Logarithmic Corrections to the Entropy of AdS Black Holes

Leo Pando Zayas University of Michigan

Strings 2021 Sao Paulo, June 22, 2021

Office of Science

Why logarithmic corrections to the entropy?

• The Universality of the Bekenstein-Hawking entropy formula

$$S = \frac{k_B c^3}{\hbar} \frac{A}{4G}$$

• Corrections/Physics: Gravity as an effective field theory (higher curvature) and logarithmic corrections (massless sugra fields)

$$S = \frac{A}{4G} + \mathbf{a} \, \log\left(\frac{A}{G}\right) + \dots$$

• Topic: The coefficient *a* in the AdS/CFT correspondence: Field Theory (micro)/ Gravity (macro).

A (1) > A (2) > A

Logarithmic terms: An IR window into UV physics

- The coefficient of the logarithmic corrections is determined macroscopically from the massless particle spectrum, insensitive to the UV completion of the theory.
- A litmus test: Any enumeration of quantum black hole microstate must agree with the macro result.
 - Sen and collaborators have checked various asymptotically flat black holes in string theory (precision Strominger-Vafa) [Sen '11] and challenged loop quantum gravity [Sen '12]. Quantum Entropy Formula [Sen '08].
 - Microscopic realization of Kerr/CFT [Pathak-Porfyriadis-Strominger-Varela '16].
 - ▶ AdS/CFT: Free energy of ABJM on S^3 [Bhattacharyya-Grassi-Mariño-Sen '12] $F_{S^3} \sim \operatorname{Ai}(N, k_a) \mapsto -\frac{1}{4} \log N.$
 - AdS black holes: The field theory answer must agree with massless sugra answer.

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline

- $\bullet\,$ The Topologically Twisted Index of 3d $\mathcal{N}=2$ Chern-Simons matter theories beyond large N
- Logarithmic corrections to $AdS_4 \times SE_7$ black holes : $a \log\left(\frac{L}{\ell_P}\right)$
- The superconformal index of $\mathcal{N}=4$ SYM beyond large N
- $\bullet~{\rm Kerr}/{\rm CFT}$ and logarithmic corrections to ${\rm AdS}_5$ black holes
- Open problems

ABJM Theory

• ABJM: A $U(N)_k \times U(N)_{-k}$ Chern-Simons-matter theory.

• The topologically twisted index as the supersymmetric partition function of the twisted theory on $S^1 \times S^2$ [Benini-Zaffaroni '15]:

$$Z(n_a, \Delta_a) = \operatorname{Tr} (-1)^F e^{-\beta \{ \mathcal{Q}, \mathcal{Q}^{\dagger} \}} e^{i J_a \Delta_a}$$

- Counts $\frac{1}{2}$ -BPS states annihilated by the supercharge Q.
- J_a , generators of flavor symmetries.

The Topologically Twisted Index

 \bullet The topologically twisted index for ABJM theory $_{[Benini-Hristov-Zaffaroni\ '15]}$:

$$Z(n_{a}, \Delta_{a}) = \prod_{a=1}^{4} y_{a}^{-\frac{1}{2}N^{2}n_{a}} \sum_{I \in BAE} \frac{1}{\det \mathbb{B}} \times \frac{\prod_{i=1}^{N} x_{i}^{N} \tilde{x}_{i}^{N} \prod_{i \neq j} \left(1 - \frac{x_{i}}{x_{j}}\right) \left(1 - \frac{\tilde{x}_{i}}{\tilde{x}_{j}}\right)}{\prod_{i,j=1}^{N} \prod_{a=1,2} (\tilde{x}_{j} - y_{a}x_{i})^{1-n_{a}} \prod_{a=3,4} (x_{i} - y_{a}\tilde{x}_{j})^{1-n_{a}}}$$

• Contour integral \rightarrow Evaluation (Poles): $e^{iB_i} = e^{iB_i} = 1$ and $\mathbb B$ is the Jacobian

$$e^{iB_{i}} = x_{i}^{k} \prod_{j=1}^{N} \frac{(1-y_{3}\frac{\tilde{x}_{j}}{x_{i}})(1-y_{4}\frac{\tilde{x}_{j}}{x_{i}})}{(1-y_{1}^{-1}\frac{\tilde{x}_{j}}{x_{i}})(1-y_{2}^{-1}\frac{\tilde{x}_{j}}{x_{i}})}, \ e^{i\tilde{B}_{j}} = \tilde{x}_{j}^{k} \prod_{i=1}^{N} \frac{(1-y_{3}\frac{\tilde{x}_{j}}{x_{i}})(1-y_{4}\frac{\tilde{x}_{j}}{x_{i}})}{(1-y_{1}^{-1}\frac{\tilde{x}_{j}}{x_{i}})(1-y_{2}^{-1}\frac{\tilde{x}_{j}}{x_{i}})}.$$

• An exact expression in N which can be computed numerically.

