Review on Swampland in condensed matter physics

Irene Valenzuela Thanks! Harvard University for the excellent talk and slides

Xiao-Gang Wen (MIT)

Strings 2021, ICTP-SAIFR, São Paulo

Xiao-Gang Wen (MIT)

Swmapland program in condensed matter physics

Xiao-Gang Wen (MIT)

Swmapland program in condensed matter physics

Xiao-Gang Wen (MIT)

Swmapland program in condensed matter physics

Goal of the Swampland program: in condensed matter

What distinguishes the landscape from the swampland?

in condensed matter

Proposals: **Swampland Conjectures** EFTs in swampland are boundary of bulk gapped quantum liquids. <u>Motivated by String Theory as well as Black Hole physics</u> The bulk topological order in bulk quantum liquid is the obstruction for the EFT be consistent with LQM in the same dimension.

Xiao-Gang Wen (MIT)

Swmapland program in condensed matter physics

The bulk topological order of an EFT = generalized (gravitational) anomaly in the EFT

- The bulk topological order of an EFT is the additional constrains (beyond anomaly cancellation) for an EFT to be consistent with LQM in the same dimension.
 Wen arXiv:1303.1803 Kong, Wen arXiv:1405.5858
 - \rightarrow Generalized anomaly in the EFT is the bulk topological order (the Drinfeld center in 1+1D) of an EFT
- Generalized gravitational and gauge anomalies are defined without spacetime manifold/bundle
- Usual anomaly = invertible bulk top. order

- Generalized anomaly includes non-invertible bulk topological order
- An EFT is consistent with LQM in the same dimension iff
- it is free of generalized anomaly **Anomaly-free condition:**
- it satisfies the remote detectability principle
- it is connected to the trivial phase through a domain wall

Xiao-Gang Wen (MIT)

Remote detectability principle Completeness Hypothesis

There are physical charged states in all representations of gauge group consistent with Dirac quantisation [Polchinski, Dirac...]

Does it follow from the absence of global symmetries?

No global symmetries = No topological operators

Complete spectrum

= All charged operators can end

example: Maxwell theory

Example: Emergent gauge charge and gauge flux can $V_q(\gamma_1) = \exp\left(iq \int_{\gamma_1} A_1\right)$ (*Wilson lines*) $U_g(M_{d-2}) = \exp\left(i\alpha \int_{\mathcal{M}_{d-2}} L^F Q M\right)$ (*ie* to be free of the (*I-form global sym*) generalized anomaly).

Cobordism conjecture

The cobordism group of a quantum gravity theory must be trivial: $\Omega_k^{QG} = 0 \quad [\text{McNamara,Vafa'19}] \qquad \qquad \substack{k \text{ : internal dimension} \\ D \text{ : total dimension} \\ \text{to avoid a (D-k-1)-form global symmetry with charges} \quad [M] \in \Omega_k^{QG}$

 All EFTs from LQM can connect to trivial phase by domain walls It implies all theories of same dimension are connected by finite energy domain walls, and predicts the existence of new defects in string theory!
 Unconnected EFTs must have different generalized anomalies (*ie* have different bulk topological orders)

Xiao-Gang Wen (MIT)

Swmapland program in condensed matter physics

New zoo of generalised global symmetries to explore! See Shao's review talk

- All emergent symmetry come from the fusion rule of low energy top. excitations (can appear only if EFT describes a top. order)
- Point-like topological excitations \rightarrow group symmetry.
- Extended topological excitations \rightarrow higher-group symmetry.
- Splitting fusion rule \rightarrow Algebraic higher symmetry beyond higher group, described by fusion higher category with fiber functor. Also see Casini's and McGreevy's talks Kong,Lan,Wen,Zhang,Zheng arXiv:2005.14178

• The standard **standard model** has \mathbb{Z}_2 global symmetry (the fermion number parity). There must be additional \mathbb{Z}_2 gauge field.

to turn the \mathbb{Z}_2 into a gauge symmetry. Levin, Wen cond-mat/0302460 Xiao-Gang Wen (MIT) Swmapland program in condensed matter physics 9/10

String theory		Condensed	matter physics
Quantum gravity =?=	Local c	lubit model <mark>w</mark>	ith no symm (LQM)
EFTs of QG (landscape)	\sim	EFTs of LQ	M (CMP landscape)
String swampland $~\sim~$ E	Boundary	/ theory of top	o order of bulk LQM
(CMP S	wamplar	nd, EFTs w/ g	generalized anomaly)
Swampness \sim Ge	eneraliz	ed anomaly	= Bulk top. order
Cobordism conjecture	An EFT	is from LQM	(<i>ie</i> is anomaly-free)
	iff it	has domain w	all with trivial phase
Completeness Hypothesis		Remote d	etectability principle
	(ge	eneralized-ano	maly-free condition)
No global symmetries	A	All low energy	emergent symmetry
	of LG	QM must com	e from fusion rule of
bulk	topologi	cal excitations	in topological order
topological	rvw/		
order in LQM general	ized	LQM	
gravitati	onal	qubit	
anomaly		unificatio	on A A A A A
Xiao-Gang Wen (MIT) Swr	napland progra	m in condensed matter	physics 10 / 10