Operator spectrum and spontaneous symmetry breaking in SYK-like models

Grisha Tarnopolsky
Carnegie Mellon University

Strings 2021
ICTP-SAIFR, São Paulo
June 24, 2021

Talk based on:
J. Kim, I. R. Klebanov, GT, W. Zhao, PRX, 9, (2019)
I. R. Klebanov, A. Milekhin, GT, W. Zhao, JHEP, 162, (2020)
M. Tikhanovskaya, H. Guo, S. Sachdev, GT, PRB, 103, (2021)

Plan:

- Introduction to Random SYK Models
- Operators in SYK models and their effects
- Coupled Majorana and complex SYK models and symmetry breaking

Introduction to Random SYK Models

- A general non-relativistic Hamiltonian of interacting particles:

$$
H=\sum_{a} H_{a}^{(1)}\left(\mathbf{r}_{a}\right)+\sum_{a, b} U^{(2)}\left(\mathbf{r}_{a}, \mathbf{r}_{b}\right)+\sum_{a, b, c} U^{(3)}\left(\mathbf{r}_{a}, \mathbf{r}_{b}, \mathbf{r}_{c}\right)+\ldots
$$

where $\quad H_{a}^{(1)}=-\frac{\Delta_{a}}{2 m}+U\left(\mathbf{r}_{a}\right)$

- In the second quantization representation it has the form (assume fermions)

$$
H=\sum_{i} \varepsilon_{i} c_{i}^{\dagger} c_{i}+\sum_{i, j, k, l} J_{i j, k l} c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{l}+\ldots \quad\left\{c_{i}, c_{j}^{\dagger}\right\}=\delta_{i j}
$$

where $\quad J_{i j, k l}=\int d \mathbf{r}_{a} d \mathbf{r}_{b} \varphi_{i}^{*}\left(\mathbf{r}_{a}\right) \varphi_{j}^{*}\left(\mathbf{r}_{b}\right) U^{(2)}\left(\mathbf{r}_{a}, \mathbf{r}_{b}\right) \varphi_{k}\left(\mathbf{r}_{a}\right) \varphi_{l}\left(\mathbf{r}_{b}\right)$
And $\varepsilon_{i}, \varphi_{i}(\mathbf{r})$ eigenvalues and eigenfunctions of $H^{(1)}$

- If $\varphi_{i}(\mathbf{r})$ are irregular and "random" we can assume that $J_{i j, k l}$ are random

Complex SYK model in Nuclear physics

- Two-body random interaction model was introduced in Nuclear Physics in 70s

$$
H=\sum_{i, j, k, l=1}^{N} J_{i j, k l} c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{l} \quad\left\{c_{i}^{\dagger}, c_{j}\right\}=\delta_{i j}
$$

- Energy histogram

[J. French and S. Wong '70]
$\left(f_{7 / 2}, f_{5 / 2}\right)$ orbitals

7 identical particles
fixed total momentum
[J. French and S. Wong ‘70,
O. Bohigas and J. Flores '71]
[S. Sachdev '15]

- Reproduction of it

- The main conclusion at that time - it is not the Wigner semicircle!

Random models for quantum dots

- Hamiltonian of interacting particles in quantum dot:

$$
\begin{aligned}
& H_{0}+H_{1}=\sum_{i} \epsilon_{i} c_{i}^{\dagger} c_{i}+\sum_{i j k l} J_{i j, k l} c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{l} \\
& J_{i j, k l}=\int d x d x^{\prime} V\left(x-x^{\prime}\right) \varphi_{l}^{*}(x) \varphi_{k}^{*}\left(x^{\prime}\right) \varphi_{j}(x) \varphi_{i}\left(x^{\prime}\right)
\end{aligned}
$$

$J_{i j, k l}$ is a random quantity with zero average
Quantum dot

How does this interaction affect free particles?
[B. Altshuler, Y. Gefen, A. Kamenev, L. Levitov, ‘96
Y. Alhassid, Ph. Jacquod, A. Wobst, ’00
A. Lunkin, A. Kitaev, M. Feigel'man, '20, ...]

