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Crystallization to running g
By 2011 all these systems had been shown to be “DBI + running g”

EG Jarvinen + Kiritsis. 1112.1261 [hep-ph]

m2(r)

EG world-volume B field 
(Johnson + Filev) 
hep-th/0701001

Chiral symmetry breaking is caused by a BF bound violation m2<-4 at low r
(g = 1 criteria)
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Dynamic AdS/QCD
So we’re unable to resist putting in the QCD running g ! 2010.10279 [hep-ph]

On mass shell IR b.c.

Dynamical description of cSBing, right 
pattern…
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Perfection
If you want to do better – treat as effective theory below scale QCD 
enters strong coupling. hep-th/0403279

Small gap LcSB vs LUV…..

Witten’s “multi trace” prescription 
allows inclusion of HDOs at LUV by 
reinterpreting bcs: hep-th/0112258 

Includes some stringy 
corrections on excited 
states?

2010.10279 [hep-ph]
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Figure 5: The corresponding condensate for

configurations with m/⇤ = 0.15, at the critical

temperature the condensate vanishes, indicating the

solutions have @⇢L = 0.

smooth behaviour. To emphasise the second order nature
of the transition we plot the quark condensate against
temperature in Figure 5 to show that it changes contin-
uously at the transition. As far as we know, this is the
first example of a second order meson melting transition
in holography.

At T=0 the system reproduces the flat embeddings of the
non-thermal geometry in the first section, where mIR =
mUV . Intuition suggests that the system will exhibit
a transition when T > m, which we indeed find to be
the case. We plot how the critical temperature varies
with the quark mass in Figure 6 - it shows that there is
direct proportionality between TC and m. Thus massless
quarks, the phase transition occurs for any T > 0.

Figure 6: Variation in critical temperature Tc/⇤ with

changes in the quark mass m/⇤

NJL INTERPRETATION

Witten’s multi-trace operator prescription [9] teaches us
that where a solution such as those we have discussed has
a UV quark mass there are two interpretations. Either
one has a quark mass arising form a bare lagrangian term,
or something like a Nambu-Jona-lasinio (NJL) interac-
tion [10] that dynamically generates a quark mass. We
examine this case further here. An e↵ective four fermion
interaction

�L =
g2

⇤2
UV

 ̄L R  ̄R L
h ̄L Ri�����! m ̄R L, (27)

upon condensation of the  ̄L R operator, becomes an
e↵ective mass term for the quarks. This four fermion
interaction is a double trace operator and the prescription
for including multitrace operators in holography was set
out in [9]. They arise as boundary conditions on the fields
in the supergravity theory, and for the case of holographic
NJL interactions, this was explored in [11]. It was found
that one could add terms to the Lagrangian to impose

g2

⇤2
UV

 ̄L R = m (28)

at the classical level.

Following suit, we can reinterpret each configuration in
our analysis above withm the quark mass and c̃ the quark
condensate. The mass can be interpreted as dynamically
generated and we can calculate the NJL coupling g2 from
the asymptotic values of the holographic field L, with

g2 =
1 + m̃2

m̃c̃

v4⇤
1 + v2⇤

. (29)

Now we must again sort our U-shaped configurations at
each T/⇤UV but by g2 rather than m - it is g2 that is now
defining the theory at the cut o↵. In this case we find that
to each value of g2 there are three configurations: two
U-shaped configurations and one flat solution that has
fallen into the horizon. This behaviour is shown directly
in Figure 6. Here the behaviour we saw at fixed width is
recovered in contrast to that at fixed mass where there
was just a single U-shaped configuration for a given mass
value.



Multi-Representation Theories
Traditionally one would argue that apart from the fundamental representation the size of 
the rep grows at least as N2 and there is no probe limit – back reaction matters…

The DBI action lesson though is that a dimension 3 qq operator is described by a 
holographic scalar and the dynamics enters through m2(r)…

Composite Higgs Models (Reviews:2002.04914, 1506.01961)

THE BASICS:   a model must have 
“quark” condensates that break a 
global symmetry to give 4+ 
Goldstones that can be made the 
SM Higgs…

To form the top mass without 
FCNCs people use “partial top 
compositeness” (D Kaplan 1991)

Need exotic baryons made of two 
representations
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Figure 8: The diagram responsible for the generation of the top Yukawa coupling. tL, tR
are the standard model top quarks, TL, TR the top partners - they mix via the HDOs with

couplings g and g̃ - there are Z form factors associated with the formation of the top partner

baryons. H is the pNGB that becomes the Higgs which has an order one Yukawa coupling

to the top partners Z3.

where F are generically the composite fields that make up the Higgs. ⇤UV must probably be

at least 5 TeV, making it hard to generate the large top mass. Such couplings also potentially

su↵er from Flavour Changing Neutral Currents.

Another possibility for generating the top mass, often referred to as partial compositeness,

is that the left and right-handed top particles tL and tR mix with baryon-like spin 1/2 states in

the gauge theory TL, TR with the same quantum numbers [50]. These baryons are frequently

called top partners. They will be involved in the strong dynamics and so have an order one

Yukawa coupling to the Higgs. The diagram in fig. 8 then generates a contribution to the top

Yukawa coupling as shown.

Here the Z factors are three structure functions that depend on the strong dynamics.

The top-top partner mixing factors result from the couplings of HDOs such as

g2

⇤2
UV

t̄LFFF , (4.3)

where the F are again generically representing the fermions that TR is made from. We expect

Z3 to be of order one since it is generated by the strong dynamics - it is analogous to the

nucleon-� or ⇡ coupling in QCD. The Z and Z̃ factors (setting g = g̃ = 1) will take the form

⇤3
S/⇤

2
UV where ⇤S is the strong coupling scale. If the top partner’s masses are of order ⇤S ,

then the Yukawa is given by

yt ' ⇤4
S/⇤

4
UV (4.4)

which, assuming a separation of at least a factor of 3 between the flavour scale and the

strong coupling scale, makes the top mass a factor of 100 too light. We will compute the Z

– 24 –

Lattice groups have become interested in these 
theories…



We run the model with two scalars – one for the F condensate and one for the A2 
condensate.. We input perturbative runnings of g in each case to fix Dm2…

Sp(4)   4F  6A2
NE, Johanna Erdmenger, Kostas Rigatos 
and Werner Porod: 2010.10279 [hep-ph]

The running AdS mass                                  The RG mass profiles of the quarks

When the A2s condense their condensate breaks their flavour SU(6) to SO(6). At this point

the A2s become massive but it is unclear how quickly they decouple from the running of ↵

- we will investigate this point below. The usual assumption is that both species of fermion

condense close to the same scale.

4.3.1 The holographic vacuum of the theory

Let us begin by investigating the question of the scale of the condensates in the vacuum of

the theory using our holographic model. As a first run we use the AdS/YM theory with the

running of ↵ including both fermion species - that is we use eq. (4.8) at all energy scales.

We then track the running of the anomalous dimension � for the two representations using

eq. (4.9). Note the scale where the BF bound is violated is similar for the two representations

because the coupling is running quickly near the BF bound violation point. These give us two

�m2 in eq. (2.6), one for each representation, which are shown in blue (F) and orange (A2)

on the left in fig. 11. Each of the condensates is a distinct operator which we represent by a

distinct field L - in other words we run two copies of the AdS/YM equations for the vacuum

expectation values of the two condensates. The results for the two resulting L functions are

shown in fig. 11 on the right - again blue (F) and orange (A2). The A2 fields condense at a

higher scale than the F because its �m2 passes through the BF bound first.

There is though a tricky and interesting decoupling problem here. When the A2 fields

condense and become massive should we integrate them out of the running of ↵? At weak
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Figure 11: AdS/Sp(4) 4F, 6A2. Left panel: The running of �m2 against RG scale for the

fundamental (blue line), A2 (orange) and in red the running of the fundamental representation

after A2 have been integrated out. Right panel: The vacuum solution L(⇢): the orange line

for the A2 representation and blue the fundamental without decoupling. The red solution is

when we consider the decoupling of the A2 which condenses before the fundamental. The

dashed green line is the fundamental when we consider additional NJL-terms such that it

matches in the IR the A2 representation. Finally, the yellow and purple vacuum solution

correspond to the quenched models for the A2 and fundamental representations respectively.

Here units are set by ↵(⇢ = 1) = 0.65.
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How you decouple the quarks is important and unknown – I’ll concentrate on when 
they are removed below their IR mass scale. Quench = pure glue running.

