Infrared Phases of 2d QCD

Jaume Gomis

Strings 2021, São Paulo

w/ D. Delmastro and M. Yu, to appear

Introduction

• a central theme in physics is unraveling the low energy phenomena that emerges from a physical system defined by a collection of microscopic degrees of freedom and interactions

 $H_{\rm UV} \longrightarrow H_{\rm IR}$

• gives physics its richness and beauty

• the spectrum can be either gapped or gapless, but determining which phase is realized is often a nonperturbative problem

$$\int \Delta > 0?$$

$$|E_1\rangle$$

$$|E_2\rangle$$

$$|D\rangle$$

• Yang-Mills theory is a remarkable example of a theory whose nonperturbative dynamics gaps the Hamiltonian of massless gluons

$$S = -\frac{1}{2g^2} \int d^n x \, \operatorname{tr} \left(F_{\mu\nu} F^{\mu\nu} \right)$$

• Yang-Mills theory is a remarkable example of a theory whose nonperturbative dynamics gaps the Hamiltonian of massless gluons

$$S = -\frac{1}{2g^2} \int d^n x \, \operatorname{tr} \left(F_{\mu\nu} F^{\mu\nu} \right)$$

- QCD_n with dynamical massless quarks in a representation R of G
 - which QCD_n theories are gapped and which are gapless?
 - what is the low energy description?

• Yang-Mills theory is a remarkable example of a theory whose nonperturbative dynamics gaps the Hamiltonian of massless gluons

$$S = -\frac{1}{2g^2} \int d^n x \, \operatorname{tr} \left(F_{\mu\nu} F^{\mu\nu} \right)$$

- QCD_n with dynamical massless quarks in a representation R of G
 - which QCD_n theories are gapped and which are gapless?
 - what is the low energy description?
 - asymptotic freedom bounds which QCD_4 theories can be gapped
 - * adjoint QCD₄ is gapped Witten, Affleck, Dine, Seiberg
 - QCD_3 flows to a CFT in the large R expansion Appelquist, Nash
 - * gapped QCD₃ theories argued to exist J.G., Komargodski, Seiberg

Question

Which QCD theories in 2d are gapped and which are gapless?

Question

Which QCD theories in 2d are gapped and which are gapless?

What emerges in the infrared?

2d QCD

• QCD with gauge group G and representations (R_{ℓ}, R_r) for left/right quarks

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{2g^2} \text{tr}(F_{\mu\nu}F^{\mu\nu}) + i\psi_{\ell}^{\dagger}(\partial_{-} - iA_{-}^a t_{\ell}^a)\psi_{\ell} + i\psi_{r}^{\dagger}(\partial_{+} - iA_{+}^a t_{r}^a)\psi_{r} + \mathcal{L}_{\theta}$$

- symmetries:
 - flavor symmetries
 - one-form symmetry $\Gamma \subset Z(G)$
 - non-invertible symmetries
- QCD obtained by gauging $G \subset$ flavor symmetry of quarks in UV:

• anomaly cancellation:
$$a \longrightarrow b \Longrightarrow \operatorname{tr}(t^a_\ell t^b_\ell) = \operatorname{tr}(t^a_r t^b_r)$$

• g triggers an RG flow. What happens in the infrared?

- QCD Hilbert space splits into distinct topological sectors
 - background with a flux tube created by probe quarks at ∞ Coleman, Witten

$$\overbrace{\bar{\rho}}^{\bullet} \qquad \rho \in \Gamma^*$$

- QCD is gapped iff the Hamiltonian is gapped in the $\rho = 0$ sector
 - ▶ QCD has topological lines W charged under Γ

Komargodski, Ohmori, Roumpedakis, Seifnashri

 \blacktriangleright ${\cal W}$ interpolates between flux sectors and cannot lower the energy

$$WH = H_{\rho}W$$

• suffices to study QCD with simply connected gauge group since

$$G_{\rm sc}/\Gamma + (R_\ell, R_r) + \mathcal{L}_{\theta=\rho} = G_{\rm sc} + (R_\ell, R_r) + \rho$$
 - flux tube

't Hooft anomalies and infrared phases

• 't Hooft anomalies have a topological classification, making them invariant under symmetric deformations, including RG transformations: $\alpha_{\rm UV} = \alpha_{\rm IR}$

- 't Hooft anomalies constrain the infrared dynamics of a physical system
 - symmetry is continuous ($\alpha \in \mathbb{Z}$):
 - 1. symmetry preserving gapless phase (CFT)
 - 2. symmetry breaking gapless phase (Goldstone bosons)
 - symmetry is discrete (α is torsion):
 - 1. symmetry preserving gapless phase (CFT)
 - 2. symmetry breaking phase (domain walls)
 - 3. symmetry preserving, gapped and topologically ordered phase (TQFT)

't Hooft anomalies and infrared phases

• 't Hooft anomalies have a topological classification, making them invariant under symmetric deformations, including RG transformations: $\alpha_{\rm UV} = \alpha_{\rm IR}$

