Exact results and modular invariance of integrated correlators in $\mathcal{N}=4 \mathrm{SYM}$

Congkao Wen

Queen Mary University of London

Strings 2021, ICTP-SAIFR, São Paulo

Introduction

■ Based on arXiv: 2102.09537, arXiv: 2102.08305, with Daniele Dorigoni, Michael Green

■ Early work, arXiv: 1912.13365, arXiv: 2008.02713, with Shai Chester, Michael Green, Silviu Pufu, Yifan Wang

A four-point correlator in $S U(N) \mathcal{N}=4$ SYM

■ We will study four-point correlator of Chiral Primary Operators,

$$
\mathcal{O}_{2}(x, Y)=\operatorname{tr}\left(\phi_{l_{1}}(x) \phi_{l_{2}}(x)\right) Y^{I_{1}} Y^{I_{2}}
$$

where $I_{p}=1,2, \cdots, 6$ and $Y \cdot Y=0$.

- Two- and three-point correlators are protected.

■ Supersymmetry and superconformal symmetries imply [Eden, Petkou, Schubert, Sokatchev][Nirschl, Osborn]

$$
\left\langle\mathcal{O}_{2} \mathcal{O}_{2} \mathcal{O}_{2} \mathcal{O}_{2}\right\rangle=\left\langle\mathcal{O}_{2} \mathcal{O}_{2} \mathcal{O}_{2} \mathcal{O}_{2}\right\rangle_{\text {free }}+\mathcal{I}_{4}\left(x_{i}, Y_{i}\right) \mathcal{T}_{N}(U, V ; \tau, \bar{\tau})
$$

where \mathcal{I}_{4} is fixed by the symmetries and we focus on \mathcal{T}_{N}. U, V are cross ratios $\& \tau=\frac{\theta}{2 \pi}+i \frac{4 \pi}{g_{\mathrm{YM}}^{2}}=\tau_{1}+i \tau_{2}$.

A four-point correlator in $S U(N) \mathcal{N}=4 S Y M$

What is known about the correlator?

■ Weak coupling expansion:
■ Known up to 3 loops [Drummond, Duhr, Eden, Heslop, Pennington, Smirnov].

- In planar limit, the integrand was constructed up to 10 loops [Bourjaily, Heslop, Tran].

■ The first non-planar contribution enters at 4 loops [Fleury, Pereira].
■ Strong coupling expansion can be computed using Witten diagrams [D'Hoker, Freedman, Mathur, Matusis, Rastelli]...; more recently: KK modes, loop corrections, string corrections ... [Rastelli, Zhou][Alday,

Bissi, + Perlmutter][Aprile, Drummond, Heslop, Paul][Alday, Zhou][Bissi, Fardelli, Georgoudis][Drummond, Paul][Alday, Caron-Huot][Caron-Huot, Trinh][Aprile, Vieira][Abl, Heslop, Lipstein]....

- Instanton effects were studied in the semi-classical limit. [Bianchi,

Green, Kovacs, Rossi][Dorey, Hollowood, Khoze, Mattis, Vandoren]...

Integrated correlators in $\operatorname{SU}(N) \mathcal{N}=4$ SYM

- We are interested in $S L(2, \mathbb{Z})$ modular properties and the correlator at finite coupling τ.
- This in general is very difficult; we will consider a simpler yet highly non-trivial object: integrated correlators,

$$
\mathcal{G}_{N}(\tau, \bar{\tau})=\int d U d V M(U, V) \mathcal{T}_{N}(U, V ; \tau, \bar{\tau})
$$

With suitable choices of the measure to preserve supersymmetry, $\mathcal{G}_{N}(\tau, \bar{\tau})$ can be computed exactly.

■ One may reconstruct the un-integrated correlator at finite coupling, at least for first few orders in large- N expansion.

Integrated correlators in $\operatorname{SU}(N) \mathcal{N}=4$ SYM

Two integrated correlators have been studied.
■ Integrated correlator no. 1: [Binder, Chester, Pufu, Wang] [Chester, Pufu]

$$
\mathcal{G}_{1 N}(\tau, \bar{\tau})=-\frac{8}{\pi} \int_{0}^{\infty} d r \int_{0}^{\pi} d \theta \frac{r \sin ^{2}(\theta)}{U} \mathcal{T}_{N}(U, V ; \tau, \bar{\tau}),
$$

with $U=1+r^{2}-2 r \cos (\theta), V=r^{2}$.