Non-random large N models

- There are non-random models with the same large N limit

$$
\begin{aligned}
H= & \frac{J}{4 N^{3 / 2}} \sum_{a, a^{\prime}, \ldots}^{N} \psi^{a b c} \psi^{a b^{\prime} c^{\prime}} \psi^{a^{\prime} b c^{\prime}} \psi^{a^{\prime} b^{\prime} c} \\
& \left\{\psi^{a b c}, \psi^{a^{\prime} b^{\prime} c^{\prime}}\right\}=\delta^{a a^{\prime}} \delta^{b b^{\prime}} \delta^{c c^{\prime}} \\
H= & \frac{J}{N^{3 / 2}} \sum_{i, l, m \ldots} c_{i l m}^{\dagger} c_{i l^{\prime} m^{\prime}}^{\dagger} c_{j l m^{\prime}} c_{j l^{\prime} m} \\
& \left\{c_{i l m}, c_{j l^{\prime} m^{\prime}}^{\dagger}\right\}=\delta_{i j} \delta_{l l^{\prime}} \delta_{m m^{\prime}}
\end{aligned}
$$

- Models of these types are called tensor models
- Randomness is replaced by addition of two "orbital" indices with a specific "tetrahedron" contraction:
[R. Gurau'10,
S. Carrozza, A. Tanasa’15,
E. Witten '16,
I. R. Klebanov, GT'16]

Tensor model Hamiltonian for 32 Majorana particles

The Sachdev-Ye-Kitaev model

- Hamiltonian: $\quad H_{\mathrm{SYK}}=\frac{1}{4!} \sum_{i j k l}^{N} J_{i j k l} \psi^{i} \psi^{j} \psi^{k} \psi^{l}$
[S. Sachdev, J.Ye ‘93, A.Georges,
O. Parcollet, S. Sachdev '01, A.Kitaev '15]
- N Majorana fermions: $\left\{\psi^{i}, \psi^{j}\right\}=\delta^{i j}$
- $J_{i j k l}$ are antisymmetric Gaussian random $\quad \overline{J_{i j k l}}=0 \quad \overline{J_{i j k l}^{2}}=\frac{6 J^{2}}{N^{3}}$
- The Hilbert space dimension is $2^{\mathrm{N} / 2}$

SYK Hamiltonian for $N=18$

Spectrum of the SYK model

- Energy levels for $\mathrm{N}=32$ Majorana $q=4$ SYK model: 65536 energy levels

- s_{0} is zero temperature entropy $s_{0} \approx 0.23$
- Most of the random SYK-like models admit scale invariant solution in IR for the two-point functions at large N limit

$$
G(\tau)=\langle\mathrm{T} \psi(\tau) \psi(0)\rangle \rightarrow b \frac{\operatorname{sgn}(\tau)}{|J \tau|^{2 \Delta_{\psi}}} \quad \Delta_{\psi}=1 / 4
$$

- This scale invariance is related to high density of energy levels near the ground state
- To check theoretically if such a scaling invariant solution is stable and find corrections to it one has to analyze spectrum of two-particle operators

Operators in the SYK model

- For the two-particle operators $O_{h_{n}}=\psi^{i} \partial_{\tau}^{2 n+1} \psi^{i}$ we consider the 3 pt function $v\left(\tau_{1}, \tau_{2}, \tau_{0}\right)=\left\langle\psi^{i}\left(\tau_{1}\right) \psi^{i}\left(\tau_{2}\right) O_{h}\left(\tau_{0}\right)\right\rangle$ and can derive the Bethe-Salpeter equation using large N :

[D. Gross, V. Rosenhaus '16]
- This Bethe-Salpeter equation determines h and reads

$$
\begin{gathered}
v\left(\tau_{1}, \tau_{2}, \tau_{0}\right)=\int d \tau_{3} d \tau_{4} K\left(\tau_{1}, \tau_{2} ; \tau_{3}, \tau_{4}\right) v\left(\tau_{3}, \tau_{4}, \tau_{0}\right) \\
K\left(\tau_{1}, \tau_{2} ; \tau_{3}, \tau_{4}\right)=-3 J^{2} G\left(\tau_{13}\right) G\left(\tau_{24}\right) G\left(\tau_{34}\right)^{2} \quad G(\tau) \rightarrow G_{c}(\tau)=b \frac{\operatorname{sgn}(\tau)}{|J \tau|^{2 \Delta_{\psi}}} \quad \Delta_{\psi}=1 / 4
\end{gathered}
$$

