j+l-1) \int_{0}^{\infty} d \tau \chi(\tau) \frac{J_{2 i+l-1}(2 g \tau) J_{2 j+l-1}(2 g \tau)}{\tau}
$$

$$
\begin{array}{r}
\chi(\tau)=\frac{\left(1-d_{13} d_{24}\right)}{\sqrt{z \bar{z}(1-z)(1-\bar{z})}} \frac{1}{\cosh \left(\sqrt{\zeta^{2}+\tau^{2}}\right)-\cos \phi}, \text { with } e^{-2 \zeta}=\frac{z \bar{z}}{(1-z)(1-\bar{z})}, e^{2 i \phi}=\frac{z(1-\bar{z})}{\bar{z}(1-z)} \\
z \bar{z}=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}},(1-z)(1-\bar{z})=\frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}
\end{array}
$$

Steinmann condition for amplitudes:

Double discontinuities vanish in overlapping channels

Octagon has a vanishing double discontinuity $\operatorname{disc}_{s} \operatorname{disc}_{t} \mathbb{O}=0$

$$
\text { with } s=x_{13}^{2}, t=x_{24}^{2}
$$

Weak coupling:

$$
\mathbb{D}=\text { sum of det }
$$

Provides analytic results for (unknown) conformal integrals such as fishnets and deformations

Strong coupling: $\mathbb{O}=e^{-g \text { Area }}$

[Bargheer, FC, Vieira, 2019;

Perimeter is null in $A d S_{5} \times S_{5}$

Four-cusped null Wilson loop
[Alday, Maldacena, 2007; Kruczenski]

Massless limit

Coulomb-branch amplitudes with double logarithmic scaling:

Controlled by functions of the coupling satisfying a deformed BES equation:

Summary

$$
\begin{array}{ccc}
10 D: & G(X) \xrightarrow{X_{i, i+1}^{2} \rightarrow 0} & {[M(x, y)]^{2}=\mathbb{O}^{2}} \\
& y_{i j}^{2} \rightarrow 0 \downarrow & \\
& \downarrow D: & G_{2222}(x) \xrightarrow[x_{i, i+1}^{2} \rightarrow 0]{ }
\end{array}
$$

Outlook

- Can we relax the null condition?
- Higher-points?

- Relation to 10D sym. in SUGRA?
- Integrability in the Coulomb branch?