The gap between F and A2 grows the less you decouple the quarks – the slower the 
running the more conformal the theory is around the chiral symmetry breaking point 
– this will lead to a lighter scalar meson…



Sp(4)   4F  6A2

AdS/Sp(4) AdS/Sp(4) AdS/Sp(4) lattice [79] lattice [80] AdS/Sp(4)

no decouple A2 decouple quench quench unquench + NJL

f⇡A2 0.120 0.120 0.103 0.1453(12) 0.120

f⇡F 0.0569 0.0701 0.0756 0.1079(52) 0.1018(83) 0.160

MV A2 1* 1* 1* 1.000(32) 1*

fV A2 0.517 0.517 0.518 0.508(18) 0.517

MV F 0.61 0.814 0.962 0.83(19) 0.83(27) 1.03

fV F 0.271 0.364 0.428 0.411(58) 0.430(86) 0.449

MAA2 1.35 1.35 1.28 1.75 (13) 1.35

fAA2 0.520 0.520 0.524 0.794(70) 0.520

MAF 0.938 1.19 1.36 1.32(18) 1.34(14) 1.70

fAF 0.303 0.399 0.462 0.54(11) 0.559(76) 0.449

MSA2 0.375 0.375 1.14 1.65(15) † 0.375

MSF 0.325 0.902 1.25 1.52 (11)† 1.40(19) † 0.375

MBA2 1.85 1.85 1.86 1.85

MBF 1.13 1.53 1.79 1.88

Table 4: AdS/Sp(4) 4F, 6A2. Ground state spectra and decay constants for our various

holographic models and comparison to lattice results - we use the subscript A2 and F for

the quantity in each of the two di↵erent representation sectors. Note the lattice scalar is the

a0 not the isospin singlet � which we compute holographically - we present the results as a

guide to lattice expectations of quark anti-quark meson masses though. Note here for the

unquenched lattice results, which do not include the A2 fields, we have normalized the F

vector meson mass to that of the quenched computation.

Similarly we split the normalizations for the external currents in eq. (2.17).

We show the resulting spectrum for each of the cases we consider in Table 4 for the case

where all fermion representations are massless.

In each case, without a NJL term, the bound states of the A2 fields are heavier and

have higher decay constants than those made of the fundamental fields F , reflecting the A2s’

higher condensation scale. The separation in scale between the two sectors does depend quite

strongly on the decoupling assumptions. If the A2s are not decoupled at all, the separation,

as measured by the vector meson masses, is almost a factor of two whilst in the quenched

limit it barely exists. The slowing of the running of the gauge coupling with the inclusion of

flavours is important. The case where the A2s are integrated out at their IR mass scale lies

between these two extremes.

The greatest impact in the spectrum shows up in the scalar meson (S) masses. The rate

of running measures the departure from conformality which shows up in the flatness of the

e↵ective potential for the quark condensates. The slower the running the lighter the resultant

scalar - here there is as much as a factor of four in the prediction.
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We set the scale in the A2 
sector…

the pattern of mass scales is 
right…

F sector is lighter than the A2s

Again F sector - right pattern

KEY IMPACT: easy for us to 
unquench – the slower the 
running the lighter the sigma

NE, Johanna Erdmenger, Kostas Rigatos 
and Werner Porod: 2010.10279 [hep-ph]
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holographic model over estimates the top partner mass by 30%.

There is lattice data for an additional spin zero state made of four quarks (either all

F s or all A2s), that we refer to as a tetraquark, and denote as the J in table 5. We have

computed the mass of such a state using eq. (2.23) - here the holographic prediction is that

the F and A2 tetraquarks’ masses lie within 10%. In contrast the lattice prediction suggests

a factor of two between the masses of the states. It is hard to understand how such a large

separation could occur when the constituent quark masses are very similar for the F s and A2

as measured by the vector meson masses. It would be interesting to look into the origin of

the splitting in the lattice simulations further.

Finally in fig. 16 we display the M⇡ dependence of the spectrum in the non-decoupling

scenario although here we do not have lattice data for comparison.

Lattice [80] AdS/SU(4) AdS/SU(4) AdS/SU(4) AdS/SU(4) AdS/SU(4) AdS/SU(4)

4A2, 2F, 2F̄ 4A2, 2F, 2F̄ 4A2, 2F, 2F̄ 5A2, 3F, 3F̄ 5A2, 3F, 3F̄ 5A2, 3F, 3F̄ 5A2, 3F, 3F̄

unquench no decouple decouple no decouple decouple quench + NJL

f⇡A2 0.15(4) 0.0997 0.0997 0.111 0.111 0.102 0.11

f⇡F 0.11(2) 0.0949 0.0953 0.0844 0.109 0.892 0.139

MV A2 1.00(4) 1* 1* 1* 1* 1* 1*

fV A2 0.68(5) 0.489 0.489 0.516 0.516 0.517 0.516

MV F 0.93(7) 0.933 0.939 0.890 0.904 0.976 1.02

fV F 0.49(7) 0.458 0.461 0.437 0.491 0.479 0.495

MAA2 1.37 1.37 1.32 1.32 1.28 1.32

fAA2 0.505 0.505 0.521 0.521 0.522 0.521

MAF 1.37 1.37 1.21 1.23 1.28 1.46

fAF 0.501 0.504 0.453 0.509 0.492 0.489

MSA2 0.873 0.873 0.684 0.684 1.18 0.684

MSF 1.03 1.02 0.811 0.798 1.25 0.815

MJA2 3.9(3) 2.21 2.21 2.21 2.21 2.22 2.21

MJF 2.0(2) 2.07 2.08 1.97 2.00 2.17 2.24

MBA2 1.4(1) 1.85 1.85 1.85 1.85 1.86 1.85

MBF 1.4(1) 1.74 1.75 1.65 1.68 1.81 1.88

Table 5: SU(4) theories - the spectrum in a variety of scenarios and lattice data for com-

parison.
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The pattern is 
right…

The A2-F gap is 
well described…

KEY POINTS:
Adding extra 
flavours is not a 
huge change…

Scalar masses 
get lighter as add 
extra flavours

[71] W. Clemens, N. Evans, and M. Scott, “Holograms of a Dynamical Top Quark,” Phys. Rev. D
96 no. 5, (2017) 055016, arXiv:1703.08330 [hep-ph].

[72] E. Eichten and K. D. Lane, “Dynamical Breaking of Weak Interaction Symmetries,” Phys. Lett.
B 90 (1980) 125–130.

[73] B. Holdom, “Raising the Sideways Scale,” Phys. Rev. D 24 (1981) 1441.

[74] B. S. Kim, D. K. Hong, and J.-W. Lee, “Into the conformal window: Multirepresentation gauge
theories,” Phys. Rev. D 101 no. 5, (2020) 056008, arXiv:2001.02690 [hep-ph].

[75] R. Arthur, V. Drach, M. Hansen, A. Hietanen, C. Pica, and F. Sannino, “SU(2) gauge theory
with two fundamental flavors: A minimal template for model building,” Phys. Rev. D 94 no. 9,
(2016) 094507, arXiv:1602.06559 [hep-lat].

[76] R. Arthur, V. Drach, A. Hietanen, C. Pica, and F. Sannino, “SU(2) Gauge Theory with Two
Fundamental Flavours: Scalar and Pseudoscalar Spectrum,” arXiv:1607.06654 [hep-lat].

[77] E. Bennett, D. K. Hong, J.-W. Lee, C.-J. D. Lin, B. Lucini, M. Mesiti, M. Piai, J. Rantaharju,
and D. Vadacchino, “Sp(4) gauge theories on the lattice: quenched fundamental and
antisymmetric fermions,” arXiv:1912.06505 [hep-lat].

[78] E. Bennett, D. K. Hong, J.-W. Lee, C.-J. D. Lin, B. Lucini, M. Piai, and D. Vadacchino, “Sp(4)
gauge theories on the lattice: Nf = 2 dynamical fundamental fermions,” JHEP 12 (2019) 053,
arXiv:1909.12662 [hep-lat].

[79] V. Ayyar, T. Degrand, D. C. Hackett, W. I. Jay, E. T. Neil, Y. Shamir, and B. Svetitsky,
“Baryon spectrum of SU(4) composite Higgs theory with two distinct fermion representations,”
Phys. Rev. D 97 no. 11, (2018) 114505, arXiv:1801.05809 [hep-ph].

[80] A. Belyaev, G. Cacciapaglia, H. Cai, G. Ferretti, T. Flacke, A. Parolini, and H. Serodio,
“Di-boson signatures as Standard Candles for Partial Compositeness,” JHEP 01 (2017) 094,
arXiv:1610.06591 [hep-ph]. [Erratum: JHEP 12, 088 (2017)].

[81] G. Ferretti, “Gauge theories of Partial Compositeness: Scenarios for Run-II of the LHC,” JHEP
06 (2016) 107, arXiv:1604.06467 [hep-ph].

[82] V. Ayyar, T. DeGrand, M. Golterman, D. C. Hackett, W. I. Jay, E. T. Neil, Y. Shamir, and
B. Svetitsky, “Spectroscopy of SU(4) composite Higgs theory with two distinct fermion
representations,” Phys. Rev. D 97 no. 7, (2018) 074505, arXiv:1710.00806 [hep-lat].

[83] T. DeGrand, M. Golterman, E. T. Neil, and Y. Shamir, “One-loop Chiral Perturbation Theory
with two fermion representations,” Phys. Rev. D 94 no. 2, (2016) 025020, arXiv:1605.07738
[hep-ph].

[84] M. E. Peskin and T. Takeuchi, “Estimation of oblique electroweak corrections,” Phys. Rev. D
46 (1992) 381–409.