- 't Hooft anomalies constrain the infrared dynamics of a physical system
 - symmetry is continuous ($\alpha \in \mathbb{Z}$):
 - 1. symmetry preserving gapless phase (CFT)

2. symmetry breaking gapless phase (Goldstone bosons)

- symmetry is discrete (α is torsion):
 - 1. symmetry preserving gapless phase (CFT)
 - 2. symmetry breaking phase (domain walls)
 - 3. symmetry preserving, gapped and topologically ordered phase (TQFT)

Towards gapped QCD

• a necessary condition for a QCD theory to be gapped is that it has no 't Hooft anomalies for continuous symmetries preserved under RG flow:

• gapped QCD theory cannot have continuous chiral flavor symmetries

$$\partial_{-}j_{+} = 0 \Longrightarrow \langle \partial_{-}j_{+} \rangle_{B} \neq 0$$

• absence of gravitational anomalies: $c_{\ell} - c_r = 0$

• these constrain the quark content of QCD₂ theories that are gapped

QCD Lightcone Hamiltonian

- x^+ (or x^-) as time in lightcone quantization
- mass spectrum by diagonalizing P^+ and P^- since $M^2 = P^+P^-$ 't Hooft,Pauli, Brodsky,Hornsbostel,Klebanov,Demeterfi,Kutasov,Schwimmer,Gross,Hashimoto,Pufu,Dempsey,...

$$P^-_{\text{QCD}} \propto -g^2 \int \mathrm{d}x^- : J^a \frac{1}{\partial_-^2} J^a : \propto g^2 \sum_{n=1}^\infty : J^a_{-n} J^a_n : \ge 0$$

where $J^a = :\psi_r^{\dagger} t_r^a \psi_r$: generates a G_k current algebra, where $k = I(R_r)$

• P_{QCD}^{-} acts on the quark Hilbert space \mathcal{H}

$$|\Psi^{i_1i_2\dots i_L}\rangle \equiv a_{i_1}^{\dagger}(k_1)a_{i_2}^{\dagger}(k_2)\dots a_{i_L}^{\dagger}(k_L)|\Omega\rangle$$

- necessary and sufficient conditions for $|\Psi^{i_1i_2...i_L}\rangle \in \mathcal{H}$ to have $P^- = 0$:
 - 1. $|\Psi^{i_1 i_2 \dots i_L}\rangle$ is a primary state of the current algebra $G_{I(R_r)}$
 - 2. $|\Psi^{i_1 i_2 \dots i_L}\rangle$ transforms in a trivial representation of G

QCD Lightcone Hamiltonian

- x^+ (or x^-) as time in lightcone quantization
- mass spectrum by diagonalizing P^+ and P^- since $M^2 = P^+P^-$ 't Hooft,Pauli, Brodsky,Hornsbostel,Klebanov,Demeterfi,Kutasov,Schwimmer,Gross,Hashimoto,Pufu,Dempsey,...

$$P^-_{\text{QCD}} \propto -g^2 \int \mathrm{d}x^- : J^a \frac{1}{\partial_-^2} J^a : \propto g^2 \sum_{n=1}^\infty : J^a_{-n} J^a_n : \ge 0$$

where $J^a = :\psi_r^{\dagger} t_r^a \psi_r$: generates a G_k current algebra, where $k = I(R_r)$

• P_{QCD}^- acts on the quark Hilbert space \mathcal{H}

$$|\Psi^{i_1i_2\dots i_L}\rangle \equiv a_{i_1}^{\dagger}(k_1)a_{i_2}^{\dagger}(k_2)\dots a_{i_L}^{\dagger}(k_L)|\Omega\rangle$$

- necessary and sufficient conditions for $|\Psi^{i_1i_2...i_L}\rangle \in \mathcal{H}$ to have $P^- = 0$:
 - 1. $|\Psi^{i_1 i_2 \dots i_L}\rangle$ is a primary state of the current algebra $G_{I(R_r)}$
 - 2. $|\Psi^{i_1 i_2 \dots i_L}\rangle$ transforms in a trivial representation of G

QCD is gapped iff $|\Omega\rangle$ is the unique $G_{I(R)}$ primary, singlet state in \mathcal{H}

Hilbert Space

- \mathcal{H} decomposes into modules of $SO(\dim(R))_1$ current algebra Witten, Ji,Shao,Wen
 - gauging $G \subset SO(\dim(R))$ induces an embedding of current algebras:

 $G_{I(R)} \subset SO(\dim(R))_1$

• embedding of modules encoded in the decomposition of affine characters

$$\chi_{\Lambda}(q) = \sum_{\lambda} b_{\Lambda\lambda}(q) \chi_{\lambda}(q)$$

- Λ and λ label integrable representations of $SO(\dim(R))_1$ and $G_{I(R)}$
- ▶ $b_{\Lambda\lambda}(q)$ counts the primary states of $G_{I(R)}$ in the module of $SO(\dim(R))_1$
- ▶ $b_{\Lambda\lambda}(q)$ is a character of the commutant chiral algebra:
 - $T_{SO(\dim(R))_1} T_{G_{I(R)}}$
 - ▶ current algebra $H_{k'}$ generated by currents J^{α} if $H \times G \subset SO(\dim(R))$
 - ▶