- Integrated correlator no. 2: [Chester, Pufu]

$$
\mathcal{G}_{2 N}(\tau, \bar{\tau})=-\frac{96}{\pi} \int_{0}^{\infty} d r \int_{0}^{\pi} d \theta \frac{r \sin ^{2}(\theta)}{U} \bar{D}_{1111}(U, V) \mathcal{T}_{N}(U, V ; \tau, \bar{\tau}),
$$

where $\bar{D}_{1111}(U, V)$ is the 1-loop box.

Integrated correlators in $\operatorname{SU}(N) \mathcal{N}=4$ SYM

Simplicity of the integrated correlators. E.g., for $\mathcal{G}_{1 N}(\tau, \bar{\tau})$.

- 1 and 2 loops: the correlator is given by ladder diagrams [Usyukina, Davydychev]

$$
f^{(L)}(z, \bar{z})=\sum_{r=0}^{L} \frac{(-1)^{r}(2 L-r)!}{r!(L-r)!L!} \log ^{r}(z \bar{z})\left(\mathrm{Li}_{2 L-r}(z)-\mathrm{Li}_{2 L-r}(\bar{z})\right),
$$

whereas the integrated L-loop ladder diagram is simply [Usyukina]

$$
-2\binom{2 L+2}{L+1} \zeta(2 L+1)
$$

■ 3 loops: given by a pages-long expression involving multiple polylogarithms, however the integrated result is simply $\left[g_{\mathrm{YM}}^{2} N /\left(4 \pi^{2}\right)\right]^{3} 735 / 16 \zeta(7)$.

Integrated correlators from localization

The integrated correlators can be computed exactly.

- They are determined by four derivatives of the partition function of $\mathcal{N}=2^{*}$ SYM on S^{4} [Binder, Chester, Pufu, Wang] [Chester, Pufu]

$$
\begin{aligned}
& \mathcal{G}_{1 N}(\tau, \bar{\tau})=\left.\tau_{2}^{2} \partial_{\tau} \partial_{\bar{\tau}} \partial_{m}^{2} \log Z_{N}(m, \tau, \bar{\tau})\right|_{m=0} \\
& \mathcal{G}_{2 N}(\tau, \bar{\tau})=\left.\partial_{m}^{4} \log Z_{N}(m, \tau, \bar{\tau})\right|_{m=0}
\end{aligned}
$$

where $Z_{N}(m, \tau, \bar{\tau})$ is computed using supersymmetric localization [Nekorasov) [Pestun]...

$$
Z_{N}(m, \tau, \bar{\tau})=\int d^{N} a \delta\left(\sum_{i} a_{i}\right) \prod_{i<j}\left(a_{i}-a_{j}\right)^{2} e^{-\frac{8 \pi^{2}}{g_{\mathrm{YM}}^{2}} \sum_{i} \partial_{i}^{2}} Z_{\text {pert }}\left|Z_{\text {inst }}\right|^{2} .
$$

- We will mostly focus on $\mathcal{G}_{1 N}(\tau, \bar{\tau}) \&$ drop " 1 ", and briefly discuss $\mathcal{G}_{2 N}(\tau, \bar{\tau})$ at the end.

Exact results of an integrated correlator

By carefully analysing $\mathcal{N}=2^{*}$ SYM partition function, we conjectured an exact expression for $\mathcal{G}_{1 N}(\tau, \bar{\tau})$ for arbitrary N and τ :

$$
\mathcal{G}_{N}(\tau, \bar{\tau})=\sum_{(p, q) \in \mathbb{Z}^{2}} \int_{0}^{\infty} \exp \left(-t \pi \frac{|p+q \tau|^{2}}{\tau_{2}}\right) B_{N}(t) d t
$$

where $B_{N}(t)=\frac{\mathcal{Q}_{N}(t)}{(t+1)^{2 N+1}}, \& \mathcal{Q}_{N}(t)$ is a degree- $(2 N-1)$ polynomial:

$$
\begin{aligned}
& \mathcal{Q}_{N}(t)=-\frac{1}{4} N(N-1)(1-t)^{N-1}(1+t)^{N+1} \\
& \left\{(3+(8 N+3 t-6) t) P_{N}^{(1,-2)}(z)+\frac{3 t^{2}-8 N t-3}{t+1} P_{N}^{(1,-1)}(z)\right\},
\end{aligned}
$$

with $z=\frac{1+t^{2}}{1-t^{2}}, P_{N}^{(\alpha, \beta)}$ is the Jacobi polynomial. E.g.