[85] Particle Data Group Collaboration, P. Zyla et al., “Review of Particle Physics,” PTEP 2020

no. 8, (2020) 083C01.

[86] N. Iqbal and H. Liu, “Real-time response in AdS/CFT with application to spinors,” Fortsch.
Phys. 57 (2009) 367–384, arXiv:0903.2596 [hep-th].

– 67 –

NE, Johanna Erdmenger, Kostas Rigatos 
and Werner Porod: 2010.10279 [hep-ph]



8

]=

� �

�

�

�

�

�

�

�(6.5) (10)

(13)

(17)

(20)

(23)

(27)

(30)

(34)

�
�

� � � � � � �

(4.5) (7)
(9) (11) (13) (16) (18) (20) (23)

�

�

�
�

�

�

�

�

(8)
(11)

(15)
(18)

(22)

(25)
(28)

(32)

��

(4)

�

� �

�

�

�

�

(14)

(18) (21)

(25)

(28)

(32)

(35)

�

�

�
�

�

(20)

(20)

(19)
(18)

(15)�

�

(14)
(2)

2 4 6 8 10
0

5

10

15

20

25

30

N

�
(R

)

� G, NF=1/2

� G, NF=1

� S2

� S3

� A2

� A3

� A4

FIG. 2. Plot of Q(R) = ⇤�SB R/⇤�SB F against N in theories with the minimal number of fermions in the higher dimensional
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close to ↵⇤ and the lattice will most likely struggle to
identify the point. The NF

f = 8 theory might repre-
sent a compromise that allows the separation to be seen
more cleanly even though the gap is smaller. Incidentally
NF

f = 8 can be implemented with staggered fermions so
would also be cheaper (the single adjoint field would need
more sophisticated methods). Further it has been identi-
fied as lying outside the conformal window on the lattice
already [43–45].

In a similar vein it is probably not sensible to add
fundamental fields to the SU(2) theory with a Weyl S3

since the gap is predicted to be large already so adding in
walking behaviour will only complicate the simulations.

Finally we note a number of other promising candi-
date theories with large gaps where fundamental fields
could be included as staggered fermions, albeit at larger
N values:

{SU(5) | 16 F, 1/2G} with Q = 12.2
{SU(9) | 28 F, 1/2G} with Q = 9.55
{SU(10) | 32 F, 1/2G} with Q = 11.5
{SU(7) | 20 F, 1S2} with Q = 9.24
{SU(8) | 24 F, 1S2} with Q = 11.3

1. Two Representation Lattice Studies

There have already been a number of lattice studies of
SU(N) theories with two representations. In [68] SU(4)
with two F and two A2 has been studied and a single de-
confinement and chiral symmetry restoration transition
observed (it is first order). This is not surprising given
that NF

f = 2 is low and the theory lies close to the pure
A2 theory running. Here we do not expect really a bigger
gap that in QCD (see Figure 1).

In [69] the SU(3) theory with adjoints was supple-
mented by NF

f = 2 fundamentals where a gap between
chiral symmetry breaking and confinement was again
seen as in the NF

f = 0 model [52] (again care may be
needed to find the continuum limit). This does not push
NF

f up as high as 10 as we have suggested to maximise
the gap but shows the lattice technology does exist to
study such theories.

Very recently [70] has begun a study of theories with a
Weyl adjoint and fundamentals. For NF

f = 2 the theory
has been identified as breaking chiral symmetries but the
temperature phase structure has not yet been explored.

8

also that the IR fixed point value (10) lies above the
critical coupling for the higher dimension representation
↵R
c (4). We then ask what is the maximum value of Nf

such that ↵⇤ > ↵R
c . In that theory we assume that at

some scale ⇤�SB R the coupling has run equal to ↵R
c and

the heavy fermions are integrated out. Next we run the
coupling numerically into the IR for the theory with just
the (maximal number of Nf ) fundamentals. We ask at
what scale, ⇤�SB F it reaches the critical coupling for
the fundamental fields.

The ratio of these two scales which we denote by Q(R)

Q(R) =
⇤�SB R

⇤�SB F
(13)

is the gap between the two condensation scales for the
given representation R. Since we expect the confinement
scale to lie (probably not very far) below ⇤�SB F , this
also measure the gap between the chiral symmetry break-
ing scale for R and the confinement scale.

We present our results in Figure 2, where we display
the maximum value of Q(R) we can find by varying NF

f
as a function of Nc for each possible representation R.
We label the points by the number of Dirac fermions in
the fundamental representation which has been used to
maximize the gap.

One immediately sees that there are many theories
with adjoint, S2 or A2 representations that have gaps
in excess of a factor of ten. Adding four fundamentals
to the SU(2) theory with an S3 raises the gap to over a
factor of 30. The convincing discovery of such a gap in a
lattice simulation would certainly show confinement and
chiral symmetry breaking to be totally separate phenom-
ena.

We must be careful though because by tuning the gap
large we are also potentially making life harder for lattice
simulations. As an example lets consider SU(3) with a
single Weyl fermion in the adjoint. This is just N=1 super
Yang Mills. Now we can consider adding fundamental
fermions (which breaks supersymmetry) to observe the
gap growing - here our b0, ↵c and ↵⇤ are for the theory
with both representations present above the first chiral
symmetry breaking transition for the adjoint:

NF
f =0 b0=1.43 ↵c=0.35 ↵⇤=1

NF
f =4 b0=1.01 ↵c=0.35 ↵⇤=1 ⇤�SB R

⇤�SB F
= 2.6

NF
f =8 b0=0.58 ↵c=0.35 ↵⇤=0.97 ⇤�SB R

⇤�SB F
=5.8

NF
f =10 b0=0.37 ↵c=0.35 ↵⇤=0.40 ⇤�SB R

⇤�SB F
=20.3

The NF
f = 0 theory is QCD-like with fast running

(large b0) and ↵c ⌧ ↵⇤. As we add in fundamental fields
we slow the running (b0 decreases) and ↵⇤ falls, as the
gap between chiral symmetry breaking for the two repre-
sentations widens. The NF

f = 10 theory has ↵c very close
to ↵⇤ and the lattice will most likely struggle to identify

the point. The NF
f = 8 theory might represent a compro-

mise that allows the separation to be seen more cleanly
even though the gap is smaller. Incidentally NF

f = 8 can
be implemented with staggered fermions so would also
be cheaper (the single adjoint field would need more so-
phisticated methods). Further it has been identified as
lying outside the conformal window on the lattice already
[40–42].
In a similar vein it is probably not sensible to add

fundamental fields to the SU(2) theory with a Weyl S3

since the gap is predicted to be large already so adding in
walking behaviour will only complicate the simulations.
Finally we note a number of other promising candidate

theories with large gaps where fundamental fields could
be included as staggered fermions, albeit at larger Nc

values:

{SU(5) | 16 F, 1/2G} with Q = 12.2
{SU(9) | 28 F, 1/2G} with Q = 9.55
{SU(10) | 32 F, 1/2G} with Q = 11.5
{SU(7) | 20 F, 1S2} with Q = 9.24
{SU(8) | 24 F, 1S2} with Q = 11.3

1. Two Representation Lattice Studies

There have already been a number of lattice studies of
SU(Nc) theories with two representations. In [65] SU(4)
with two F and 2 A2 has been studied and a single de-
confinement and chiral symmetry restoration transition
observed (it is first order). This is not surprising given
that NF

f = 2 is low and the theory lies close to the pure
A2 theory running. Here we do not expect really a bigger
gap that in QCD (see Figure 1).

In [66] the SU(3) theory with adjoints was supple-
mented by NF

f = 2 fundamentals where a gap between
chiral symmetry breaking and confinement was again
seen as in the NF

f = 0 model [49] (again care may be
needed to find the continuum limit). This does not push
NF

f up as high as 10 as we have suggested to maximise
the gap but shows the lattice technology does exist to
study such theories.

IV. CONCLUSIONS

We have reviewed old arguments that chiral symme-
try breaking and confinement may be distinct phenom-
ena that are just accidentally close in scale for QCD. We
have presented some simple computations based on the
two loop running results for ↵ and � for gauge theories
with higher dimensional representations. We have sought
theories with one representation with the largest possible
gap between the scale where � = 1 and chiral symmetry
breaking occurs and the pole of the running in the deep
IR pure glue theory where confinement might be associ-
ated. We have found example theories with much larger
gaps than QCD. This view is supported by the work in
[49] which shows such a gap for adjoint matter.

These theories are quite walking

It’s fun that such a simple holographic model captures these more exotic theories… and 
leads to a number of interesting questions about the dynamcs: 

Two loop results for SU(N) with fundamentals + another rep. “g=1” criteria

Nick Evans,Kostas Rigatos. 2012.00032 [hep-ph]

Order of magnitude gap between chiral symmetry and 
confinement? Would like to understand confinement as a 
BF bound violation for monopoles too…

https://inspirehep.net/authors/1010528
https://inspirehep.net/authors/1762168
https://arxiv.org/abs/2012.00032
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where µ = 0, 1, 2. Under dimensional reduction  will
become two 2+1 dimensional 2-component spinors which
can be extracted from  by using the projectors
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Now consider the case where

M(x3) = �M, x3 < 0, M(x3) = M, x3 > 0
(14)

To seek a massless mode solution of (9), we decompose
 in terms of a product in the x

3 and x
µ directions.