- Assume that in IR 3pt function has conformal form

$$
v\left(\tau_{1}, \tau_{2}, \tau_{0}\right)=\left\langle\psi^{i}\left(\tau_{1}\right) \psi^{i}\left(\tau_{2}\right) O_{h}\left(\tau_{0}\right)\right\rangle=\frac{c_{h} \operatorname{sgn}\left(\tau_{1}-\tau_{2}\right)}{\left|\tau_{0}-\tau_{1}\right|^{h}\left|\tau_{0}-\tau_{2}\right|^{h}\left|\tau_{1}-\tau_{2}\right|^{2 \Delta_{\psi}-h}}
$$

the Bethe-Salpeter equation reduces to $\quad 1=g(h) \quad g(h)=-\frac{3}{2} \frac{\tan \left(\frac{\pi}{2}\left(h-\frac{1}{2}\right)\right)}{h-1 / 2}$

Operators in the SYK model

- The Bethe-Salpeter equation:

$$
1=g(h)
$$

$O_{h_{n}}=\psi^{i} \partial_{\tau}^{2 n+1} \psi^{i}$

- Graphical solution of this equation gives operator spectrum

$$
g(h)=-\frac{3}{2} \frac{\tan \left(\frac{\pi}{2}\left(h-\frac{1}{2}\right)\right)}{h-1 / 2}
$$

- The first solution is $h=2$; breaks conformal invariance.
- The higher scaling dimensions are $h \approx 3.77,5.68,7.63,9.60, \ldots \quad$ approaching $\quad h_{n} \rightarrow n+1 / 2$
[J. Maldacena, D. Stanford '16
D. Gross, V. Rosenhaus '16]

SYK as Nearly CFT

- We can think about SYK as CFT perturbed by irrelevant operators $O_{h_{n}}(\tau)=\psi^{i} \partial_{\tau}^{2 n+1} \psi^{i}$

$$
S_{\mathrm{SYK}}=S_{\mathrm{SYK} \mathrm{CFT}}+\sum_{h} \frac{g_{h}}{J^{h-1}} \int_{0}^{\beta} d \tau O_{h}(\tau)
$$

[A. Kitaev '15,
J. Maldacena, D. Stanford '16]
[D. Gross, V. Rosenhaus'17]
where g_{h} are couplings

$$
\begin{gathered}
\left\{O_{h_{0}}, O_{h_{1}}, O_{h_{2}}, \ldots\right\} \quad O_{h_{1}}(\tau) O_{h_{2}}(0)=\sum_{h} c_{h_{1} h_{2}}^{h}|\tau|^{h-h_{1}-h_{2}} O_{h}(0) \\
\langle\mathrm{T} \psi(\tau) \psi(0)\rangle_{\mathrm{CFT}}=\frac{1}{Z} \int D \psi \psi(\tau) \psi(0) e^{S_{\mathrm{SYK} \mathrm{CFT}}}=b \frac{\operatorname{sgn}(\tau)}{|J \tau|^{1 / 2}}
\end{gathered}
$$

- Next order J corrections to the Green's function are given by conformal perturbation theory:

$$
\begin{aligned}
\langle\mathrm{T} \psi(\tau) \psi(0)\rangle_{\mathrm{SYK}} & =\langle\mathrm{T} \psi(\tau) \psi(0)\rangle_{\mathrm{CFT}}+\sum_{h} \frac{g_{h}}{J^{h-1}} \int d \tau_{3}\left\langle\psi(\tau) \psi(0) O_{h}\left(\tau_{3}\right)\right\rangle \\
+ & \sum_{h, h^{\prime}} \frac{g_{h} g_{h^{\prime}}}{2 J^{h+h^{\prime}-1}} \int d \tau_{3} d \tau_{4}\left\langle\psi(\tau) \psi(0) O_{h_{3}}\left(\tau_{3}\right) O_{h^{\prime}}\left(\tau_{4}\right)\right\rangle+\ldots
\end{aligned}
$$

