

Integrability in AdS/CFT
Status and Lessen $(S=U Y(r, a)$
Shola Komalsu (GERN) $g=2((-z)$ ar. \quad)
Strings 2021 in BMzil $f=1|火 \cdot a|(u \cdot a)$

A now how to robie lvesy problan that has beeno sobred

Bethe Amsts Prob. Koubl
2.0 Hall
wace. Tamh
Noa liveran brancel Hysices
(2) $f=u(r, a)$
$g=s(r-z) u(r \cdot i)$
(22) $t=1|火 \cdot a|(u \cdot a)$

Feynman's last blackboard taken from 1810.07409 by Dhar, Patel, Wadia, (Trivedi) cf. Colloquium by Ooguri @ Aspen 2018

Disclaimer

I will focus on $\mathrm{N}=4$ super Yang-Mills in 4d.

- ABJM, AdS3/CFT2, deformations, $\mathrm{N}=2$ SCFT.....
2106.08449 by Pomoni, Rabe, Zoubos

Dynamical Yang-Baxter eq.

Goals are

- To give a "feeling" of what the Quantum Spectral Curve is (and explain applications)
- To explain recent developments involving D-branes (e.g. determinant ops)

Things that I will NOT discuss (or will only mention briefly)

- Hexagons for correlation functions, Pentagons for amplitudes / form factor
talk by Coronado review by Vieira in Strings 2017, [Sever, Tumanov, Wilhelm]
- Yangian from defects in large N SQFT
cf. talk by Dedushenko
- Conformal fishnet theories: non-unitary log CFT obtained by deforming N=4 SYM

What do we mean by " $\mathrm{N}=4 \mathrm{SYM}$ is integrable"?

- $\mathcal{O}_{k}\left(x_{k}\right)$: single-trace non-BPS op

$$
\begin{aligned}
\left\langle\prod_{k} \mathcal{O}_{k}\left(x_{k}\right)\right\rangle= & \left(\cdot+\frac{1}{N^{2}} \cdot+\frac{1}{N^{4}} \cdot+\cdots\right)+e^{-N \cdot}\left(\bullet+\frac{1}{N^{2}} \cdot+\cdots\right)+\cdots \\
& +e^{-N^{2} \star}\left(\star+\frac{1}{N^{2}} \star+\cdots\right)+\cdots+e^{-e^{N^{2} \star}}+\cdots \\
& \text { Instantons holes, worm holes (single bdy) } \quad \text { doubly nonperturbative }
\end{aligned}
$$

Expectation: we can compute \bullet terms at finite λ but not \star terms.

- Heavier operators:

Some correlation functions involving $\Delta \sim O(N)$ are computable. But operators with $\Delta \sim O\left(N^{2}\right)$ are NOT *.

- As long as operators do not back-react $\operatorname{AdS}_{5} \times S^{5}$, there's a chance we can compute things using integrability.

Why should we care?

- First example of solvable interacting gauge theory in 4d.
- String theory on RR-flux background.

Alternative approaches: [Berenstein, Leigh], [Cho, Collier, Yin] [Berkovits, Vafa, Witten], String Field Theory

- Qualitative/quantitative similarities with pure Yang-Mills: e.g. BFKL physics
- Starting point for conformal perturbation/Hamiltonian truncation (at large N).
- Might tell us "how the world sheet theory emerges from gauge theory"

Simpler version of the question: How do bulk/gravity emerge from QFT/QM?

- Hopefully give us hints about the worldsheet dual of pure Yang-Mills?

Radial direction from fermion bilinear

- Fluctuations on GKP string (= null Wilson lines)
[Gubser, Klebanov, Polyakov]

@ Weak coupling (=gauge), No mode corresponding to the radial fluctuation.
- Radial mode $=2$ fermion (threshold) bound state
[Basso], [Basso, Sever, Vieira]

$$
\bar{\psi} \psi \quad \longrightarrow \quad z
$$

- A similar mechanism for probe branes discussed in [Ferrari et al, $\left.{ }^{12} \cdot 16\right]$

Status: $\mathcal{O}=\operatorname{tr}(\underbrace{X Z \cdots Z X}_{L})$

Main message

$\mathrm{N}=4 \mathrm{SYM}$ is....