 = [a(x3)P+ + b(x3)P�] 0(x
µ) (15)

where we assume the massless eigenstate satisfies

i�
µ
@µ 0(x

µ) = 0 (16)

Since {�
µ
, �

3
} = 0 we have �µP+ = P

�
�
µ and �µP� =

P
+
�
µ and we may drop the first term in (9) as a result

of (16) for the zero mode.

Now we use (�3)2 = �1 so that i�3P+ = P+ and i�
3
P� =

�P�. The coe�cients of P± give the two equations

(@3 +M(x3))a(x3) = 0 (�@3 +M(x3))b(x3) = 0
(17)

The first equation (remember M(x3) switches sign at the
origin) has the normalizable solution

a(x3) = Ne
�M |x3| (18)

The solution for b which has a positive sign in the expo-
nential is not normalizable so unphysical. Thus a single
one of the two 2+1 dimensional 2-spinors is massless at
the discontinuity. If we have a second discontinuity with
the opposite sign switch in M(x3) then the second 2+1d
spinor will be localized there.

Note that a condensate between the two 2-spinors  ̄1 2

with the 2+1d �0 = �3 is the same combination of oper-
ators as the 3+1d condensate  ̄ .

At weak coupling there is expected to be a quark mass
controlled by the overlap of the wave functions so it will
fall o↵ as an exponential of the gap between two adja-
cent discontinuities (formally as exp(�Mw) with w the
separation between the defects). It is not clear that the
same decoupling will happen if the separated quarks are
interacting strongly - indeed we will find the mass in the
holographic setting falls o↵ only as the power law ⇠ 1/w.
Our goal for the rest of the paper is to realize this domain
wall set up in holography at strong coupling in part to
investigate such questions.

IV THE D3/PROBE-D7 SYSTEM & DOMAIN
WALLS

For this section we rewrite the metric of the gravity dual
of N = 4 SYM theory as

ds
2 =

r
2

R2
dx

2
3+1 +

R
2

r2
(d⇢2 + ⇢

2
d⌦2

3 + du
2
1 + du

2
2) (19)

where R is the AdS radius and r
2 = ⇢

2 +
P

i u
2
i .

We introduce a probe N=2 quark hypermultiplet into
the N = 4 SYM theory described by (19) by including a
D7 brane in the configuration [3]

0 1 2 3 4 5 6 7 8 9

D3 - - - - • • • • • •

D7 - - - - - - - - • •

(20)

The Dirac-Born-Infeld (DBI) action for the probe D7 is
given by

SD7 = �T7

Z
d
8
⇠

p
�detP [GMN ] (21)

which gives up to constants

SD7 ⇡

Z
d
4
x d⇢ ⇢

3

s

1 + (@⇢ui)2 +
R4

(⇢2 + u
2
i )

2
(@xui)2

(22)
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The Dirac-Born-Infeld (DBI) action for the probe D7 is
given by

SD7 = �T7

Z
d
8
⇠

p
�detP [GMN ] (21)

which gives up to constants

SD7 ⇡

Z
d
4
x d⇢ ⇢

3

s

1 + (@⇢ui)2 +
R4

(⇢2 + u
2
i )

2
(@xui)2

(22)
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Figure 2: The Fourier representation of the even

periodic mass function we use (100 Fourier terms are

used) - in each period it has two domain walls separated

by a width w.

Figure 3: the full ⇢� x3 dependence of a domain wall

pair as represented by (28)

Figure 4: The contours in the ⇢� x3 plane where

M = 0. The examples given are a numerical solution

(Orange), and a second narrower numerical case

(Blue), With D5 embeddings from (6) of matching width

overlaid in (Black) and (Red) respectively. Note the

imperfections are due to truncating the Fourier Series.

Figure 5: The quark condensate parameter c plotted

against x3 across the domain walls for a configuration

of width = 0.37 and reaching to a depth of ⇢min = 1.27.
First 40(Red), 100(Cyan), 300(Black) Fourier modes

included.

This solution provides the UV boundary data for the
holographic field u1. It is now straightforward to plot
the configuration into the interior of AdS. We simply use
our solutions fk(⇢) as a multiplier on each Fourier mode

u1(⇢, z) = a0
2 f0(⇢) +

P1
n=1 anf2⇡n(⇢) cos

2⇡nz
3L

. (28)

We plot an example solution in Figure 3. The high k

modes die away as one moves to smaller ⇢ and the well
configuration begins to decay. The key question is where
are the contours where u1 = 0 - this is where the 2+1d
fermions will be isolated. We plot this in Figure 4

The two domain walls in the UV are well separated but
they join together in the IR. The behaviour of two do-
main walls joining is very familiar from probe brane em-
beddings (for example that in section II). As first intro-
duced in the Sakai-Sugimoto model [6], when branes join
in this fashion it indicates condensation of the fermions
on the two boundaries. The minimum ⇢ value of the
configuration ⇢min is the mass gap of the theory (for-
mally ⇢min/2⇡↵0). We will make the same interpretation
here. The two initially separated 2+1d 2-spinors have
a symmetry breaking interaction together. What is not
yet clear is whether the symmetry breaking is intrinsic
through a mass term or due to spontaneous symmetry
breaking.

Of course, strictly the gauge invariant operator that con-
denses is a path ordered Wilson line stretched between
the UV Domain Walls [10]

O = q̄1e
i
R
Aµdx

µ

q2 (29)

but in the IR at the condensation scale the theory can
no longer “see” the separation (the domain walls have
joined) and the operator will mix freely with the local
operator q̄1q2. One would expect their vevs to be propor-
tional. We can extract the local 3+1d quark condensate
from the sub-leading behaviour of our solution at the
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they join together in the IR. The behaviour of two do-
main walls joining is very familiar from probe brane em-
beddings (for example that in section II). As first intro-
duced in the Sakai-Sugimoto model [6], when branes join
in this fashion it indicates condensation of the fermions
on the two boundaries. The minimum ⇢ value of the
configuration ⇢min is the mass gap of the theory (for-
mally ⇢min/2⇡↵0). We will make the same interpretation
here. The two initially separated 2+1d 2-spinors have
a symmetry breaking interaction together. What is not
yet clear is whether the symmetry breaking is intrinsic
through a mass term or due to spontaneous symmetry
breaking.

Of course, strictly the gauge invariant operator that con-
denses is a path ordered Wilson line stretched between
the UV Domain Walls [10]

O = q̄1e
i
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q2 (29)

but in the IR at the condensation scale the theory can
no longer “see” the separation (the domain walls have
joined) and the operator will mix freely with the local
operator q̄1q2. One would expect their vevs to be propor-
tional. We can extract the local 3+1d quark condensate
from the sub-leading behaviour of our solution at the
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Figure 6: The minimum value of ⇢ an M = 0 contour

reaches to as a function of width between the two

domain walls. The D7 Domain wall solution is in blue.

The grey is the D3/probe D5 system from Section VI.

boundary (again it falls o↵ as u1 ⇠ m + c/⇢
2 with c

proportional to the quark condensate). We plot this in
Figure 5 where we see the condensate is localised at the
defects and becomes more so as one increases the number
of Fourier terms. However, note that the solutions have
c = 0 at the domain wall’s centre with two peaks, one
positive and one negative, to either side that are moving
into the domain wall as we increase the number of Fourier
modes. Presumably they eventually merge with the true
condensate being the sum of the peaks (which could be
zero) but this is very hard to compute at the 3+1d level.
Below we will restrict our computation to the M = 0
locus which gives us a better understanding.

⇢min is the most easily extracted quantity and we can test
its dependence on the separation of the domain walls. We
show this in Figure 6. We can fit to the functional form

⇢min =
C

wp
, (30)

For small widths, where the configurations lies well above
the IR cut o↵ at ⇢ = 1, the numerical fit is c = 0.59 p =
0.96. As one expects the relation is governed by dimen-
sional analysis with the separation of the domain walls
the only dimensionful parameter in the theory i.e. p = 1.

At this point it is worth making a harder comparison be-
tween these domain wall solutions and the vacuum con-
figuration of the D3/probe D5D5 system of Section II. In
Figure 4 we have also plotted U-shaped D5 embeddings of
the same width as configurations - they lie very close. In
Figure 6 we plot ⇢min against the width of the U-shape
also. As the domain wall results become more trusted
away from the domain wall at ⇢ = 1 the two solutions
converge. It seems likely from this that the deviations are
artefacts of our IR wall. We will prove their equivalence

for large quark mass in the next section. In the field the-
ory this equality presumably follows from both systems
consisting of massless fermions on the domain walls in-
teracting by the same N = 4 dynamics. The mass gap
and self energies of the quarks as a function of energy
scale must be the same in each system.

The Large Mass Limit

To move away from the Fourier analysis approximations
and numerics we can instead consider two isolated do-
main walls where the background spatial dependent mass
is infinite (orM � 1/w). That is the mass is strictly zero
on the domain wall but infinite elsewhere. In this limit
we can derive the contour in the ⇢ � z plane where the
domain wall sits.