Scaling dimensions

SYK two-point function

- General formula for the full SYK two-point function

$$
G(\tau)=G_{\mathrm{conf}}(\tau)\left(1-\sum_{h} \frac{v_{h} \alpha_{h}}{|J \tau|^{\mid-1}}-\sum_{h, h^{\prime}} \frac{a_{h h^{\prime}} \alpha_{h} \alpha_{h^{\prime}}}{|J \tau|^{h+h^{\prime}-2}}-\sum_{h, h^{\prime}, h^{\prime \prime}} \frac{a_{h h^{\prime} h^{\prime \prime}} \alpha_{h} \alpha_{h^{\prime}} \alpha_{h^{\prime \prime}}}{|J \tau|^{h+h^{\prime}+h^{\prime \prime}-3}}\right)
$$

- Comparison with numerics at zero temperature:

- We can detect irrational scaling exponent numerically

Thermodynamics of the SYK model

- We can think about SYK as CFT perturbed by irrelevant operators $O_{h_{n}}(\tau)=\psi^{i} \partial_{\tau}^{2 n+1} \psi^{i}$

$$
S_{\mathrm{SYK}}=S_{\mathrm{SYK} \mathrm{CFT}}+\sum_{h} \frac{g_{h}}{J^{h-1}} \int_{0}^{\beta} d \tau O_{h}(\tau) \quad \begin{aligned}
& \text { [A. Kitaev'15, } \\
& \text { J. Maldacena, D. Stanford '16] }
\end{aligned}
$$

where g_{h} are couplings

- Free energy for the SYK model using conformal perturbation theory:

Scaling dimensions

$$
\beta F_{\mathrm{SYK}}=\beta F_{\mathrm{CFT}}+\sum_{h} g_{h} \int_{0}^{\beta} d \tau\left\langle O_{h}\right\rangle_{\beta}-\frac{1}{2} \sum_{h, h^{\prime}} g_{h} g_{h^{\prime}} \int_{0}^{\beta} d \tau_{1} d \tau_{2}\left\langle O_{h}\left(\tau_{1}\right) O_{h^{\prime}}\left(\tau_{2}\right)\right\rangle_{\beta}+\ldots
$$

- Computing the integrals we find

$$
\beta F_{\mathrm{SYK}}=-N\left((\beta J) \epsilon_{0}+s_{0}+\frac{\alpha_{0}}{\beta J}+\frac{\alpha_{0}^{2}}{(\beta J)^{2}}+\cdots+\frac{\alpha_{1}^{2}}{(\beta J)^{5.54}} \pm \ldots\right)
$$

Thermodynamics of the complex SYK model

- In the complex SYK we have two sets of operators $O_{h_{n}}(\tau)=c^{\dagger} \partial_{\tau}^{2 n+1} c$ and $O_{\tilde{h}_{n}}(\tau)=c^{\dagger} \partial_{\tau}^{2 n} c$

$$
S_{\mathrm{cSYK}}=S_{\mathrm{cSYK} \mathrm{CFT}}+\mu \int_{0}^{\beta} d \tau c^{\dagger} c+\sum_{h} \frac{g_{h}}{J^{h-1}} \int_{0}^{\beta} d \tau O_{h}(\tau)+\sum_{\tilde{h}} \frac{g_{\tilde{h}}}{J^{\tilde{h}-1}} \int_{0}^{\beta} d \tau O_{\tilde{h}}(\tau)
$$

- Perturbation by conserved $\mathrm{U}(1)$ charge $Q=c^{\dagger} c$ is a marginal deformation of the theory
- The free energy reads

$$
\begin{aligned}
& \text { nergy reads } \\
& \qquad \beta F_{\mathrm{cSYK}}=-N\left((\beta J) \epsilon_{0}+s_{0}+\frac{\alpha_{0}^{\prime}}{\beta J}+\frac{\alpha_{0}^{2}}{(\beta J)^{2}}+\frac{\tilde{\alpha}_{1}^{2}}{(\beta J)^{3.3}}+\ldots\right) \\
& \text { ground energy } \\
& \text { specific heat } \\
& \text { zero temperature entropy }
\end{aligned}
$$

