Higher-Form Symmetries from String Theory

Sakura Schäfer-Nameki

Strings 2021, "São Paulo", July 1, 2021
2102.01693, 2106. 10265 with Lakshya Bhardwaj and Max Hübner

Motivation

Higher-form symmetries [Gaiotto, Kapustin, Seiberg, Willett, 2014] are by now very well established in QFT.
What's the added benefit of studying them in string theory?
Access to strongly-coupled QFTs, non-Lagrangians:

- Geometric engineering: 5d and 6d theories and SCFTs
- Strongly coupled theories via holography
- Non-Lagrangian theories, e.g. class S and generalizations

Motivation

Access to strongly-coupled QFTs, non-Lagrangians: some examples

- Geometric engineering of 5d theories and SCFTs: (all in the past year) Higher-form symmetries, 't Hooft anomalies, 2-group structures
[Morrison, SSN, Willett][Albertini, del Zotto, Garcia Etxebarria, Hosseini] [Closset, SSN, Yi-Nan Wang][Apruzzi, Dierigl, Lin][Benetti Genolini, Tizzano][Bhardwaj, SSN][Cvetic, Dierigl, Lin, Zhang][Apruzzi, Bhardwaj, Oh, SSN]
- Holography: class S, ABJM and revisiting Klebanov-Strassler confining cascade [Witten][Bah, Bonetti, Minasian][Hofman, Iqbal][Bergman, Tachikawa, Zafrir][Apruzzi, van Beest, Gould, SSN]
- Non-Lagrangian theories: from 6 d such as class S , class R
[Tachikawa][Cordova, Dumitrescu, Intriligator][Eckhard, Kim, SSN, Willett][Gukov, Pei, Hsin][Bharwaj, Hubner, SSN] ${ }^{2}$.
$4 \mathrm{~d} \mathcal{N}=1$ SYM 1-form symmetry, is a diagnostic for confinement: Wilson lines with area law indicate confining vacua, where the 1 -form symmetry is unbroken. Perimeter law implies deconfining phase and 1-form symmetry is spontaneously broken.

The goal of this talk is to generalize this insight to theories that may not have a simple underlying UV Lagrangian description, such as $\mathcal{N}=1$ deformations of $4 \mathrm{~d} \mathcal{N}=2$ Class S theories.
$2102.01693,2106.10265$ with Lakshya Bhardwaj and Max Hübner

For this, we first cast the standard case of SYM into this framework and show how to determine the line operators and 1-form symmetry in each vacuum.

Plan

1. Line operators, polarization and 1 -form symmetry
2. 1-form Symmetry in $4 \mathrm{~d} \mathcal{N}=2$ Class S
3. Confinement in $\mathcal{N}=1$ deformations of class S
(i) Super Yang-Mills
(ii) Confinement index for theories with adjoint chirals
(iii) Non-Lagrangian theories

1. Line Operators, Polarization and 1-form Symmetry

Pure gauge theory in 4 d , gauge algebra \mathfrak{g} and simply-connected group G. The set of line operators are

$$
\mathcal{L}=\Lambda_{w} / \Lambda_{r} \oplus \Lambda_{m w} / \Lambda_{c r}=Z_{G} \oplus Z_{G} \quad Z_{G}=\text { center of } G .
$$

Not all lines are mutually local (relative theory): Dirac pairing

$$
L_{\alpha} L_{\beta}=L_{\beta} L_{\alpha} e^{2 \pi i\left\langle L_{\alpha}, L_{\beta}\right\rangle} .
$$

Polarization $\Lambda \subset \mathcal{L}$: choice of a maximal set of mutually local line operators (absolute theory).
E.g. for $\mathfrak{s u}(N): \mathcal{L}=\mathbb{Z}_{N} \oplus \mathbb{Z}_{N}$ with

$$
\langle W, H\rangle=\frac{1}{N} .
$$

$\Lambda=<W>$: gauge group $G=S U(N)$
$\Lambda=\langle H>$: gauge group $G=\operatorname{PSU}(N)$

1-Form Symmetry

$\Lambda \subset \mathcal{L}$ choice of polarization (absolute theory). Then the 1-form symmetry is the Pontryagin dual group to Λ

$$
\Gamma^{(1)}=\widehat{\Lambda}=\operatorname{Hom}(\Lambda, U(1)) .
$$

E.g. $\mathfrak{s u}(N): \Lambda=\mathbb{Z}_{N}$ and $\Gamma^{(1)}=\mathbb{Z}_{N}$.

In a given vacuum r let

$$
\Lambda_{r}=\{L \in \Lambda ; L \text { has perimeter law in vacuum } r\}
$$

Then the 1-form symmetry that is preserved in this vacuum is

$$
\Gamma_{r}^{(1)}=\frac{\widehat{\Lambda}}{\Lambda_{r}} \subset \Gamma^{(1)} .
$$

If this is non-trivial, then the vacuum r is confining.