Our solution for @⇢u1 in (22) will be a delta function
on a contour where some ⇢(z) vanishes, where M = 0,
multiplied by some very large number, N . Keeping just
the leading terms in @⇢u1 leaves

SD7 ⇡

Z
d
4
x d⇢ ⇢

3(@⇢ui)

s

1 +
1

(⇢2 + u
2
i )

2
(@z⇢(z))2

(31)
We must be careful though with the treatment of the
metric by the delta function in (@⇢ui): in particular, a
delta function reduces the action to that on a sub-space
and so we must correctly adjust the

p
�g factor to that

on the line ⇢(z) by including a Jacobian factor. We find it
instructive here to consider the problem in a flat 2-plane
space where the action would be just

S ⇡

Z
dz d⇢ (@⇢ui)

p
1 + (@z⇢(z))2 (32)

We must set

@⇢ui =
1

@z⇢
�(z � z0) (33)

in order to obtain

S ⇡

Z
d⇢

q
1 + (@⇢z)2 (34)

which is the line element on z(⇢). In a curved space this
naturally becomes

@⇢ui = 1p
g⇢⇢(@z⇢)2

�(z � z0)

����
locus

= ⇢
@z⇢

�(z � z0)

(35)

Note both sides of this equation are correctly dimension-
less. Equally the pre-factor of the delta function on the
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consisting of massless fermions on the domain walls in-
teracting by the same N = 4 dynamics. The mass gap
and self energies of the quarks as a function of energy
scale must be the same in each system.

The Large Mass Limit

To move away from the Fourier analysis approximations
and numerics we can instead consider two isolated do-
main walls where the background spatial dependent mass
is infinite (orM � 1/w). That is the mass is strictly zero
on the domain wall but infinite elsewhere. In this limit
we can derive the contour in the ⇢ � z plane where the
domain wall sits.

Our solution for @⇢u1 in (22) will be a delta function
on a contour where some ⇢(z) vanishes, where M = 0,
multiplied by some very large number, N . Keeping just
the leading terms in @⇢u1 leaves
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We must be careful though with the treatment of the
metric by the delta function in (@⇢ui): in particular, a
delta function reduces the action to that on a sub-space
and so we must correctly adjust the
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�g factor to that

on the line ⇢(z) by including a Jacobian factor. We find it
instructive here to consider the problem in a flat 2-plane
space where the action would be just
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Z
dz d⇢ (@⇢ui)
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1 + (@z⇢(z))2 (32)

We must set

@⇢ui =
1

@z⇢
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in order to obtain
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1 + (@⇢z)2 (34)

which is the line element on z(⇢). In a curved space this
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Note both sides of this equation are correctly dimension-
less. Equally the pre-factor of the delta function on the
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right has dimension of inverse energy so correctly reduces
the dimension of the action by one as we move down one
in spatial dimension.

The action (22) reduces in dimension by one, and writing
just the coe�cient of the large N , gives

S =

Z
d
2
x d⇢ ⇢

2
q

1 + ⇢4(@⇢z)2 (36)

The action for z is precisely that of the D3/probe D5
D5 system (4) with solution (6). Again we see that the
dynamics of the systems, mass gaps and so forth are,
remarkably, precisely the same.

Fluctuations on the domain wall

We will now assume that the M ! 1 limit action (36)
sets theM = 0 contour to that of (6) and any dynamics in
the 2+1d theory is a perturbation on this contour (u ⌧

M). We can then understand the quark condensate in
the system as follows. We start again from the action
for u1 (22) but impose the dynamics we have found by
requiring the solution to only lie on the locus in (6) by
including by hand a delta function of the form in (35).
This gives

L ⇡ ⇢
4(@⇢z)

s

1 +A(@⇢ui)2 +
(@x2+1ui)2

(⇢2 + u
2
i )

2
(37)

with

A = 1 +
1

(@⇢z)2(⇢2 + u
2
i )

2
(38)

where from (5) we know

@⇢z =
⇢
4
minp

⇢12 � ⇢
8
min⇢

4
(39)

Note that our theory diverges from the D3/probe D5 D5
system because the number of scalar fluctuations (i =
1, 2) originates from the D7 probe action. In the field
theory this reflects the fact that there is a single 3+1d
four component spinor reduced to a single two component
spinor on each defect.

If we consider the vacuum of the theory where there is
no x2+1 dependence (i.e. u1(⇢)) we can see by inspection
that (37) is minimized by @⇢u1 = 0 or u1 = a constant.
Equivalently we can see this solution satisfies the equa-
tion of motion

@⇢

✓
⇢4A(@⇢z)p
1+A(@⇢u1)2

(@⇢u1)

◆

+ 2
(⇢2+u2

1)
3

⇢4A
(@⇢z)

p
1+A(@⇢u1)2

(@⇢u1)2u1 = 0

(40)

We conclude that for consistency we must fix this con-
stant to be rmin = 0.675/w, the IR mass gap. That mass
is then the same at all RG scales and there is no con-
densate in the system. The system simply describes a
massive quark state in a conformal gauge background.

The u2 field is interesting because it plays the role of the
Goldstone boson in systems with chiral symmetry break-
ing. Here where there is no dynamical chiral symmetry
breaking so far, we don’t expect to see Goldstone dy-
namics. We can write the linearized equation of motion
for u2(⇢, x) on the locus in the background of u1 (thus
setting @⇢u1 = 0)

@⇢(⇢
4
A(@⇢z)(@⇢u2)) +M

2
u2

⇢
4(@⇢z)

(⇢2 + u
2
1)

2
u2 = 0 (41)

By rescaling z, u2, ⇢,Mu2 we can set ⇢min = 1 in the
equation and therefore for a generic rmin: Mu2 =
M⇢min=1/⇢min. Numerically we find (by shooting from
u
0
2(0) = 0 and requiring that u2 vanishes in the UV) that

R
2
M⇢min=1 = 7.8.

That this 2+1d state is not massless means it is not a
Goldstone boson. One has to again conclude, since the
theory has a single scale set by the width w, that there
is a bare quark mass ⇢min in the system. Then all bound
states naturally have mass proportional to ⇢min. The
joining of the branes is therefore a reflection of the pres-
ence of a hard quark mass in this case.

That the basic domain wall set up has a (non-local) quark
mass of 0.675/w even in the infinite 3+1d mass, M , limit
should be compared to the weak coupling domain wall
system where the mass is strictly zero in this limit. The
extra ingredient is presumably the strong coupling gauge
dynamics.

In the next section we will introduce a magnetic field
background that is known in some systems to trigger dy-
namical chiral symmetry breaking and this will lead us
to chiral symmetry breaking constructions.

V DYNAMICAL SYMMETRY BREAKING

The domain wall system we have constructed so far sim-
ply describes isolated two component quarks each on a
separate 2+1d domain wall. There is a (non-local) mass
term linking the quarks of order 1/w where w is the sep-
aration between the domain walls. In this section we
want to add in dynamics associated with the N = 4
gauge fields that cause chiral symmetry breaking. In
fact this system, presumably because the fermions are
isolated from each other, are more di�cult to condense
than those on the usual single probe brane constructions
as we will see.

u is constant except on some z(r) where dr u diverges 

The action is precisely that of the D3 /probe D5 anti-D5 system and the Us the same…

There remain fluctuations on the domain wall
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Figure 5: The quark condensate parameter c plotted

against x3 across the domain walls for a configuration

of width = 0.37 and reaching to a depth of ⇢min = 1.27.
First 40(Red), 100(Cyan), 300(Black) Fourier modes

included.

This solution provides the UV boundary data for the
holographic field u1. It is now straightforward to plot
the configuration into the interior of AdS. We simply use
our solutions fk(⇢) as a multiplier on each Fourier mode

u1(⇢, z) = a0
2 f0(⇢) +

P1
n=1 anf2⇡n(⇢) cos

2⇡nz
3L

. (28)

We plot an example solution in Figure 3. The high k

modes die away as one moves to smaller ⇢ and the well
configuration begins to decay. The key question is where
are the contours where u1 = 0 - this is where the 2+1d
fermions will be isolated. We plot this in Figure 4

The two domain walls in the UV are well separated but
they join together in the IR. The behaviour of two do-
main walls joining is very familiar from probe brane em-
beddings (for example that in section II). As first intro-
duced in the Sakai-Sugimoto model [6], when branes join
in this fashion it indicates condensation of the fermions
on the two boundaries. The minimum ⇢ value of the
configuration ⇢min is the mass gap of the theory (for-
mally ⇢min/2⇡↵0). We will make the same interpretation
here. The two initially separated 2+1d 2-spinors have
a symmetry breaking interaction together. What is not
yet clear is whether the symmetry breaking is intrinsic
through a mass term or due to spontaneous symmetry
breaking.