Spin chain

Large N gauge theory / matrix model

So, let's start with basics....

It all started from here

- Minahan and Zarembo found a relation between a 1-loop dilatation operator and a Hamiltonian of spin chain.
N=4 SYM
$\mathcal{O}=\operatorname{tr}[Y Z Y Z Z \cdots]$
$D_{1-\text { loop }}$
spin chain

$$
\begin{gathered}
|\downarrow \uparrow \downarrow \uparrow \uparrow \cdots\rangle \\
H_{\text {Heisenberg }} \propto \sum_{j} \vec{S}_{j} \cdot \vec{S}_{j+1}
\end{gathered}
$$

Energy

- The spin chain turns out to be solvable by Bethe ansatz.

Bethe ansatz $\quad H_{\text {Heisenberg }} \propto \sum_{j} \vec{S}_{j} \cdot \vec{S}_{j+1}$

- Step 1: Write an ansatz

$$
\begin{aligned}
& \left|p_{1}, p_{2}, p_{3}\right\rangle=\sum_{n_{1}<n_{2}<n_{3}} \Psi_{n_{1}, n_{2}, n_{3}} \left\lvert\, \uparrow \cdots \underset{\substack{ \\
n_{1} \\
n_{2} \\
n_{2} \\
\downarrow \cdots \downarrow \\
n_{3}}}{ } \begin{array}{l}
\Psi_{n_{1}, n_{2}, n_{3}}=e^{i\left(p_{1} n_{1}+p_{2} n_{2}+p_{3} n_{3}\right)}+S\left(p_{1}, p_{2}\right) e^{i\left(p_{2} n_{1}+p_{1} n_{2}+p_{3} n_{3}\right)}+S\left(p_{1}, p_{2}\right) S\left(p_{1}, p_{3}\right) e^{i\left(p_{2} n_{1}+p_{3} n_{2}+p_{1} n_{3}\right)} \\
\quad+\text { (permutations) }
\end{array} .\right.
\end{aligned}
$$

- Step 2: Impose $H\left|p_{1}, p_{2}, p_{3}\right\rangle=E\left|p_{1}, p_{2}, p_{3}\right\rangle$
\longrightarrow 1. $\quad S\left(p_{1}, p_{2}\right)=\frac{u_{1}-u_{2}-i}{u_{1}-u_{2}+i} \quad\left(e^{i p} \equiv \frac{u+i / 2}{u-i / 2}\right) \quad$ Rapidity variable

2. $e^{i p_{j} L} \prod S\left(p_{j}, p_{k}\right)=1 \quad$ Bethe equation
3. $E=\sum_{j}^{k \neq j} \frac{1}{u_{j}^{2}+\frac{1}{4}}$

Energy = sum over energies of magnons

Finite λ

$\mathcal{O}=\operatorname{tr}(\underbrace{X Z \cdots Z X}_{L})$

- Assume integrability persists at finite λ : For $L \gg 1$, we can write the Bethe equation at finite λ.

$$
e^{i p_{j} L} \prod_{k \neq j} S^{(\lambda)}\left(p_{j}, p_{k}\right)=1
$$

- $S^{(\lambda)}(p, q)$ can be determined by imposing the centrally-extended $\mathrm{SU}(2 \mid 2)^{2}$ symmetry. [Beisert], [Janik]

$$
\left[j, S^{(\lambda)}\right]=0, \quad j \in \frac{\mathrm{SU}(2 \mid 2)^{2}}{\text { C superconformal sym. }}
$$

Central charge $=$ gauge transf $=$ translation

- P, K are field-dependent ("large") gauge transformation

$$
\begin{gathered}
Q(\text { boson })=(\text { fermion }), \quad Q^{\prime}(\text { fermion })=\cdots+\frac{g_{\mathrm{YM}}[Z,(\text { boson })]}{=P} \\
\left\{Q, Q^{\prime}\right\}=P
\end{gathered}
$$

- P, K are discrete translations on the spin chain

$$
P\left|Z \cdots Y_{n}^{Y \cdots\rangle} \propto\right| Z \cdots Z \underset{n+1}{Y \cdots\rangle-\left|Z \cdots Y_{n} Z \cdots\right\rangle}
$$

Finite L $\mathcal{O}=\operatorname{tr}(\underbrace{X Z \cdots Z X}_{L})$

- $S^{(\lambda)}$ determine all perturbative $1 / L$ corrections at finite λ.
- $e^{-L \cdot}$ corrections "can" be computed by Thermodynamic Bethe ansatz TBA (later)

- Works for some operators, but practically hard for most operators.....