2. 1-form symmetry of $4 \mathrm{~d} \mathcal{N}=2$ Class S

[Tachikawa][Bhardwaj, Hubner, Schafer-Nameki]
$6 \mathrm{~d}(2,0)$ of type $\mathfrak{g}=$ ADE is a relative theory, with 2-form symmetry $\widehat{\mathcal{Z}}$. Compactify on $\mathcal{C}_{g, n} \subset T^{*} \mathcal{C}$ to $4 \mathrm{~d} \mathcal{N}=2$ class S [Gaiotto].
6d surface operators wrapped on $H_{1}\left(\mathcal{C}_{g, n}, \mathbb{Z}\right)$ give line operators.
Consider $\mathcal{C}_{g, \emptyset}$:

$$
\mathcal{L}=H_{1}\left(\mathcal{C}_{g}, \widehat{\mathcal{Z}}\right) \cong \widehat{\mathcal{Z}}_{A} \oplus \widehat{\mathcal{Z}}_{B}
$$

from A-/B-cycles. There is a pairing on these line operators

$$
a_{i} \otimes \alpha_{i} \in H_{1}\left(\mathcal{C}_{g}, \mathbb{Z}\right) \otimes \widehat{\mathcal{Z}}: \quad\left\langle a_{1} \otimes \alpha_{1}, a_{2} \otimes \alpha_{2}\right\rangle=\left(a_{1} \cdot a_{2}\right)\left\langle\alpha_{1}, \alpha_{2}\right\rangle .
$$

\Rightarrow relative theory
Canonical polarization choices:

$$
\mathcal{L} \supset \Lambda=\widehat{\mathcal{Z}}_{A} \quad \text { or } \quad \widehat{\mathcal{Z}}_{B} \quad \Rightarrow \quad \Gamma^{(1)}=\widehat{\Lambda} .
$$

Extra class S data:
twist lines and punctures i.e. \mathfrak{g} with outer autos [Bhardwaj, Hubner, SSN, 2021].

Interlude: Geometric Engineering

Construct $4 \mathrm{~d} \mathcal{N}=2$ theories from IIB on singular, non-compact CY3 X. Line operators are D3s on non-compact 3-cycles, modulo screening by D3s on compact 3-cycles:

$$
\mathcal{L}=\frac{H_{3}(X, \partial X, \mathbb{Z})}{H_{3}(X, \mathbb{Z})} \cong\left\{L \in H_{2}(\partial X, \mathbb{Z}) ; L \text { extends trivially to } X\right\}
$$

Computable for non-Lagrangian theories like Argyres-Douglas. [Closset, SSN, Wang][Albertini, del Zotto, Garcia Etxebarria, Hosseini].
A subset of class S theories: $\mathbb{C}^{2} / \Gamma_{A D E} \rightarrow \mathcal{C}_{g}$.
ALE-fibration is governed by the Higgs field ϕ, which satisfies the Hitchin equations [Gaiotto, Moore, Neitzke]

$$
\bar{D} \phi=0, \quad F_{z \bar{z}}+\left[\phi, \phi^{*}\right]=0 .
$$

Spectral curve of this Higgs field is the Seiberg-Witten curve $\operatorname{det}(v-\phi)=0$, which is an N-fold cover of the Gaiotto curve \mathcal{C}. Then

$$
\mathcal{L}=\mathrm{Ab}\left(\Gamma_{A D E}\right)^{2 g} .
$$

3. $\mathcal{N}=1$ Deformation

$4 \mathrm{~d} \mathcal{N}=1$ from $6 \mathrm{~d}(2,0)$ on $\mathcal{C}_{g, n}$ in $V_{1} \oplus V_{2} \rightarrow \mathcal{C}_{g, n}$, with sections (ϕ, ψ).
Simple class of configurations: $\phi=(1,0)$ - and $\psi=(0,0)$-forms on \mathcal{C}, with BPS equations [Xie], corresponding to a generalized Hitchin system

$$
\begin{aligned}
\bar{D} \phi=\bar{D} \psi & =0 \\
{[\phi, \psi] } & =0 \\
F+\left[\psi, \psi^{*}\right]+\left[\phi, \phi^{*}\right] & =0 .
\end{aligned}
$$

(ϕ, ψ) each defines an N-sheeted covers of \mathcal{C}.
Strategy: start with $\mathcal{N}=2$ Higgs field ϕ, and then "rotate" to $\mathcal{N}=1$
[Barbon][Witten][Hori, Ooguri, Oz][Bonelli, Giacomelli,Maruyoshi,Tanzini] (related [Dijkgraaf, Vafa] curve).