Of course, strictly the gauge invariant operator that con-
denses is a path ordered Wilson line stretched between
the UV Domain Walls [10]

O = q̄1e
i
R
Aµdx

µ

q2 (29)

but in the IR at the condensation scale the theory can
no longer “see” the separation (the domain walls have
joined) and the operator will mix freely with the local
operator q̄1q2. One would expect their vevs to be propor-
tional. We can extract the local 3+1d quark condensate
from the sub-leading behaviour of our solution at the

Non-local qL qR operators at the IR tip become local 
and mix with the 4d local qq operator – source each 
other?

OWL
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right has dimension of inverse energy so correctly reduces
the dimension of the action by one as we move down one
in spatial dimension.

The action (22) reduces in dimension by one, and writing
just the coe�cient of the large N , gives

S =
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d
2
x d⇢ ⇢

2
q

1 + ⇢4(@⇢z)2 (36)

The action for z is precisely that of the D3/probe D5
D5 system (4) with solution (6). Again we see that the
dynamics of the systems, mass gaps and so forth are,
remarkably, precisely the same.

Fluctuations on the domain wall

We will now assume that the M ! 1 limit action (36)
sets theM = 0 contour to that of (6) and any dynamics in
the 2+1d theory is a perturbation on this contour (u ⌧

M). We can then understand the quark condensate in
the system as follows. We start again from the action
for u1 (22) but impose the dynamics we have found by
requiring the solution to only lie on the locus in (6) by
including by hand a delta function of the form in (35).
This gives
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with
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where from (5) we know

@⇢z =
⇢
4
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Note that our theory diverges from the D3/probe D5 D5
system because the number of scalar fluctuations (i =
1, 2) originates from the D7 probe action. In the field
theory this reflects the fact that there is a single 3+1d
four component spinor reduced to a single two component
spinor on each defect.

If we consider the vacuum of the theory where there is
no x2+1 dependence (i.e. u1(⇢)) we can see by inspection
that (37) is minimized by @⇢u1 = 0 or u1 = a constant.
Equivalently we can see this solution satisfies the equa-
tion of motion

@⇢

✓
⇢4A(@⇢z)p
1+A(@⇢u1)2

(@⇢u1)

◆

+ 2
(⇢2+u2

1)
3

⇢4A
(@⇢z)

p
1+A(@⇢u1)2

(@⇢u1)2u1 = 0

(40)

We conclude that for consistency we must fix this con-
stant to be rmin = 0.675/w, the IR mass gap. That mass
is then the same at all RG scales and there is no con-
densate in the system. The system simply describes a
massive quark state in a conformal gauge background.

The u2 field is interesting because it plays the role of the
Goldstone boson in systems with chiral symmetry break-
ing. Here where there is no dynamical chiral symmetry
breaking so far, we don’t expect to see Goldstone dy-
namics. We can write the linearized equation of motion
for u2(⇢, x) on the locus in the background of u1 (thus
setting @⇢u1 = 0)

@⇢(⇢
4
A(@⇢z)(@⇢u2)) +M

2
u2

⇢
4(@⇢z)

(⇢2 + u
2
1)

2
u2 = 0 (41)

By rescaling z, u2, ⇢,Mu2 we can set ⇢min = 1 in the
equation and therefore for a generic rmin: Mu2 =
M⇢min=1/⇢min. Numerically we find (by shooting from
u
0
2(0) = 0 and requiring that u2 vanishes in the UV) that

R
2
M⇢min=1 = 7.8.

That this 2+1d state is not massless means it is not a
Goldstone boson. One has to again conclude, since the
theory has a single scale set by the width w, that there
is a bare quark mass ⇢min in the system. Then all bound
states naturally have mass proportional to ⇢min. The
joining of the branes is therefore a reflection of the pres-
ence of a hard quark mass in this case.

That the basic domain wall set up has a (non-local) quark
mass of 0.675/w even in the infinite 3+1d mass, M , limit
should be compared to the weak coupling domain wall
system where the mass is strictly zero in this limit. The
extra ingredient is presumably the strong coupling gauge
dynamics.

In the next section we will introduce a magnetic field
background that is known in some systems to trigger dy-
namical chiral symmetry breaking and this will lead us
to chiral symmetry breaking constructions.

V DYNAMICAL SYMMETRY BREAKING

The domain wall system we have constructed so far sim-
ply describes isolated two component quarks each on a
separate 2+1d domain wall. There is a (non-local) mass
term linking the quarks of order 1/w where w is the sep-
aration between the domain walls. In this section we
want to add in dynamics associated with the N = 4
gauge fields that cause chiral symmetry breaking. In
fact this system, presumably because the fermions are
isolated from each other, are more di�cult to condense
than those on the usual single probe brane constructions
as we will see.

ui = constant mass = IR gap

Suggests these theories’
chiral symmetry breaking is purely a 
hard mass. (mIR proportional 1/width)
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The expected cause and e↵ect are well known from other
systems. If the core of the bulk geometry becomes repul-
sive to the domain wall (due to a factor growing in the
metric as some power of 1/⇢) then the domain wall will
be restricted to lie above some minimum ⇢ value, ⇢c. ⇢c

is then interpreted as the chiral symmetry breaking scale
and, crucially, as the UV quark mass falls (or equally the
separation of the domain wall grows in this case) this
scale should remain fixed. We will explore example sys-
tems that both realize and fail to realize this phenomena
below.

To begin to explore these issues let’s consider the e↵ects
of an applied magnetic field which is usually a well con-
trolled source of chiral symmetry breaking.

Applied Magnetic Field/Dilaton Profile

To include an explicit possible source of dynamical sym-
metry breaking into the domain wall configuration we will
include a magnetic field in the z or x3 direction. Mag-
netic fields are known to generate chiral symmetry break-
ing both in field theory [11] and holographic settings [12].
Our magnetic field enters as the 1, 2 components of FMN

in the DBI action for the probe D7

SD7 = �T7

Z
d
8
⇠

p
�detP [GMN + 2⇡↵0FMN ] (42)

which gives an overall pre-factor on the Lagrangian

LD7 ⇡ h(r)⇢3

s

1 + (@⇢ui)2 +
R4

(⇢2 + u
2
i )

2
(@xui)2 (43)

with

h =

s

1 +
B2R4

(⇢2 + u
2
i )

2
. (44)

We can e↵ectively set R = 1 by rescaling x3+1 and B.

The magnetic field naturally acts to generate chiral sym-
metry breaking on the probe D7 brane itself [12]. This
e↵ect destabilizes the linearized discussion in the previ-
ous section - the Fourier modes f(k) now satisfy

@⇢

�
h(⇢)⇢3@⇢u1

�
� h(⇢)

k
2

⇢
u1 +

2B2

h(⇢)⇢3
u1 = 0 (45)

The low k modes are unstable and tend to rise to large
values on the IR wall. This is not the instability we are
hoping to see - we want to watch dynamics in the domain
wall theory. To avoid this issue we will therefore move to
the large M limit. A very massive quark is insensitive to
the IR B field so in the M ! 1 limit only the domain

wall 2+1d locus where M = 0 will be a↵ected by the
magnetic field.

We therefore start from (43) and take the large M limit
with @zM proportional to the delta function in (35). We
also assume ui = 0, that is that it is much less than M .
We arrive at the equation for the locus where M = 0

S =

Z
d
2
x d⇢ h(⇢)⇢2

q
1 + ⇢4(@⇢z)2 (46)

There is still a conserved quantity and we obtain

@⇢z =
1p

c2h(⇢)2⇢12 � ⇢4
(47)

where c is the integration constant. The minimum value
of ⇢ a U-shaped configuration reaches is given when the
denominator vanishes. If we more generically imagine a
function

h
2 = 1 +

1

⇢q
(48)

then the vanishing of the denominator in (47) becomes
the solution of the polynomial equation

c
2
h
2
⇢
8
� 1 = 0 (49)

For q  8 the polynomial has positive powers of ⇢ only
and vanishes at some ⇢min controlled by the constant c.
By choosing c one can place the zero at any ⇢. These
configurations are U-shaped with the infinite separation
case corresponding to ⇢min ! 0. Such cases therefore
do not display a fixed minimum, ⇢c, mass gap as the
quark mass falls to zero. They do not describe chiral
symmetry breaking. Of course the B field case falls into
this category and so does not generate chiral symmetry
breaking for the fermions separated on the domain walls.

In contrast to the B-field case, were q > 8 in (48) then the
polynomial where the denominator of (47) vanishes di-
verges at both large ⇢ and as ⇢ ! 0. Between these limits
there is a minimum. For appropriate choices of the con-
stant c the largest ⇢ root corresponds to the h = 1 limit.
However, as we move in towards smaller ⇢, eventually, the
minimum of the function lifts o↵ from zero and at some
fixed c or ⇢c there cease to be further solutions. Here we
find U-shaped configurations which, as they widen, sat-
urate to falling in no further than ⇢c. This is the chiral
symmetry breaking e↵ect we were looking for. Clearly we
need a rapidly diverging h factor to provide a powerful
enough dynamic to trigger chiral symmetry breaking.