$$
\begin{aligned}
& \mathcal{Q}_{2}(t)=9 t^{3}-30 t^{2}+9 t, \\
& \mathcal{Q}_{3}(t)=18 t^{5}-99 t^{4}+126 t^{3}-99 t^{2}+18 t .
\end{aligned}
$$

Exact results of an integrated correlator

Some remarks:
■ $B_{N}(t)=1 / t B_{N}(1 / t), \quad \int_{0}^{\infty} B_{N}(t) d t / \sqrt{t}=0, \ldots$.

- k-instanton term $e^{2 \pi i k \tau_{1}}$ has $k=\hat{p} q$, where \hat{p} replaces p via the Poisson sum.
- $\mathcal{G}_{N}(\tau, \bar{\tau})$ is manifestly $S L(2, \mathbb{Z})$ invariant.

■ Formally $\mathcal{G}_{N}(\tau, \bar{\tau})$ can be re-expressed as an infinite sum:

$$
\mathcal{G}_{N}(\tau, \bar{\tau})=\sum_{s=2}^{\infty} c_{N}(s) E(s ; \tau, \bar{\tau})
$$

The non-holomorphic Eisenstein series

$$
\begin{aligned}
E(s ; \tau, \bar{\tau}) & =\sum_{(p, q) \neq(0,0)} \frac{\tau_{2}^{s}}{\pi^{s}|p+q \tau|^{2 s}} \\
& =\frac{2 \zeta(2 s)}{\pi^{s}} \tau_{2}^{s}+\frac{2 \zeta(2 s-1) \Gamma\left(s-\frac{1}{2}\right)}{\pi^{s-\frac{1}{2}} \Gamma(s)} \tau_{2}^{1-s}+\text { instantons }
\end{aligned}
$$

Exact results of an integrated correlator

- $B_{N}(t)$ obeys a differential equation, that leads to a $S L(2, \mathbb{Z})$ invariant Laplace-difference equation for $\mathcal{G}_{N}(\tau, \bar{\tau})$,

$$
\begin{aligned}
\left(4 \tau_{2}^{2} \partial_{\tau} \partial_{\bar{\tau}}-2\right) \mathcal{G}_{N}(\tau, \bar{\tau})= & N^{2}\left[\mathcal{G}_{N+1}(\tau, \bar{\tau})-2 \mathcal{G}_{N}(\tau, \bar{\tau})+\mathcal{G}_{N-1}(\tau, \bar{\tau})\right] \\
& -N\left[\mathcal{G}_{N+1}(\tau, \bar{\tau})-\mathcal{G}_{N-1}(\tau, \bar{\tau})\right]
\end{aligned}
$$

- As a comparison: the non-holomorphic Eisenstein series obeys a homogeneous Laplace equation

$$
\left[4 \tau_{2}^{2} \partial_{\tau} \partial_{\bar{\tau}}-s(s-1)\right] E(s ; \tau, \bar{\tau})=0 .
$$

- $\mathcal{G}_{1}(\tau, \bar{\tau})=0$. Once $\mathcal{G}_{2}(\tau, \bar{\tau})$ is given, the Laplace-difference equation determines $\mathcal{G}_{N}(\tau, \bar{\tau})$ for all N.

■ We will now study $\mathcal{G}_{N}(\tau, \bar{\tau})$ in various limits.

Weak-coupling perturbative expansion

Weak-coupling perturbative expansion (loops)

$$
\begin{aligned}
& \mathcal{G}_{N, 0}\left(\tau_{2}\right)=4 c\left[\frac{3 \zeta(3) a}{2}-\frac{75 \zeta(5) a^{2}}{8}+\frac{735 \zeta(7) a^{3}}{16}-\frac{6615 \zeta(9)\left(1+\frac{2}{7} N^{-2}\right) a^{4}}{32}\right. \\
& \left.+\frac{114345 \zeta(11)\left(1+N^{-2}\right) a^{5}}{128}-\frac{3864861 \zeta(13)\left(1+\frac{25}{11} N^{-2}+\frac{4}{11} N^{-4}\right) a^{6}}{1024}+\cdots\right],
\end{aligned}
$$

with $a=\lambda /\left(4 \pi^{2}\right)$ and $4 c=N^{2}-1$.