$4 \mathrm{~d} \mathcal{N}=2$ pure SYM from 6d

Focus at first on $\mathfrak{s u}(2)$ for clarity. The Seiberg-Witten curve is

$$
v^{2}=\frac{\Lambda^{2}}{t}+u+\Lambda^{2} t
$$

$t=$ coordinate on the Gaiotto curve $\mathcal{C}=S^{2}$.

Class S construction:
$g=0, n=2$ with two \mathcal{P}_{0} irregular punctures:

$$
\operatorname{Tr} \phi^{2} \equiv \phi_{2}=\frac{v^{2}}{t^{2}} d t^{2}=\left(\frac{\Lambda^{2}}{t^{3}}+\frac{u}{t^{2}}+\frac{\Lambda^{2}}{t}\right) d t^{2}
$$

ϕ_{2} has poles of order 3 at $t=0, \infty$.

Rotating to $\mathcal{N}=1 \mathrm{SYM}$

Turn on ψ, where we rotate to $\mathcal{N}=1$ at $t=\infty$:

$$
\begin{array}{rlrl}
t \rightarrow \infty: & \psi & \rightarrow \mu \phi_{\zeta}, & \phi_{\zeta} \frac{d t}{t}=\phi \\
t & \rightarrow 0: & \psi \rightarrow c
\end{array}
$$

Furthermore for diagonalizable Higgs fields, the BPS equation $[\phi, \psi]=0$ implies simultaneous diagonalizability. For generic eigenvalue spectrum, this implies that one is a function of the other, and thus the branch-cuts must match.
\rightarrow solving for the curve
\rightarrow topological matching of branch-cuts

The v-curve for ϕ and w-curve for ψ are:

Tune CB moduli to combine into single cover, i.e. move branchpoints \times :

$$
v^{2}=\Lambda^{2}\left(\frac{1}{t} \pm 2+t\right), \quad w^{2}=\mu^{2} \Lambda^{2} t, \quad v w=\mu \Lambda^{2}(t \pm 1) .
$$

Curves describing the two vacua

Pure $\mathcal{N}=1$ SYM: take $\mu \rightarrow \infty$, while $\Lambda_{N=1}^{3}=\mu \Lambda^{2}$ fixed, and $\mu t=\tilde{t}$:

$$
v^{2}=\frac{\Lambda_{N=1}^{3}}{\tilde{t}}, \quad w^{2}=\Lambda_{N=1}^{3} \tilde{t}, \quad v w= \pm \Lambda_{N=1}^{3}
$$

The two vacua differ by asymptotics of w, which can be changed by encircling $t=0$:

Line Operators and 1-form Symmetry of the Vacua

\mathcal{L} and $\Lambda=$ lines and a polarization of the $\mathcal{N}=2$ class S theory. Define for each $\mathcal{N}=1$ vacuum with curve Σ_{r} :
$\mathcal{I}_{r}=\left\{\right.$ projections of 1-cycles on the $\mathcal{N}=1$ curve Σ_{r} onto $\left.\mathcal{C}\right\} \subset H_{1}(\mathcal{C}, \widehat{\mathcal{Z}})$.
Then lines with perimeter law are $\Lambda_{r}=\Lambda \cap \mathcal{I}_{r}$ and the 1-form symmetry $\Gamma_{r}^{(1)}$ preserved in the vacuum r is

$$
\Gamma_{r}^{(1)}=\left(\frac{\widehat{\Lambda}}{\overline{\Lambda \cap \mathcal{I}_{r}}}\right) \subset \widehat{\Lambda}
$$

If $\Gamma_{r}^{(1)} \neq \emptyset$ then the vacuum r is confining.
Why? Confining strings arise from from membranes on relative 1-cycles of the local CY3 and Σ_{r} [Witten].

Confinement for $\mathfrak{s u}(2)$ SYM

$\mathfrak{s u}(2)$: Line operators are W and H.

For both vacua $2 W=0$ because of the branch-cut crossing (only going twice around the puncture gives a 1-cycle on the curves). The lines with perimeter law for each vacuum are:

$$
\mathcal{I}_{+}=<2 W, H>, \quad \mathcal{I}_{-}=<2 W, H+W>.
$$

Preserved 1-form symmetry for each polarization:

Λ	G	$\Gamma_{+}^{(1)}$	$\Gamma_{-}^{(1)}$
$<W>$	$S U(2)$	\mathbb{Z}_{2}	\mathbb{Z}_{2}
$<H>$	$S O(3)_{+}$	\emptyset	\mathbb{Z}_{2}
$<H+W>$	$S O(3)_{-}$	\mathbb{Z}_{2}	\emptyset

Of course well-known in general [Aharony, Seiberg, Tachikawa], but we derive it purely from the curve.