Given that these forms for h (which occurs in the position
of the dilaton e

�� in the action) do trigger chiral symme-
try breaking we will briefly study the model with q = 10
in (48). It is not a system we know how to generate in a
top-down model but is an interesting toy with
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Violate the BF bound by hand in the interior of the space 
via a dilaton profile
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Figure 7: U-shaped loci of the domain wall in the z � ⇢

plane in the theory with q = 10 in (47). Note the

solutions with large widths pile up at ⇢c = 0.867

a phenomenologically imposed (unbackreacted) dilaton
profile. In Figure 7 we show the U-shaped loci where
M = 0 for this model displaying the pile up at a fixed
⇢c IR mass scale for widely separated domain walls (with
small UV quark mass).

Again we can determine the behaviour of the sub-leading
ui fields from (43) with (48) after restricting the dynam-
ics to the loci in Figure 7 by including by hand a delta
function of the form in (35). This gives

L ⇡ h(r)⇢4(@⇢z)

s

1 + F(@⇢ui)2 +
(@x2+1ui)2

(⇢2 + u
2
i )

2
(50)

with

F = 1 +
1

(@⇢z)2(⇢2 + u
2
i )

2
(51)

where @⇢z is given in (47).

The u1 vacuum equation is

@⇢

✓
h ⇢4F(@⇢z)p
1+F(@⇢u1)2

(@⇢u1)

◆

+ 2
(⇢2+u2

1)
3

h ⇢4

(@⇢z)
p

1+F(@⇢u1)2
(@⇢u1)2u1

�2 @h
@r2 ⇢

4(@⇢z)
p

1 + F(@⇢u1)2 u1 = 0

(52)

The extra term relative to (40), due to h, if su�ciently
large, can cause condensation. Note the mechanism here
is the same as discussed for D7 probe examples in [23]
- the final term can be considered a running mass for
u1 and if it violates the Breitenlohner Freedman (BF)
bound [24] at some ⇢ then the u1 = 0 solution becomes
unstable.

0 1 2 3 4 5 6
�

0.2

0.4

0.6

0.8

u1(�)

Figure 8: the vacuum functions u1(⇢) for the theory

with q = 10 in (47) showing chiral symmetry breaking

behaviour. Note the solutions begin at ⇢min in the IR.

We solve (49) to set c for a given ⇢min (this involves more
fine tuning the closer the U-shape approaches ⇢min and
the separation of the domain walls goes to zero). We then
solve (52) subject to u1(⇢min) = ⇢min and u

0
1(⇢min) =

0 for di↵erent ⇢min. The results are shown in Figure
8. They show clear chiral symmetry breaking behaviour
with the IR mass becoming independent of the UV mass
at small UV mass.

Note we have also checked examples where q < 8 and
there the extra term in the equation of motion for u1 does
not violate the BF bound and the IR mass approaches
zero with the UV mass. This is self consistent with the
loci shape in these theories which do not show chiral sym-
metry breaking.

Finally we can write the linearized equation of motion
for x-dependent u2 fluctuations in the u1 background

@⇢

✓
h ⇢4F(@⇢z)p
1+F(@⇢u1)2

(@⇢u2)

◆
+M

2
u2

h ⇢4(@⇢z)p
1+F(@⇢u1)2(⇢2+u2

1)
2
u2

+ 2
(⇢2+u2

1)
3

h ⇢4

(@⇢z)
p

1+F(@⇢u1)2
(@⇢u1)2u2

�2 @h
@r2 ⇢

4(@⇢z)
p

1 + F(@⇢u1)2 u2 = 0
(53)

which can be solved subject to boundary conditions
u
0
2(⇢min) = 0 and in the UV u2 = 0 (so the fluctuation

is only of the operator and not the source). In the case
where the UV solution for u1 asymptotes to zero we can
immediately see that this “pion” is massless - if we set
M

2 = 0 in (53) then there is the solution u2 / u1 since
then (53) becomes precisely (52). Since this solution falls
to zero in the UV it is appropriate for the massless pion
state. At other values of UV quark mass we must

Us pile up at IR point… surface ui show chiral symmetry breaking and…

Goldstones show a Gell-Mann-Oakes 
Renner relation…. 
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Figure 9: For the vacuum solutions in Figure 8: the

pion (u2) mass squared against the quark mass

(extracted from the UV of Figure 8). Computed data

points are shown as well as a guiding linear function. A

Gell-Mann Oakes Renner relation is reproduced at small

mq but the system returns to M
2
⇡ ⇠ m

2
q at larger mq.

solve numerically and we plot, as the points in Figure
9, this field’s mass squared against the UV quark mass
extracted from the solutions in Figure 8. We also pro-
vide a linear line to guide the eye. At small mq the data
reasonably suggest a linear Gell-Mann-Oakes-Renner re-
lation - the state is the Goldstone boson (pion) of the
symmetry breaking. At larger mq the relation returns to
the expected M

2
⇡ / m

2
q.

Dilaton Flow Geometries

As another example of a chiral symmetry breaking mech-
anism we will turn to a backreacted hard wall model. The
simplest example is a case of a dilaton flow deformation
of AdS. First let’s consider the metric from [14] (it gener-
ates chiral symmetry breaking in the massless D3/probe
D7 system as described in [16]). In Einstein frame the
metric can be written as [16]

ds
2 = Gx dx

2
4 +Gr(d⇢

2 + ⇢
2⌦2

3 + du
2
1 + du

2
2), (54)

where

Gx = H
�1/2

✓
r
4 + b

4

r4 � b4

◆�/4

(55)

and

Gr = H
1/2

✓
r
4 + b

4

r4 � b4

◆(2��)/4
r
4
� b

4

r4
(56)

with

H =

✓
r
4 + b

4

r4 � b4

◆�

� 1. (57)

Here �2 + �
2 = 10 and � = L

2
/2. The dilaton is given

by

e
2� = e

2�0

✓
r
4 + b

4

r4 � b4

◆�

(58)

Note here again the radial directions are r2 = ⇢
2+u

2
1+u

2
2.

The geometry has a running coupling growing into the IR
but also a singularity at b which it is not clear how to
resolve in the full string theory. Nevertheless the singu-
larity is repulsive to probe branes and triggers chiral sym-
metry breaking in the D3/probe D7 system [16]. We will
use this geometry to trigger chiral symmetry breaking on
the domain walls assuming it captures some aspects of a
more complete system. Note that for numerical work one
can rescale ⇢, ui to set b = 1 - it sets the energy scale of
the geometry/dual.

The probe D7 Lagrangian in this geometry is given by

LD7 = e
�
G

2
xG

2
r⇢

3

r
1 + (@⇢ui)2 +

Gr

Gx
(@xui)2 (59)

If the 3+1d theory’s quark mass is set to be less than
or of order the scale b then the background D7 probe
bends o↵ axis and breaks chiral symmetry in the 3+1d
theory [16]. We will therefore again take the M ! 1

limit so that the 3+1d theory does not have spontaneous
breaking, but allow domain walls where M = 0. Thus
we impose that the mass vanishes on a contour z(⇢) by
setting

@⇢u1 = N
G

�1/2
r

@z⇢

�����
z=z0

�(z � z0) (60)

and keeping the terms leading in N . We obtain the La-
grangian for the locus z(⇢)

LD7 = e
�
G

3/2
x G

2
r⇢

3

r
1 +

Gx

Gr
(@⇢z)2 (61)

Note a good cross-check on this result is that it matches
the embedding action for a 6-brane placed in the 0-2,⇢,
and ⌦3 directions with some profile z(⇢).

There remains a conserved quantity so we find

@⇢z =
G

1/2
r

G
1/2
x

p
c2e2�G4

xG
3
r⇢

6 � 1
(62)

The denominator factor in the square root blows up as
⇢ ! 1, and thus if c is too large there are no roots. This
means the U-shaped embeddings end at a fixed c or ⇢min

The interpretation of the set up is 
self consistent and the first U system 
we know with an explicit measure of 
mass and the condensate

Witten’s multi-trace 
prescription allows an NJL 
interpretation of the UV 
mass also…
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We construct a new holographic description of QCD using domain wall fermions. The construction
consists of probe D7 branes in a D5 brane geometry describing quarks on a 4+1d defect in a 5+1d
gauge theory. We then compactify one dimension of the D5 to introduce confinement in the gauge
degrees of freedom. In addition we allow a spatial dependent mass term for the D7 brane quarks to
isolate chiral fermions on 3+1d domain walls. The D7 world volume fields, when restricted to the
domain wall position, provide an AdS/QCD description. We compute the spectrum and compare
to data. We include higher dimension operators to systematically improve the description.

Domain wall fermions [1] are a powerful technique for
isolating massless, chiral fermions within a gauge the-
ory. The technique is widely used in lattice QCD simu-
lations to enforce chiral symmetry. Recently we investi-
gated the technique in a holographic setting [2] provid-
ing a holographic description of 2+1 dimensional domain
wall fermions on a probe D7 brane in the AdS5 space
generated by N = 4 super Yang-Mills theory [3]. In the
limit where the higher dimension mass is very large the
position of the domain wall (where the chiral fermions
are massless) can be found exactly. Restricting the holo-
graphic fields to the locus of the domain wall gives a
holographic description of the dynamics of those chiral
fermions.