(人間) トイヨト イヨト

Logarithmic Correction to the Topologically Twisted Index

• In the large-N limit, the k = 1 index takes the form

$$\log Z = -\frac{N^{3/2}}{3}\sqrt{2\Delta_1\Delta_2\Delta_3\Delta_4}\sum_a \frac{n_a}{\Delta_a} + N^{1/2}f_1(\Delta_a, n_a) \\ -\frac{1}{2}\log N + f_3(\Delta_a, n_a) + \mathcal{O}(N^{-1/2}),$$

- The leading term reproduces the Bekenstein-Hawking entropy of extremal $AdS_4 \times S^7$ magnetic black holes [Benini-Hristov-Zaffaroni '15].
- The $-\frac{1}{2}\log N$ term is the field theory logarithmic correction [Liu-PZ-Rathee-Zhao '17].

Universality of Logarithmic Corrections

- 3d $\mathcal{N}=2$ Chern-Simons matter Theories: $S^7 \rightarrow V^{5,2}, N^{0,1,0}, Q^{1,1,1}$
- The universality of $-\frac{1}{2}\log N$ term [PZ-Xin '20].

< 🗇 🕨 < 🖃 🕨

Logarithmic terms in one-loop effective actions

• One-loop effective action is equivalent to computations of determinants for kinetic operators, A:

$$\frac{1}{2} \, \ln \det' A = \frac{1}{2} \sum_i{}' \, \ln \lambda_i$$

• The heat kernel $(\sum_i e^{-\tau\lambda_i})$ contains information about both the non-zero modes and the zero modes, ϵ is a UV cutoff.

$$-\frac{1}{2}\,\ln {\rm det}' A = \frac{1}{2}\int_{\epsilon}^{\infty}\,\frac{d\tau}{\tau}\left({\rm Tr} K(\tau) - n_A^0\right)$$

• At small au, the Seeley-DeWitt expansion for the heat kernel

$${\rm Tr} K(\tau) = \frac{1}{(4\pi)^{d/2}} \, \sum_{n=0}^\infty \, \tau^{n-d/2} \, \int d^d x \, \sqrt{g} \, a_n(x,x).$$

Logarithmic terms in one-loop effective actions

- Since non-zero eigenvalues of a standard Laplace operator A scale as L^{-2} , it is natural to redefine $\bar{\tau} = \tau/L^2$.
- The logarithmic contribution to $\ln \det' A$ comes from the term n = d/2 (integrated trace anomaly):

$$-\frac{1}{2} \, \ln \det' A = \left(\frac{1}{(4\pi)^{d/2}} \, \int d^d x \, \sqrt{g} \, a_{d/2}(x,x) - n_A^0\right) \log L + \dots.$$

• On very general grounds (diffeomorphism), the coefficient $a_{d/2}$ vanishes in odd-dimensional spacetimes.

Logarithmic terms: Key Facts

- Robustness: Independent of UV cutoff ϵ .
- In odd-dimensional spaces (11d Sugra) the coefficient of the log can only come from zero modes or boundary modes.

$$\log Z[\beta,\ldots] = \sum_{\{D\}} (-1)^D (\beta_D - 1) n_D^0 \log L + \Delta F_{\text{Ghost}}.$$

- Subtract the zero modes (-1) and add them appropriately due to integration over zero modes (β_D) .
- The ghost contributions are treated separately.

Final Result

• Quantizing C_3 requires 2-form ghost which contributes

$$(2-\beta_2)n_2^0\log L.$$

• Using $\beta_2 = 7/2$ and $n_2^0 = 2$ [non-extremal branch]:

$$\log Z[\beta,\ldots] = -3\log L + \cdots.$$

• The AdS/CFT dictionary: $L/\ell_P \sim N^{1/6}$

$$S = \cdots - \frac{1}{2} \log N + \cdots,$$

• Perfectly agrees with the microscopic result!!!

Universality of Logarithmic Corrections: Gravity

- Similar results for asymptotically ${\rm AdS}_4\times$ SE_7 black holes with $SE_7=\{S^7,V^{5,2},N^{0,1,0},Q^{1,1,1},M^{1,1,1}\}$
- Every seven-dimensional, compact Einstein manifold of positive curvature has vanishing first Betti number, $R_{mn} = 6m^2g_{mn} \Rightarrow \Delta_1 \ge 6m^2.$
- A universal macroscopic result that matches the field theory [PZ-Xin '20]:

$$S = S_{BH} \quad -\frac{1}{2}\log N + \cdots,$$

Wrapped M5 branes in AdS/CFT

• Entries in AdS_4/CFT_3 from M2's and M5's.