Quantum Spectral Curve

[Gromov, Kazakov, Leurent,Volin]

Reformulation of Bethe equation

$$
e^{i p_{j} L} \prod_{k \neq j} S\left(p_{j}, p_{k}\right)=1 \Longleftrightarrow\left(\frac{u_{j}+\frac{i}{2}}{u_{j}-\frac{i}{2}}\right)^{L} \prod_{k \neq j} \frac{u_{j}-u_{k}-i}{u_{j}-u_{k}+i}=1
$$

- Introduce $\quad Q(u) \equiv \prod_{j}\left(u-u_{j}\right) \quad$ Q-function
- Bethe eq is equivalent to

$$
\begin{aligned}
T(u) Q(u)= & (u-i / 2)^{L} Q(u+i)+(u+i / 2)^{L} Q(u-i) \\
& 0=T\left(u_{j}\right) Q\left(u_{j}\right)=\left(u_{j}-i / 2\right)^{L} Q\left(u_{j}+i\right)+\left(u_{j}+i / 2\right)^{L} Q\left(u_{j}-i\right)
\end{aligned}
$$

- It can be further reformulated into

$$
u^{L} \propto Q(u+i / 2) \tilde{Q}(u-i / 2)-Q(u-i / 2) \tilde{Q}(u+i / 2)
$$

QQ-relation

$$
\text { with } \quad T(u) \propto Q(u+i) \tilde{Q}(u-i)-Q(u-i) \tilde{Q}(u+i)
$$

QQ-relation for N=4 SYM

- QQ-relations can be generalized to the full $\mathrm{N}=4 \mathrm{SYM}$.

$$
\mathbf{Q}_{a \mid j}(u+i / 2)-\mathbf{Q}_{a \mid j}(u-i / 2)=\mathbf{P}_{a}(u) \mathbf{Q}_{j}(u) \quad(a, j=1, \ldots, 4)
$$

e.g.

$$
\mathbf{Q}_{j}(u)=\mathbf{Q}_{a \mid j}(u \pm i / 2) \mathbf{P}^{a}(u) \quad \mathbf{P}_{\mathbf{a}}(u)=\mathbf{Q}_{a \mid j}(u \pm i / 2) \mathbf{Q}^{j}(u)
$$

- QQ-relations do not depend on λ. Same relations hold for spin chain at weak coupling.

Spin chain

- To incorporate λ-dependence, we need to use the fact that it is a large N gauge theory / matrix model.

Quantum Spectral Curve for Matrix Model

$$
\int d M \exp \left(-\frac{N}{2 g^{2}} \operatorname{tr}\left(M^{2}\right)\right)=\int \prod_{j} d m_{j} \prod_{j<k}\left(m_{j}-m_{k}\right)^{2} e^{\frac{N}{2 g^{2}}} \sum_{j} m_{j}^{2}
$$

- Two-point functions of $\operatorname{tr}\left(M^{L}\right)$ are non-diagonal:

$$
\left\langle\operatorname{tr}\left(M^{L}\right) \operatorname{tr}\left(M^{L^{\prime}}\right)\right\rangle_{\text {large } N, \text { connected }} \neq 0 \quad \text { for } L \neq L^{\prime}
$$

- Diagonalization [Rodriguez-Gomez, Russo '16]

$$
\operatorname{tr}\left(M^{L}\right)=\sum_{j} m_{j}^{L} \quad \mapsto \quad \sum_{j} T_{L}\left(m_{j} / g\right) \quad \text { Chebyshev polynomial }
$$

- "Q-function/Quantum Spectral Curve"

$$
T_{L}(u / g)=x^{L}+\frac{1}{x^{L}}=: Q^{(L)}(u) \quad \begin{aligned}
& u=g(x+1 / x) \\
& \text { zhukovsky variable }
\end{aligned}
$$