- It gives an all-loop prediction for any N.
- 1-, 2- and 3-loop terms were proved to agree with known results.

■ Non-planar contributions start to enter at 4 loops, in agreement with known results.

Large N : small- λ expansion

Large- N expansion: $\mathcal{G}_{N}(\tau, \bar{\tau}) \sim \sum_{g=0}^{\infty} N^{2-2 g} \mathcal{G}^{(g)}(\lambda)$.

- Small- λ expansion

$$
\begin{aligned}
& \mathcal{G}^{(0)}(\lambda)=\sum_{n=1}^{\infty} \frac{4(-1)^{n+1} \zeta(2 n+1) \Gamma\left(n+\frac{3}{2}\right)^{2}}{\pi^{2 n+1} \Gamma(n) \Gamma(n+3)} \lambda^{n}, \\
& \mathcal{G}^{(1)}(\lambda)=\sum_{n=1}^{\infty} \frac{(-1)^{n}(n-5)(2 n+1) \zeta(2 n+1) \Gamma\left(n-\frac{1}{2}\right) \Gamma\left(n+\frac{3}{2}\right)}{24 \pi^{2 n+1} \Gamma(n)^{2}} \lambda^{n},
\end{aligned}
$$

- They are all convergent with a finite radius $|\lambda|<\pi^{2}$, which has been seen in $\mathcal{N}=4$ SYM, such as cusp anomalous dimension [Basso, Korchemsky, Kotanski], amplitudes [Basso, Dixon, Papathanasiou].

Large N : large- λ expansion

■ Large- λ expansion:

$$
\begin{aligned}
& \mathcal{G}^{(0)}(\lambda) \sim \frac{1}{4}+\sum_{n=1}^{\infty} \frac{\Gamma\left(n-\frac{3}{2}\right) \Gamma\left(n+\frac{3}{2}\right) \Gamma(2 n+1) \zeta(2 n+1)}{2^{2 n-2} \pi \Gamma(n)^{2} \lambda^{n+1 / 2}}, \\
& \mathcal{G}^{(1)}(\lambda) \sim-\frac{\sqrt{\lambda}}{16}-\sum_{n=1}^{\infty} \frac{n^{2}(2 n+11) \Gamma\left(n+\frac{1}{2}\right) \Gamma\left(n+\frac{3}{2}\right)^{2} \zeta(2 n+1)}{24 \pi^{\frac{3}{2}} \Gamma(n+2) \lambda^{n+1 / 2}},
\end{aligned}
$$

■ They are all asymptotic \& not Borel summable, require non-perturbative completions

$$
\begin{aligned}
& \Delta \mathcal{G}^{(0)}(\lambda)=i\left[8 \operatorname{Li}_{0}\left(e^{-2 \sqrt{\lambda}}\right)+\frac{18 \mathrm{Li}_{1}\left(e^{-2 \sqrt{\lambda}}\right)}{\lambda^{1 / 2}}+\frac{117 \mathrm{Li}_{2}\left(e^{-2 \sqrt{\lambda}}\right)}{4 \lambda}+\cdots\right], \\
& \Delta \mathcal{G}^{(1)}(\lambda)=i\left[-\frac{127 \mathrm{Li}_{0}\left(e^{-2 \sqrt{\lambda}}\right)}{2^{8}}+\frac{927 \mathrm{Li}_{1}\left(e^{-2 \sqrt{\lambda}}\right)}{2^{12} \lambda^{1 / 2}}-\frac{3897 \mathrm{Li}_{2}\left(e^{-2 \sqrt{\lambda}}\right)}{2^{14} \lambda}+\cdots\right],
\end{aligned}
$$