AdS_4/CFT_3	from M2-branes	from M5-branes
M-theory set-up	N M2-branes probing Cone(SE_7)	N M5-branes wrapped on M_3
Dual	Known only for	Systematic algorithm
Field theory	special examples of SE_7	applicable to general M_3
Gravity dual	$AdS_4 imes SE_7$	Warped $AdS_4 imes M_3 imes ilde{S}^4$
Symmetry	Isometry of SE_7 ($\supset U(1)_R$)	Only $U(1)_R$
L^2/G_4	$\frac{N^{3/2}\pi^2}{\sqrt{27/8\operatorname{vol}(SE_7)}}$	$\frac{2N^3\operatorname{vol}(M_3)}{3\pi^2}$
L/ℓ_P	$\propto N^{1/6}$	$\propto N^{1/3}$

• Logarithmic corrections match on the field theory (3d-3d) and the gravity side [Gang-Kim-PZ '19, Benini-Gang-PZ '19]:

$$\log Z_{1-loop} = (g-1)(1-b_1)\log N$$

Classical Entropy Formula in AdS

- Sen's Classical Entropy function [Sen '05] yields, under some symmetry considerations, the Wald entropy (higher curvature contributions) of the black hole in flat space.
- The leading Bekenstein-Hawking entropy of asymptotically $AdS_{4,5}$ black holes can be computed from the near-horizon geometry using Sen's Classical Entropy function [Morales-Samtleben '06, Goulart '15] [Ghosh-PZ '20,Ghosh-Godet-PZ '21?].
- The Quantum Entropy Formula [Sen '08] has been successful in asymptotically flat black holes [Sen '14]. Applications for asymptotically AdS black holes?
- We have reproduced the field theory prediction from the asymptotic AdS₄ region not from the near-horizon AdS₂ region.

・ロト ・回ト ・ヨト ・ヨト

A puzzle: Quantum Entropy Formula

- The near horizon geometry: $AdS_2 \times M_9$, M_9 is a S^2 bundle over S^7 with $\{n_a\}$.
- Graviton zero modes from two sources: a graviton in AdS_2 and gauge fields corresponding to Killing vectors of M_9 .
- There is a 1-form zero mode in AdS_2 ; AdS_{2M} admits a M-form zero mode.
- Contributions: graviton, gravitino, 3-form and 1-form ghost lead to the total logarithmic correction $(N \sim L^6)$:

$$\Delta F = \left(-45 + 36 - \frac{3}{2} - \frac{3}{2}\right) \log L = -12 \log L \sim -2 \log N.$$

- Simultaneously obtained [Liu-PZ-Rathee-Zhao '17, Jeon-Lal '17].
- The quantum entropy formula counts near horizon degrees of freedom, it requires a revision in *AdS*.
- \implies Explorations in other AdS black holes: AdS₅.

Microscopic Description: Rotating, Electrically Charged Black Holes in $AdS_{4,5,6,7}$

- The microscopic entropy of AdS₅ black holes 2018:
 - Cabo-Bizet-Cassani-Martelli-Murthy
 - Choi-Kim-Kim-Nahmgoong
 - Benini-Milan
- AdS₄: Choi-Hwang-Kim [1908.02470]; Nian-PZ [1909.07943]; Bobev-Crichigno [1909.05873]; Benini-Gang-PZ [1909.11612]
- AdS₆: Choi-Kim [1904.01164]
- AdS₇: Kantor-Papageorgakis-Richmond [1907.02923]; Nahmgoong [1907.12582].
- Given that entropy (A/(4G)) is such a universal quantity Do you really need the full power of AdS/CFT (UV complete setting) or is there an *effective low energy description*?
- Lessons from Strominger-Vafa: D-brane technology versus Brown-Henneaux.

$\mathsf{Kerr}/\mathsf{CFT}$

$$ds^{2} = \alpha_{1} \left[-\tilde{r}^{2} d\tau^{2} + \frac{d\tilde{r}^{2}}{\tilde{r}^{2}} \right] + \Lambda_{1}(\theta) \left[d\tilde{\phi} + \alpha_{2} \tilde{r} d\tau \right]^{2} + \Lambda_{2}(\theta) \left[d\tilde{\psi} + \beta_{1}(\theta) d\tilde{\phi} + \beta_{2}(\theta) \tilde{r} d\tau \right]^{2} + \alpha_{3} d\theta^{2}$$

- Kerr/CFT: [Guica-Hartman-Son-Strominger '08]; AdS black holes: [Lu-Mei-Pope '08, Chow-Cvetic-Lu-Pope '08]
- Bekenstein-Hawking entropy of AdS_{4,5,6,7} [Nian-PZ '20], [David-Nian-PZ '20], [David-Nian '20].