Scaling dimensions	
4.58	
	-
	\tilde{h}_{2}
3.77	-
	h_{1}
-2.65	
	\tilde{h}_{1}
2	h_{0}
1	\tilde{h}_{0}

- In both SYK and complex SYK the small temperature thermodynamics is governed by $h=2$ operator

Coupled Majorana SYK models

- Consider two types of Majorana fermions ψ_{1}^{i} and ψ_{2}^{i} with Hamiltonian:

$$
\begin{gathered}
H=\frac{1}{4!} \sum_{i, j, k, l}^{N} J_{i j k l}\left(\psi_{1}^{i} \psi_{1}^{j} \psi_{1}^{k} \psi_{1}^{l}+\psi_{2}^{i} \psi_{2}^{j} \psi_{2}^{k} \psi_{2}^{l}+6 \alpha \psi_{1}^{i} \psi_{1}^{j} \psi_{2}^{k} \psi_{2}^{l}\right) \\
\left\{\psi_{1}^{i}, \psi_{1}^{j}\right\}=\left\{\psi_{2}^{i}, \psi_{2}^{j}\right\}=\delta^{i j} \quad\left\{\psi_{1}^{i}, \psi_{2}^{j}\right\}=0
\end{gathered}
$$

- $J_{i j k l}$ are Gaussian random, exactly as in the SYK models $\overline{J_{i j k l}}=0 \quad \overline{J_{i j k l}^{2}}=\frac{6 J^{2}}{N^{3}}$
- α is the interaction strength. Using symmetry one can show $-1 \leq \alpha \leq 1 / 3$
- We assume that

$$
G_{\psi^{1} \psi^{1}}(\tau)=G_{\psi^{2} \psi^{2}}(\tau)=G(\tau) \quad G_{\psi^{1} \psi^{2}}(\tau)=0
$$

- Under this assumption we find that $G(\tau)$ coincides with SYK two-point function and we can find anomalous dimensions of various bilinear operators

Operator spectrum

- Hamiltonian: $\quad H=\frac{1}{4!} \sum_{i, j, k, l}^{N} J_{i j k l}\left(\psi_{1}^{i} \psi_{1}^{j} \psi_{1}^{k} \psi_{1}^{l}+\psi_{2}^{i} \psi_{2}^{j} \psi_{2}^{k} \psi_{2}^{l}+6 \alpha \psi_{1}^{i} \psi_{1}^{j} \psi_{2}^{k} \psi_{2}^{l}\right)$
- For $0 \leq \alpha \leq 1 / 3$ the model is similar to the SYK

The operator $O=i \psi_{1}^{i} \psi_{2}^{i} \quad$ is relevant.
If we perturbed by it $H \rightarrow H+i \mu \psi_{1}^{i} \psi_{2}^{i}$ the spectrum will be gapped
[J. Maldacena, X. Qi'18]

Scaling dimensions

Coupled complex SYK models

- Hamiltonian of the coupled complex SYK models

$$
\begin{gathered}
H=\sum_{i, j, k, l}^{N} J_{i j, k l}\left(c_{1 i}^{\dagger} c_{1 j}^{\dagger} c_{1 k} c_{1 l}+c_{2 i}^{\dagger} c_{2 j}^{\dagger} c_{2 k} c_{2 l}+8 \alpha c_{1 i}^{\dagger} c_{2 j}^{\dagger} c_{2 k} c_{1 l}\right) \\
\left\{c_{\sigma i}, c_{\sigma^{\prime} j}^{\dagger}\right\}=\delta_{\sigma \sigma^{\prime}} \delta_{i j} \quad\left\{c_{\sigma i}, c_{\sigma^{\prime} j}\right\}=0
\end{gathered}
$$