Generalization: Pure $\mathcal{N}=1$ SYM su (N)

The N vacua of the $\mathfrak{s u}(N)$ SYM theories have curves

Again choosing polarizations, we can determine the 1-form symmetries in each vacuum for all global forms.

Similarly we can determine the confinement index of $\mathfrak{s u}(N)$ SYM with adjoint chirals with superpotential
[Elitzur, Forge,Giveon, Intriligator,Rabinovici][Cachazo,Seiberg,Witten]
\rightarrow see [Bhardwaj, Hubner, SSN]

3. Confinement in Non-Lagrangian $4 \mathrm{~d} \mathcal{N}=1$ Theories

The main reason for developing this class S based framework was to be able to apply it to theories without UV Lagrangians. In [Bhardwaj, Hubner, SSN] we determined a family of theories with no UV Lagrangian, which have confining vacua:
$\mathfrak{P}_{n, \alpha}=6 \mathrm{~d}(2,0) \mathfrak{s u}(n)$ theory on a sphere with α irregular \mathcal{P}_{0} punctures
where \mathcal{P}_{0} has pole of order $1+1 / n$.
Simplest case $\alpha=3: T_{n}$ theory with $\mathfrak{s u}(n)^{3}$ flavor gauged:

Line operators:

with

$$
\mathcal{L}=\left\langle W_{i}, H_{j k}\right\rangle /\left\langle W_{1}+W_{2}+W_{3}=0 ; H_{21}+H_{32}+H_{13}=0\right\rangle
$$

The pairing on these line operators is

$$
\left\langle W_{i}, H_{i j}\right\rangle=1 / n, \quad\left\langle W_{j}, H_{i j}\right\rangle=-1 / n
$$

Again, many choices of polarization. A simple one is

$$
\Lambda=\left\langle W_{i}\right\rangle /\left\langle W_{1}+W_{2}+W_{3}=0\right\rangle
$$

$$
\mathcal{N}=1 \text { Curve for } \mathfrak{P}_{3,3}
$$

The $\mathcal{N}=1$ curve before collision of branch-points is, with punctures rotated at $t=0, \infty$:

The branch-cuts in v-curve can be collided to agree with the cut-structure on the w-curve.
In the electric polarization we find in this vacuum

$$
\Gamma_{\Sigma}^{(1)}=\mathbb{Z}_{3} \times \mathbb{Z}_{3},
$$

which means this vacuum is confining.

A Family of Confining Theories with no UV Lagrangian

$\mathfrak{P}_{n, n}=6 \mathrm{~d}(2,0) \mathfrak{s u}(n)$ on sphere with $n \mathcal{P}_{0}$ s. Line ops $\mathcal{L}=\mathcal{L}_{W} \times \mathcal{L}_{H}$:

$$
\mathcal{L}_{W}=\frac{\left\langle W_{i}\right\rangle}{\left\langle\sum W_{i}=0\right\rangle} \simeq \mathbb{Z}_{n}^{n-1}, \quad \mathcal{L}_{H}=\frac{\left\langle H_{i+1, i}, H_{1, n}\right\rangle}{\left\langle\sum H_{i+1, i}+H_{1, n}=0\right\rangle} \simeq \mathbb{Z}_{n}^{n-1}
$$

with pairing $\left\langle W_{i}, H_{i j}\right\rangle=\frac{1}{n},\left\langle W_{j}, H_{i j}\right\rangle=-\frac{1}{n}$. Again, on special locus of CB match the branch-cut structure, resulting in the vacuum with curve:

With $\Lambda=\mathcal{L}_{W}$ polarization this vacuum preserves 1-form symmetry and is confining for n prime:

$$
\Gamma_{\Sigma}^{(1)}=\mathbb{Z}_{n}^{n-1}
$$

Conclusion and Outlook

There's a strong case for studying higher-form symmetries in string theory constructions of QFTs.

Today we focused on $4 \mathrm{~d} \mathcal{N}=1$ from class S , and determined the 1 -form symmetry in known cases such as SYM, but we also predict confinement in theories without 4d UV Lagrangian.
Future directions: compute anomalies, and TQFTs governing the IR of the confining vacua from 6 d .
In higher dimensional gauge theories/SCFTs: higher-form symmetries can provide important sets of 't Hooft anomalies in 5d and 6d theories [Benetti-Genolini, Tizzano], constrain the global, generalized and higher-group symmetry structure [Apruzzi, Bhardwaj, Oh, SSN].
Holography: using b.c. à la [Witten], the global forms of gauge groups can be determined e.g. in ABJM like theories in [Bergman, Tachikawa, Zafrir], and confinement in Klebanov-Strassler theories revisited and the IR TQFT derived from supergravity [Apruzzi, van Beest, Gould, SSN].