The superconformal index (see Sameer's talk)

$$\mathcal{I}(p,q;v) = \mathsf{Tr}_{\mathcal{H}(S^1 \times S^3)} \left[(-1)^F e^{-\beta \{\mathcal{Q}, \mathcal{Q}^\dagger\}} v_a^{Q_a} p^{J_1 + \frac{r}{2}} q^{J_2 + \frac{r}{2}} \right],$$

- Counts $\frac{1}{16}$ -BPS states for $\mathcal{N} = 4$ SYM theory and $\frac{1}{4}$ -BPS states for generic $\mathcal{N} = 1$ SCFT's.
- Q_a are the charges of states that commute with the super charge ${\cal Q}$
- r is the R-charge
- The fugacities p and q are associated to the two angular momenta $J_{1,2}$ of S^3 .

Evaluation beyond large N

• Cardy-like limit ($|\tau| \rightarrow 0$), exact in N through SU(N) Chern-Simons matrix model, saddle point approximation [GonzálezLezcano-Hong-Liu-PZ '20].

$$\begin{split} \mathcal{I}(\tau;\Delta) &= \mathcal{I}(\tau;\Delta) \big|_{\mathsf{Main Saddle Point}} + (\text{ other saddles}) \\ \log \mathcal{I}(\tau;\Delta) \big|_{\mathsf{Main Saddle Point}} &= -\frac{\pi i (N^2 - 1)}{\tau^2} \prod_{a=1}^3 [\Delta_a]_\tau + \log N + \mathcal{O}(e^{-1/|\tau|}). \end{split}$$

• Large-N, any τ , BA approximation [GonzálezLezcano-Hong-Liu-PZ '20].

$$\begin{split} \mathcal{I}(\tau;\Delta) &= \mathcal{I}(\tau;\Delta)\big|_{\mathsf{Basic BA}} + \text{(other BA solutions)}\\ \log \mathcal{I}(\tau;\Delta)\big|_{\mathsf{Basic BA}} &= -\frac{\pi i (N^2-1)}{\tau^2} \prod_{a=1}^3 [\Delta_a]_\tau + \log N + \mathcal{O}(N^0), \end{split}$$

- Log for other gauge groups [Amariti-Fazzi-Segati '20].
- EFT for the SCI: Log as degeneracy of vacua [Cassani-Komargodski '21,

```
Ardehali-Murthy '21].
```

Logarithmic term from near-horizon CFT_2

• Kerr/CFT provides a CFT₂ with n global U(1) symmetries whose conserved charges are P^i and associated chemical potentials are μ_i :

$$Z(\tau,\bar{\tau},\vec{\mu}) = \operatorname{Tr} e^{2\pi i \tau L_0 - 2\pi i \bar{\tau} \bar{L}_0 + 2\pi i \mu_i P^i},$$

$$\rho(E_L, E_R, \vec{p}) = \int d\tau \, d\bar{\tau} \, d^n \mu \, Z(\tau, \bar{\tau}, \vec{\mu}) \, e^{-2\pi i \tau E_L + 2\pi i \bar{\tau} E_R - 2\pi i \mu_i p^i}$$

- Saddle point reproduces the Bekenstein-Hawking entropy A/(4G).
- Logarithmic corrections from Kerr/CFT_[David-GonzálezLezcano-Nian-PZ '21]. Toward quantum Kerr/CFT?

$$\Delta S_{CFT_2} = -\frac{1}{2} \log \det \left(\partial_i \partial_j S_{eff} \right) = \log N$$

• Applies for the AdS₅ rotating black string [Hosseini-Hristov-Tachikawa-Zaffaroni '20].

Outlook

- AdS₄ versus AdS₅: Zero modes as obstructions for near-horizon approaches.
- The degrees of freedom do not live locally at the horizon. Corrections to the Sen's Quantum Entropy Formula, extra hair in AdS.
- Some aspects of Hawking Radiation à la Callan-Maldacena (from near-horizon CFT₂ [Nian-PZ '20]).
- The IIB gravity computation of $\log N$.
- Higher curvature corrections? Recent work [Bobev-Charles-Hristov-Reys '20]. Back to Sen's Entropy function formalism [Ghosh-Godet-PZ '21?].
- AdS/CFT *de facto* solves many black hole puzzles. Let's see that explicitly!

< 同 > < 三 > < 三 >