Large N : finite YM coupling τ

Large- N expansion with finite Yang-Mills coupling τ ("very strong coupling limit"):

$$
\begin{aligned}
& \mathcal{G}_{N}(\tau, \bar{\tau}) \sim \frac{N^{2}}{4}-\frac{3 N^{\frac{1}{2}}}{2^{4}} E\left(\frac{3}{2} ; \tau, \bar{\tau}\right)+\frac{45}{2^{8} N^{\frac{1}{2}}} E\left(\frac{5}{2} ; \tau, \bar{\tau}\right) \\
& +\frac{3}{N^{\frac{3}{2}}}\left[\frac{1575}{2^{15}} E\left(\frac{7}{2} ; \tau, \bar{\tau}\right)-\frac{13}{2^{13}} E\left(\frac{3}{2} ; \tau, \bar{\tau}\right)\right]+\frac{225}{N^{\frac{5}{2}}}\left[\frac{441}{2^{18}} E\left(\frac{9}{2} ; \tau, \bar{\tau}\right)-\frac{5}{2^{16}} E\left(\frac{5}{2} ; \tau, \bar{\tau}\right)\right] \\
& +\frac{63}{N^{\frac{7}{2}}}\left[\frac{3898125}{2^{27}} E\left(\frac{11}{2} ; \tau, \bar{\tau}\right)-\frac{44625}{2^{25}} E\left(\frac{7}{2} ; \tau, \bar{\tau}\right)+\frac{73}{2^{22}} E\left(\frac{3}{2} ; \tau, \bar{\tau}\right)\right] \\
& +\frac{945}{N^{\frac{9}{2}}}\left[\frac{31216185}{2^{31}} E\left(\frac{13}{2} ; \tau, \bar{\tau}\right)-\frac{41895}{2^{26}} E\left(\frac{9}{2} ; \tau, \bar{\tau}\right)+\frac{1639}{2^{27}} E\left(\frac{5}{2} ; \tau, \bar{\tau}\right)\right]+\cdots .
\end{aligned}
$$

Recall $E(s ; \tau, \bar{\tau})$ is the non-holomorphic Eisenstein series, which is $S L(2, \mathbb{Z})$ invariant.

Integrated correlator no. 2 \& new modular invariants

Integrated correlator no. 2 at finite coupling τ, up to $1 / N^{3}$:

$$
\begin{aligned}
& \left.\quad \partial_{m}^{4} \log Z\right|_{m=0}=6 N^{2}+6 N^{\frac{1}{2}} E\left(\frac{3}{2} ; \tau, \bar{\tau}\right)+C_{0}-\frac{9}{2 N^{\frac{1}{2}}} E\left(\frac{5}{2} ; \tau, \bar{\tau}\right)-\frac{27}{2^{3} N} \mathcal{E}\left(3, \frac{3}{2}, \frac{3}{2} ; \tau, \bar{\tau}\right) \\
& - \\
& -\frac{9}{N^{\frac{3}{2}}}\left[\frac{375}{2^{10}} E\left(\frac{7}{2} ; \tau, \bar{\tau}\right)-\frac{13}{2^{8}} E\left(\frac{3}{2} ; \tau, \bar{\tau}\right)\right]+\frac{405}{704 N^{2}}\left[C_{1}+35 \mathcal{E}\left(6, \frac{5}{2}, \frac{3}{2} ; \tau, \bar{\tau}\right)\right. \\
& \left.-24 \mathcal{E}\left(4, \frac{5}{2}, \frac{3}{2} ; \tau, \bar{\tau}\right)\right]-\frac{675}{N^{\frac{5}{2}} 2^{10}}\left[\frac{49}{4} E\left(\frac{9}{2} ; \tau, \bar{\tau}\right)-E\left(\frac{5}{2} ; \tau, \bar{\tau}\right)\right] \\
& +\frac{1}{N^{3}}\left[\alpha_{3} \mathcal{E}\left(3, \frac{3}{2}, \frac{3}{2} ; \tau, \bar{\tau}\right)+\sum_{r=5,7,9}\left[\alpha_{r} \mathcal{E}\left(r, \frac{3}{2}, \frac{3}{2} ; \tau, \bar{\tau}\right)+\beta_{r} \mathcal{E}\left(r, \frac{5}{2}, \frac{5}{2} ; \tau, \bar{\tau}\right)+\gamma_{r} \mathcal{E}\left(r, \frac{7}{2}, \frac{3}{2} ; \tau, \bar{\tau}\right)\right]\right],
\end{aligned}
$$

where $\alpha_{i}, \beta_{i}, \gamma_{i}$ are rational numbers; \mathcal{E} is the generalised non-holomorphic Eisenstein series

$$
\left[4 \tau_{2} \partial_{\tau} \partial_{\bar{\tau}}-r(r+1)\right] \mathcal{E}\left(r, s_{1}, s_{2} ; \tau, \bar{\tau}\right)=-E\left(s_{1} ; \tau, \bar{\tau}\right) E\left(s_{2} ; \tau, \bar{\tau}\right)
$$