- Random couplings $\quad \overline{J_{i j, k l}}=0 \quad \overline{\left|J_{i j, k l}\right|^{2}}=J^{2} /(2 N)^{3}$
- The Hamiltonian has $U(1) \times U(1)$ symmetry

$$
\begin{aligned}
c_{1 i} & \rightarrow e^{i \phi_{1}} c_{1 i} & Q_{1} & =\frac{1}{2} \sum_{i=1}^{N}\left[c_{1 i}^{\dagger}, c_{1 i}\right] \\
c_{2 i} & \rightarrow e^{i \phi_{2}} c_{2 i} & Q_{2} & =\frac{1}{2} \sum_{i=1}^{N}\left[c_{2 i}^{\dagger}, c_{2 i}\right]
\end{aligned}
$$

- For coupling $\alpha=1 / 4$ we find $U(2)$ symmetric Hamiltonian

$$
H=\sum_{i, j, k, l}^{N} J_{i j, k l} c_{\sigma i}^{\dagger} c_{\sigma^{\prime} j}^{\dagger} c_{\sigma^{\prime} k} c_{\sigma l}
$$

Operator spectrum

- Hamiltonian: $H=\sum_{i, j, k, l}^{N} J_{i j, k l}\left(c_{1 i}^{\dagger} c_{1 j}^{\dagger} c_{1 k} c_{1 l}+c_{2 i}^{\dagger} c_{2 j}^{\dagger} c_{2 k} c_{2 l}+8 \alpha c_{1 i}^{\dagger} c_{2 j}^{\dagger} c_{2 k} c_{1 l}\right)$
- For $0 \leq \alpha \leq 1$ the model is similar to the cSYK The operators $c_{1}^{\dagger} c_{2}$ and $c_{2}^{\dagger} c_{1}$ are relevant. If we perturbed the Hamiltonian by them the spectrum will be gapped
- For $\alpha=1 / 4$ there is a $U(2)$ global symmetry and all quadratic operators are marginal
- For $\alpha<0$ and $\alpha>1$ the operators $c_{1}^{\dagger} c_{2}$ and $c_{2}^{\dagger} c_{1}$ have complex anomalous dimension and acquire vev The $\mathrm{U}(1)$ symmetry is spontaneously broken

Scaling dimensions

Operator spectrum

- Hamiltonian: $H=\sum_{i, j, k, l}^{N} J_{i j, k l}\left(c_{1 i}^{\dagger} c_{1 j}^{\dagger} c_{1 k} c_{1 l}+c_{2 i}^{\dagger} c_{2 j}^{\dagger} c_{2 k} c_{2 l}+8 \alpha c_{1 i}^{\dagger} c_{2 j}^{\dagger} c_{2 k} c_{1 l}\right)$

Scaling dimensions

- For $\sqrt{3 / 8}<\alpha \leq 1$ there is an operator $O=c_{1}^{\dagger} \partial_{\tau} c_{1}-c_{2}^{\dagger} \partial_{\tau} c_{2}$ with the scaling dimension $1<h<3 / 2$
- This operator is not generated in the effective action, but we can add it. In the Hamiltonian formalism this corresponds to changing commutation relations between fermions

$$
\left\{c_{1 i}^{\dagger}, c_{1 j}\right\}=\frac{1}{1+\xi} \delta_{i j} \quad\left\{c_{2 i}^{\dagger}, c_{2 j}\right\}=\frac{1}{1-\xi} \delta_{i j} \quad \text { [A. Milekhin '21] }
$$

- In this case the low-energy effective action is not Schwarzian, but

$$
S_{\text {non-local }}=-\frac{N \alpha_{h}}{J^{2 h-2}} \int d \tau_{1} d \tau_{2}\left(\frac{\phi^{\prime}\left(\tau_{1}\right) \phi^{\prime}\left(\tau_{2}\right)}{\left(\phi\left(\tau_{1}\right)-\phi\left(\tau_{2}\right)\right)^{2}}\right)^{h}
$$

[J. Maldacena, D. Stanford, Z. Yang '16, A. Milekhin '21]

Conclusions

- There is a variety of random models with similar large N physics, described by conformal solution
- The operator spectrum of such models can be very different
- In some models the operator spectrum implies instability of the conformal solution and spontaneous symmetry breaking
- In some models there exists an operator with scaling dimension $1<\mathrm{h}<3 / 2$ which leads to the non-local IR effective action instead of the Schwarzian action

Thank you for your attention!