Properties of Q-functions for Matrix Model

$$
Q^{(L)}(u)=x^{L}+\frac{1}{x^{L}}
$$

1. Most naturally defined on x-plane, which is a double cover of u.

$$
u=g(x+1 / x) \quad \Longleftrightarrow \quad x(u)=\frac{u+\sqrt{u^{2}-4 g^{2}}}{2 g}\left(=\frac{1}{\text { resolvent }}\right)
$$

2. Charges (=Length of operators) can be read off from $u \rightarrow \infty$.

$$
Q^{(L)}(u) \xrightarrow{u \rightarrow \infty} u^{L}
$$

3. Satisfy the gluing condition (monodromy property).

$$
Q(u)=Q(\tilde{u})
$$

Gluing condition for N=4 SYM

SL(2) sector

$\mathbf{Q}_{1}(\tilde{u}) \propto\left(\mathbf{Q}_{3}(u)\right)^{*}$
$\mathbf{Q}_{2}(\tilde{u}) \propto\left(\mathbf{Q}_{4}(u)\right)^{*}$

- Together with QQ-relations, they determine Q-functions.

- Δ can be read off from $u \rightarrow \infty$:

$$
\mathbf{Q}_{1}(u) \xrightarrow{u \rightarrow \infty} u^{(\Delta-S) / 2}
$$

11-loop anomalous dimension of Konishi

$$
\begin{aligned}
& \gamma_{11}=-242508705792+107663966208 \zeta_{3}+70251466752 \zeta_{3}^{2}-12468142080 \zeta_{3}^{3} \\
& +1463132160 \zeta_{3}^{4}-71663616 \zeta_{3}^{5}+180173002752 \zeta_{5}-16655486976 \zeta_{3} \zeta_{5} \\
& -24628230144 \zeta_{3}^{2} \zeta_{5}-2895575040 \zeta_{3}^{3} \zeta_{5}+19278176256 \zeta_{5}^{2}-9619845120 \zeta_{3} \zeta_{5}^{2} \\
& +2504494080 \zeta_{3}^{2} \zeta_{5}^{2}+\frac{882108048384}{175} \zeta_{5}^{3}+45602231040 \zeta_{7}+14993482752 \zeta_{3} \zeta_{7} \\
& -12034759680 \zeta_{3}^{2} \zeta_{7}+1406730240 \zeta_{3}^{3} \zeta_{7}+30605033088 \zeta_{5} \zeta_{7}+21217637376 \zeta_{3} \zeta_{5} \zeta_{7} \\
& -\frac{1309941061632}{275} \zeta_{5}^{2} \zeta_{7}-13215327552 \zeta_{7}^{2}-4059901440 \zeta_{3} \zeta_{7}^{2}-69762034944 \zeta_{9} \\
& +23284599552 \zeta_{3} \zeta_{9}-3631889664 \zeta_{3}^{2} \zeta_{9}-11032374528 \zeta_{5} \zeta_{9}-6666706944 \zeta_{3} \zeta_{5} \zeta_{9} \\
& -23148129024 \zeta_{7} \zeta_{9}-10024051968 \zeta_{9}^{2}-54555179184 \zeta_{11}+\frac{10048541184}{5} \zeta_{3} \zeta_{11} \\
& -726029568 \zeta_{3}^{2} \zeta_{11}-8975463552 \zeta_{5} \zeta_{11}-22529041920 \zeta_{7} \zeta_{11}-\frac{1437993422496}{175} \zeta_{13} \\
& +\frac{1504385419392}{35} \zeta_{3} \zeta_{13}-30324602880 \zeta_{5} \zeta_{13}-\frac{151130039581392}{875} \zeta_{15}-41375093760 \zeta_{3} \zeta_{15} \\
& -\frac{196484147423712}{275} \zeta_{17}+309361358592 \zeta_{19}-1729880064 Z_{11}^{(2)}-\frac{1620393984}{5} \zeta_{3} Z_{11}^{(2)} \\
& -131383296 \zeta_{5} Z_{11}^{(2)}+\frac{138107420928}{175} Z_{13}^{(2)}+\frac{3543865344}{35} \zeta_{3} Z_{13}^{(2)}-\frac{5716780416}{7} Z_{13}^{(3)} \\
& -\frac{674832384}{7} \zeta_{3} Z_{13}^{(3)}+\frac{48227088384}{175} Z_{15}^{(2)}+\frac{3581880576}{25} Z_{15}^{(3)}+754974720 Z_{15}^{(4)} \\
& -\frac{854924544}{11} Z_{17}^{(2)}+\frac{496324544}{55} Z_{17}^{(3)}+\frac{818159616}{275} Z_{17}^{(4)}+\frac{175363688448}{1925} Z_{17}^{(5)} .
\end{aligned}
$$