Type IIB string amplitudes in $\mathrm{AdS}_{5} \times S^{5}$

- To reconstruct the un-integrated correlator, we write an ansatz for it, that is conveniently done in Mellin space [Mack][Penedones]

$$
\mathcal{T}_{N}(U, V ; \tau, \bar{\tau})=\int \frac{d s d t}{(4 \pi i)^{2}} U^{\frac{s}{2}} V^{\frac{t-4}{2}} \Gamma^{2}\left(\frac{4-s}{2}\right) \Gamma^{2}\left(\frac{4-t}{2}\right) \Gamma^{2}\left(\frac{s+t-4}{2}\right) \mathcal{M}_{N}(s, t ; \tau, \bar{\tau})
$$

- Large- N ansatz (after removing an overall R^{4}),

$$
\begin{aligned}
\mathcal{M}(s, t ; \tau, \bar{\tau}) & =\frac{a c}{(s-2)(t-2)(u-2)}+c^{1 / 4} b+\mathcal{M}_{1-\text {-loop }}^{\text {SUGRA }}(s, t) \\
& +\frac{c_{2}\left(s^{2}+t^{2}+u^{2}\right)+c_{1}}{c^{1 / 4}}+\frac{d_{3} s t u+d_{2}\left(s^{2}+t^{2}+u^{2}\right)+d_{1}}{c^{1 / 2}}+\cdots .
\end{aligned}
$$

■ Unknown coefficients are fixed by two integrated correlators, and the flat-space limit in the case of $d^{6} R^{4}$.

Type IIB string amplitudes in $\mathrm{AdS}_{5} \times S^{5}$

The exact result of the un-integrated correlator in large- N expansion (after removing an overall R^{4}),

$$
\begin{aligned}
\mathcal{M}(s, t ; \tau, \bar{\tau}) & =\frac{8 c}{(s-2)(t-2)(u-2)}+\frac{15 E\left(\frac{3}{2} ; \tau, \bar{\tau}\right) c^{1 / 4}}{4 \sqrt{2 \pi^{3}}}+\mathcal{M}_{1-\text { loop }}^{\text {SUGRA }}(s, t) \\
& +\frac{315 E\left(\frac{5}{2} ; \tau, \bar{\tau}\right)}{128 \sqrt{2 \pi^{5}} c^{1 / 4}}\left[\left(s^{2}+t^{2}+u^{2}\right)-3\right] \\
& +\frac{945 \mathcal{E}\left(3, \frac{3}{2}, \frac{3}{2} ; \tau, \bar{\tau}\right)}{64 \pi^{3} c^{1 / 2}}\left[s t u-\frac{1}{4}\left(s^{2}+t^{2}+u^{2}\right)-4\right]+\cdots
\end{aligned}
$$

In flat-space limit, $\mathcal{M}(s, t ; \tau, \bar{\tau})$ reproduces known results of superstring amplitudes in flat space. [Green, Gutperle + VanhovelGreen, Sethi] ..

$$
\begin{aligned}
\mathcal{L}_{\mathrm{EFT}}^{\mathrm{IIB}} \sim & \alpha^{\prime-4} R+\alpha^{\prime-1} E\left(\frac{3}{2} ; \tau, \bar{\tau}\right) R^{4}+\alpha^{\prime} E\left(\frac{5}{2} ; \tau, \bar{\tau}\right) d^{4} R^{4} \\
& +\alpha^{\prime 2} \mathcal{E}\left(3, \frac{3}{2}, \frac{3}{2} ; \tau, \bar{\tau}\right) d^{6} R^{4}+\cdots .
\end{aligned}
$$

Summary and comments

- The integrated correlators can be computed exactly, and provide tools for studying non-perturbative effects.
- Integrated correlator $\partial_{m}^{4} \log Z$ at finite $N \&$ finite τ ?

■ Higher-point bonus $U(1)_{Y}$-violating correlators: non-holomorphic modular forms. [Green, c.w.]

- Correlators of higher-weight Chiral Primary Operators: Hidden 10d conformal symmetry. [see the talk by Coronado.]

Thank you!