• QCD is gapped iff $|\Omega\rangle$ is the only $G_{I(R)}$ primary, singlet state in \mathcal{H}

 \implies QCD is gapped iff $b_{\Lambda 0}(q)$ is independent of q

• consider first
$$b_{00}(q) = q^{c(G_{I(R)})/24 - \dim(R)/48} \left(1 + a_1q + a_2q^2 + \ldots\right)$$

- $a_1 = \text{dimension of flavor symmetry group}$
 - ▶ gapped spectrum requires $a_1 = 0 \iff$ no continuous global symmetries
- the q^2 term corresponds to the following state in quark Hilbert space \mathcal{H}

$$(T_{SO(\dim(R))_1} - T_{G_{I(R)}})|\Omega\rangle$$

•
$$T_{SO(\dim(R))_1} = -\frac{1}{2} : \psi^i \partial \psi^i :$$

- $T_{G_{I(R)}} = \frac{1}{2(I(R)+h)} : J^a J^a$: where $J^a = : \psi^i t^a_{ij} \psi^j$:
- gapped spectrum requires that $T_{SO(\dim(R))_1} = T_{G_{I(R)}} \Longrightarrow b_{\Lambda 0}(q) = \delta_{\Lambda 0}$

 \iff necessary and sufficient condition for a QCD theory to be gapped is that

$$T_{SO(\dim(R))_1} = T_{G_{I(R)}}$$

Gapped QCD

• this yields a Jacobi-like identity for the generators t^a in representation R of G under which quarks transform

$$\sum_{a=1}^{\dim G} t^{a}_{ij} t^{a}_{kl} + t^{a}_{ik} t^{a}_{lj} + t^{a}_{il} t^{a}_{jk} = 0$$

• solutions are in one-to-one correspondence with symmetric spaces

Goddard, Nahm, Olive

• describe conformal embeddings of G_k into $SO(\dim(R))_1$

• complete list of QCD theories that are gapped $\Longrightarrow (G, R_{\ell}, R_r)$

• any other theory is gapless

Gapped QCD Theories

\mathfrak{g}	R	g	R
g	adj	$\mathfrak{su}(2)$	5
$\mathfrak{so}(N)$		$\mathfrak{so}(9)$	16
$\mathfrak{u}(N)$	\Box_q	F_4	26
$\mathfrak{so}(N)$		$\mathfrak{sp}(4)$	42
$\mathfrak{sp}(N)$	\square	$\mathfrak{su}(8)$	70
$\mathfrak{u}(N)$	\Box_q	$\mathfrak{so}(16)$	128
$\mathfrak{u}(N)$	\square_q	$\mathfrak{so}(10) + \mathfrak{u}(1)$	16_q
$\mathfrak{su}(M) + \mathfrak{su}(N) + \mathfrak{u}(1)$	$(\Box,\Box)_q$	$E_6 + \mathfrak{u}(1)$	27_{q}
$\mathfrak{so}(M) + \mathfrak{so}(N)$	(\Box,\Box)	$\mathfrak{su}(2) + \mathfrak{su}(2)$	(2 , 4)
$\mathfrak{sp}(M) + \mathfrak{sp}(N)$	(\Box,\Box)	$\mathfrak{su}(2) + \mathfrak{sp}(3)$	$({\bf 2},{\bf 14})$
$\oplus_i \mathfrak{u}(n_i)$	$\oplus_i(1,,\Box_i,,1)_{oldsymbol{q}_i, ilde{oldsymbol{q}}_i}$	$\mathfrak{su}(2) + \mathfrak{su}(6)$	(2 , 20)
		$\mathfrak{su}(2) + \mathfrak{so}(12)$	(2 , 32)
		$\mathfrak{su}(2) + E_7$	$({f 2},{f 56})$

Infrared Dynamics of 2d QCD

- what description emerges in the deep infrared for gapped and gapless QCD?
- conjecture is that infrared description is given by $g^2 \to \infty$ limit of \mathcal{L}_{QCD}
 - gauged WZW description of coset $SO(\dim(R))_1/G_{I(R)}$
 - ► TQFT when QCD is gapped
 - ▶ CFT when QCD theory is gapless
- examples:
 - $SU(N) + N_F \Box \xrightarrow{\text{IR}} U(N_F)_N \text{ WZW}$
 - $SU(2) + 7 \xrightarrow{\text{IR}} \mathcal{N} = 1$ minimal model (tricritical Ising)

Conclusions

- QCD₂ theories exhibit interesting phenomena:
 - supersymmetric spectrum by virtue of 't Hooft anomalies
 - nonperturbative quark condensates
 - quark deconfinement
 - . . .
- problem of determining the gapped QCD₂ theories can be solved
- study QCD₂ with light quarks using the proposed infrared description
- Hamiltonian methods very fruitful in tackling the problem. Tackle QCD₃?