$$
Z_{\bullet}^{(\cdot)}=\text { multiple zeta values }
$$

Correlation functions from QSC?

- In Gaussian MM, correlation functions are given by integrals of Q-functions:

$$
\begin{aligned}
\left\langle\mathcal{O}_{L_{1}} \mathcal{O}_{L_{2}}\right\rangle_{c} & =\oint d \mu_{2} Q^{\left(L_{1}\right)}(u) Q^{\left(L_{2}\right)}(u) \propto \delta_{L_{1}, L_{2}} \\
\left\langle\mathcal{O}_{L_{1}} \mathcal{O}_{L_{2}} \mathcal{O}_{L_{3}}\right\rangle_{c} & =\oint d \mu_{3} Q^{\left(L_{1}\right)}\left(u_{1}\right) Q^{\left(L_{2}\right)}\left(u_{2}\right) Q^{\left(L_{3}\right)}\left(u_{3}\right) \\
\mathcal{O}_{L}=\operatorname{tr}\left(M^{L}\right)+\cdots \quad d \mu_{2} & =\frac{d x}{2 \pi i x} \quad d \mu_{3}=\frac{d x_{1}}{2 \pi i} \frac{d x_{2}}{2 \pi i} \frac{d x_{3}}{2 \pi i} \frac{\left(x_{1}+x_{2}+x_{3}+x_{1} x_{2} x_{3}\right)\left(1+x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}\right)}{\prod_{j}\left(1-x_{j}^{2}\right)^{2}}
\end{aligned}
$$

They describe a topological subsector of $\mathrm{N}=4 \mathrm{SYM}$ of. [Druker, Pelefe]

- Hope for the same in N=4 SYM....?

$$
\begin{aligned}
\left\langle\mathcal{O}_{1} \mathcal{O}_{2}\right\rangle & \sim \oint d \mu_{2} \mathbf{Q}_{1}(u) \mathbf{Q}_{2}(u) \\
\left\langle\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{3}\right\rangle & \sim \oint d \mu_{3} \mathbf{Q}_{1}(u) \mathbf{Q}_{2}(u) \mathbf{Q}_{3}(u)
\end{aligned}
$$

Correlation functions from QSC?

- Great progress for $d \mu_{2}$ at weak coupling (= rational spin chain)

Cavaglia, Gromov, Levkovich-Maslyuk, Ryan, Volin, Grabner, Julius. Derkachov, Olivucci, Manashov, Kozlowski,....

$$
\int d \mu_{2} \mathbf{Q}\left((\text { charge }) \cdot \mathbf{Q}^{\prime}\right)=\int d \mu_{2}((\text { charge }) \cdot \mathbf{Q}) \mathbf{Q}^{\prime} \propto \delta_{\mathbf{Q Q}^{\prime}}
$$

$G L(n)$, non-compact spin chain, general representations....

- Simplest case (SL(2) spin chain of length L) Derkachov, Korchemsky, Manashov

$$
\left\langle\mathcal{O}_{1} \mathcal{O}_{2}\right\rangle=\int_{-\infty}^{\infty}\left(\prod_{k=1}^{L-1} \frac{d x_{k}}{2 \pi} \frac{\mathbf{Q}_{1}\left(x_{k}\right) \mathbf{Q}_{2}\left(x_{k}\right)}{\left(\cosh \pi x_{k}\right)^{L}}\right) \prod_{j<k} \sinh \left(\pi\left(x_{j}-x_{k}\right)\right)\left(x_{j}-x_{k}\right)
$$

Can we derive/generalize using Bethe/gauge correspondence?
Nekrasov, Shatashvili

- Next steps: 1. Finite $\lambda . \quad$ 2. $d \mu_{3}$.

Difficulties: 1. \# of integration variables increases with loops.
2. $d \mu_{3} \neq d \mu_{2}$ (because of double traces)

Results also in fishnet limits and from localization.

D-branes, determinants, g-function

Jiang, SK, Vescovi, Yang, Wu, Wang

de Leeuw, Kristjansen, Zarembo, Wilhelm, Buhr-Mortensen, Ispen, Linardopoulos, Muller

Bajnok, Gombor

Determinant correlators

- A new class of solvable correlation functions.

- Analogy with FZZT brane in minimal string : $\operatorname{det}(E-H)$

$\operatorname{det}(E-H):$ fzzt brane

$\operatorname{det}(x-Z)$: giant graviton

Weak coupling: Matrix Product State

- Represent det's by fermion integrals: $\operatorname{det}\left(Z\left(x_{k}\right)\right)=\int d \bar{\chi}_{k} d \chi_{k} \exp \left(\bar{\chi}_{k} Z\left(x_{k}\right) \chi_{k}\right)$ cf. talk by Shenker
- Integrate out N=4 SYM fields (Z)
\rightarrow effective action for "mesons" $\underset{2 \times 2 \text { matrix }}{\rho_{k j}} \sim\left(\bar{\chi}_{k} \chi_{j}\right): \int_{\text {cf. [Budzik, Gaiotto today] }} d \rho \exp \left(-N S_{\text {eff }}[\rho]\right)$
Saddles in chiral algebra sector = D-branes in BCOV
- Single-trace operator: $\mathcal{O}=\operatorname{tr}_{N \times N}(Y Z Y Z Z \cdots)$
$\langle\operatorname{det} Z \operatorname{det} \bar{Z} \mathcal{O}\rangle \quad \mapsto \quad \operatorname{tr}_{2 \times 2}\left(M_{Y} M_{Z} M_{Y} M_{Z} \cdots\right)$ $M_{Y} \sim \operatorname{diag}\left(\frac{1}{\left|x-x_{1}\right|^{2}}, \frac{-1}{x-\left.x_{2}\right|^{2}}\right) \cdot \rho_{\text {saddle }}^{-1}$ $=\langle\operatorname{MPS} \mid \mathcal{O}\rangle$

$$
\langle\mathrm{MPS}|=\sum_{\bullet=Y, Z}\left\langle\bullet_{1} \bullet_{2} \cdots\right| \operatorname{tr}\left(M_{\bullet 1} M_{\bullet 2} \cdots\right) \quad 2 \times 2 \sqrt{M} \underset{\text { Spin }}{M} \quad \mid M
$$

Weak coupling: Result $\left\langle\operatorname{MPS} \mid p_{1}, \cdots\right\rangle$

- Studied in stat-mech in the context of quench dynamics:

Tuchiya, Brockmann, De Nardis, Wouters, Caux, Pozsgay, Vernier, Calabrese, Piroli,...
de Leeuw, Kristjansen, Zarembo, Foda, Wilhelm, Buhr-Mortensen, Ispen, Linardopoulos, Muller

1. $\left\langle\operatorname{MPS} \mid p_{1}, \cdots\right\rangle \neq 0 \quad$ iff $\left\{p_{1}, \cdots\right\}=\left\{p_{1},-p_{1}, p_{2},-p_{2}, \cdots\right\}$
$\Rightarrow\langle\mathrm{MPS}| Q_{2 s+1}=0 \quad \rightarrow \quad\langle\mathrm{MPS}|:$ integrable bdy state
Ghoshal, Zamolodchikov
Pozsgay, Piroli, Vernier
2. $\left\langle\operatorname{MPS} \mid p_{1}, \cdots\right\rangle \sim \prod_{j} F\left(p_{j}\right) \times \sqrt{\frac{\operatorname{det} G_{+}}{\operatorname{det} G_{-}}}$

$$
G_{a b}^{ \pm} \sim \frac{\partial \log \left(\text { Bethe eq for } p_{a}\right)}{\partial p_{b}} \pm \frac{\partial \log \left(\text { Bethe eq for } p_{a}\right)}{\partial\left(-p_{b}\right)}
$$

- $\mathrm{N}=4 \mathrm{SYM}$ also gives generalizations of known formulae.
$S L(2)$ spin chain, supergroup spin chain

Finite coupling: Worldsheet g-function

Affleck, Ludwig
Step 1: Determine reflection amplitudes using (integrable) bootstrap
Ghoshal, Zamolodchikov

Finite coupling: Worldsheet g-function

Step 2: Consider a cylinder partition function.

- Open string: Thermal partition function at $\beta=L$:

$$
Z_{\text {open }}(L) \stackrel{R \gg 1}{\longrightarrow} \int \underbrace{\rho_{\text {open }}}_{\text {Density of excitations }} e^{-L R \underbrace{}_{\text {eff }\left[\rho_{\text {open }}\right]}]} \text { determined by } \begin{aligned}
& \text { deflion amplitude }
\end{aligned}
$$

different saddles $=\sum_{\psi_{n}} \quad$ Saddle pt eq $=$ TBA eq
1-loop det $=\left|\left\langle B \mid \psi_{n}\right\rangle\right|^{2}$

Finite coupling: Result and Fredholm det

$$
\begin{aligned}
& \left\langle B \mid \psi_{n}\right\rangle=(\text { prefactor }) \frac{\sqrt{\operatorname{Det} 1+\hat{G}}}{\operatorname{Det} 1+\hat{G}} \left\lvert\, \hat{G} \cdot \vec{f}(u)=\int_{-\infty}^{\infty} \frac{d v}{2 \pi i} \frac{\partial_{v} \log S^{(v)}(u, v)}{1+1 / Y(v)} \vec{f}(v)\right. \\
& \text { depends on reflection } \\
& \text { amplitudes }
\end{aligned}
$$

- Reproduces and generalizes the weak-coupling answer.
- A variety of quantities can (in principle) be studied by the same methods:
- 1-point function in the presence of domain wall sk, Wang, Bajnok, Gombor, de Leeuw, Kristjansen, Zarembo, Foda, Wilhelm, Buhr-Mortensen, Ispen, Linardopoulos, Muller
- D-instanton Caetano, SK, Wang to appear
- $\langle\mathcal{O} W\rangle \quad W$: Wilson loop Jiang, Sk, Vescovi, to appear
- 1-pt function in the Coulomb branch

Cordova, Coronado, SK, Zarembo, Ivanovsky, Mishnyakov, Terziev, Zaigreev, in progress

- Other theories. Jiang, Sk, wu, Yang
- And more....

Intriguing observation

Weak coupling (spin chain)

Finite coupling (String)

Bond dimension $d=\quad$ \# of boundary bound states

- (A part of) world sheet d.o.f can be seen already at weak coupling!

$$
\text { *determinant } d=2 \text {, D-instanton } d=1 \text {, Wilson loop } d=\infty \text {, domain wall } d \geq 1, \ldots
$$

Lessons and Future....

General lessons

- Lesson 1

Large N
 Feynman diagrams
 String world sheet in AdS

Can we see the same at finite temperature? How do we see a horizon from large N diagrams?

- Lesson 2 : λ expansion has a finite radius of convergence.

Double-scaling near the singularity at $-\pi^{2}$? Connection to de Sitter? [Polyakov]

Open questions

- Can we see a horizon from large N Feynman diagrams?

[Festuccia, Liu '05, '06] (obstacle: [Linde '80])
cf. [Jafferis, Schneider '21]

- Analyticity in λ : double scaling, connection to de Sitter?
cf. [Basso, Dixon, Kosower, Krajenbrink, Zhong '21]
[Polyakov '07], [Dijkgraaf, Heidenreich, Jefferson, Vafa '18]
- Rewrite g-function in terms of Q-function / Quantum Spectral Curve (straightforward)
- Quantum Spectral Curve from 4d Chern-Simons? (How do we derive gluing conditions?)
[Costello, Gaiotto, Yagi '21]
- Single-trace three-point functions from Quantum Spectral Curve?
(= Plucker coordinates of Grassmannian)
- Quantum Spectral Curve in chiral algebra sector?
- N=2 SCFT? Veneziano limit? [Pomoni, Rabe, Zoubos '21]
- How to efficiently compute non-planar corrections? Analog of topological recursion?
(Perhaps start from topological subsectors) [Giombi, SK '19]