Here we take this approach to provide a description of
a 3+1 dimensional domain wall theory with Nf chiral
quarks on the defect - the basic construct is a 5+1 di-
mensional gauge theory (on a D5 brane) compactified
in one dimension (introducing confinement), with quarks
present on 4+1 dimensional defects (probe D7 branes).
The domain wall structure is then used to place chiral
fermion on 3+1 dimensional defects. When the 4+1d
mass is large the position of the domain wall can be found
and the holographic fields, when reduced to this locus,
provide a description of the chiral fermions. We present
the construction of this Domain Wall AdS/QCD theory
and compute the light meson spectrum it predicts. The
UV of the theory, reflecting that the gauge dynamics is
5+1 dimensional, does not match to perturbative QCD
so we impose a cut o↵ at the 3 GeV scale and only work at
lower scales in the holographic model. The predictions
are comparable in quality to those of other AdS/QCD
constructions [4, 5].

The holographic description should be matched at the
3 GeV upper cut o↵ to QCD in the intermediate cou-
pling regime and higher dimension operators would be
expected to be present [6]. We include such operators
using Witten’s multi-trace prescription [7] (see [8, 9] for
previous examples of using HDOs in holographic descrip-
tions of QCD). We fit the couplings of these operators

to the meson data since we can not compute the non-
perturbative QCD matching. We show that the predic-
tions of the model can be systematically improved in this
way.

I THE BRANE CONSTRUCTION

Our construction is built around the D5/probe D7 system
with five coincident directions in the configuration (one
of the systems discussed in [10]).

0 1 2 3 4 5 6 7 8 9

D5 - - - - - (-) • • • •

D7 - - - - - • - - - •

(1)

The UV theory is therefore a supersymmetric 5+1d gauge
theory with quark hypermultiplets restricted to a 4+1d
domain wall. The gauge theory is strongly coupled in
the UV but we will set up our QCD-like dynamics in
the IR where the supergravity approximation holds. We
will compactify one of the five spatial directions on the
D5 brane, shown by the brackets in (1). This breaks
supersymmetry and introduces an IR confinement scale
by making the geometry a cigar in the x5 and radial
direction.

Note if the D7 brane were at x9 = 0 describing a massless
quark, then the D7 would wrap around the cigar and re-
emerge as an anti-D7 brane anti-podal on the circle in x5.
This demonstrates that the theory needs an anti-D5 in
order for the D7 fluxes to have a sensible solution on the
x5 circle. Here though we will, except on a domain wall,
set the quark mass very large so that the D7 only live at
large radius where they are widely separated on the x5

circle. We will assume that there is then no interaction
between the anti-podal branes and concentrate on the
dynamics on one brane.

The final trick we will employ is to allow the quark mass,
M , on the 4+1d defect to be x4 dependent. We will as-
sume it is positive and very large everywhere except in an
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and compute the light meson spectrum it predicts. The
UV of the theory, reflecting that the gauge dynamics is
5+1 dimensional, does not match to perturbative QCD
so we impose a cut o↵ at the 3 GeV scale and only work at
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are comparable in quality to those of other AdS/QCD
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expected to be present [6]. We include such operators
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previous examples of using HDOs in holographic descrip-
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to the meson data since we can not compute the non-
perturbative QCD matching. We show that the predic-
tions of the model can be systematically improved in this
way.

I THE BRANE CONSTRUCTION

Our construction is built around the D5/probe D7 system
with five coincident directions in the configuration (one
of the systems discussed in [10]).
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The UV theory is therefore a supersymmetric 5+1d gauge
theory with quark hypermultiplets restricted to a 4+1d
domain wall. The gauge theory is strongly coupled in
the UV but we will set up our QCD-like dynamics in
the IR where the supergravity approximation holds. We
will compactify one of the five spatial directions on the
D5 brane, shown by the brackets in (1). This breaks
supersymmetry and introduces an IR confinement scale
by making the geometry a cigar in the x5 and radial
direction.

Note if the D7 brane were at x9 = 0 describing a massless
quark, then the D7 would wrap around the cigar and re-
emerge as an anti-D7 brane anti-podal on the circle in x5.
This demonstrates that the theory needs an anti-D5 in
order for the D7 fluxes to have a sensible solution on the
x5 circle. Here though we will, except on a domain wall,
set the quark mass very large so that the D7 only live at
large radius where they are widely separated on the x5

circle. We will assume that there is then no interaction
between the anti-podal branes and concentrate on the
dynamics on one brane.

The final trick we will employ is to allow the quark mass,
M , on the 4+1d defect to be x4 dependent. We will as-
sume it is positive and very large everywhere except in an
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The UV is rather odd – the fluctuations aren’t normalizable… all Us asymptote to the 
same width irrespective of the mass gap… but IR seems OK…

Compactifying in x5 confinement

Domain wall m(x4)               3+1d chiral quarks
3

where N = T7

R
d⌦2. The factor

e��G5/2
x G3/2

v =
K2U3

0

8

�
1 +

1

v2
�3

(15)

and blows up as v ! 0 which encourages the D7 to bend
away from v = 0 by switching on v9 and generating chiral
symmetry breaking. The equation for the D7 embedding
that encodes this is

@⇢


⇢2e��G5/2

x G3/2
vp

1+(@⇢v9)2
@⇢v9

�

�2⇢2
p

1 + (@⇢v9)2
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The UV solution is v9 ' M + C/⇢ (' U/2U0) and so
the mass is proportional to MU0 and the condensate (of
dimension four in 4+1d) to CK2U2

0 (note that the con-
densate is a derivative with respect to the mass on the
action so naturally picks up the K2 factor from (15)).
We will avoid this chiral symmetry breaking (and any
interaction with any anti-podal anti-D7) by taking con-
figurations where M ! 1 except on domain walls.

Domain Walls

Our final ingredient is to introduce a quark mass that
has spatial dependence in the x4 direction. We take the
UV mass to be M except, on the boundary,

v9 = �M � w/2 < x4 < w/2 (17)

We expect 3+1d chiral fermions to be isolated at the
two discontinuities where M = 0. We will now work
in the infinite M limit [2] so that any issues with the
4+1d quarks are pushed to the far UV and so that the
x4 derivative of v9 becomes a delta function. One must
be careful to include appropriate Jacobian factors in the
form of the delta function (these are those that e↵ectively
reduce the D7 action to that of a 6 brane). We have, with
M vanishing on the contour x4(⇢)

@⇢v9 =
1

G1/2
v (@4⇢)

�����
locus

�(x4 � x4(⇢)) (18)

We now insert this factor into the D7 action (14) assum-
ing that v9 = 0 (formally v9 ⌧ M) giving
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Z
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xG
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v
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1 +

Gx

Gv
(@⇢x4)2

(19)

which is an action that determines the locus on which
M = 0 in the ⇢�x4 plane. (19) has a conserved quantity
which we denote C and we find
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Figure 1: The loci of the domain walls in the ⇢� x4

plane for di↵erent choices of C/⇢min. Here we set

KU0 = 1 for numerics.

Note the large ⇢ limit of this is 4
p
2/(CK7/2U5/2

0 ⇢7/2)
and C has energy dimension -5.

The solutions are U-shaped in the ⇢� x4 plane with the
minimum ⇢ value given when the denominator vanishes.
We display these solutions in Figure 1.

II THE DOMAIN WALL THEORY

We now wish to describe holographically the 3+1d chiral
fermions living on the domain walls and their interactions
- this is the Domain Wall AdS/QCD theory. One wants
solutions of the D7 brane world volume fields that are of
the form of a delta function on the loci found above and
shown in Figure 1. To find such solutions we, by hand,
dimensionally reduce the D7 brane action in (14) onto
the loci by imposing a delta function of the form in (18).

The Quark Mass and Condensate

As a first example let’s find the vacuum configuration
describing the quark condensate by considering just the
field v9. We obtain the action

SD7 = �N
R
d4x d⇢ ⇢2e��G5/2

x
G3/2

v

G1/2
v (⇢)

(@⇢x4)
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q
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Gv
Gx

(@x0�3v9)
2

(21)

where

F = 1 +
Gv

Gx(@⇢x4)2
(22)

It’s worth noting that in the large ⇢ limit for the pieces
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Figure 2: Numerical solutions for the vacuum functions

v9(⇢).

relevant for the vacuum configuration becomes

SD7 ⇠ �

Z
d4x d⇢

1

CK⇢

r
1 +

C2K5U5
0

32
⇢5(@⇢v9)2 (23)

The large ⇢ solution is v9 = m + c/⇢3. Note here we
use little m and c - they are masses and condensates be-
tween the chiral fermions on the domain wall which are
distinct from the M,C of the 4+1d theory. The conden-
sate is identified by taking a derivative with respect to
the mass, mU0, on the action - as written in this limit
the action is m independent so one must imagine a sub-
leading term, for example coming from the expansion of
the dilaton,

R
d⇢ v29/CK⇢. Now one sets v9 = m + c/⇢3

and di↵erentiates the cross term w.r.t U0m: thus we find
the condensate is proportional to c /CKU0 which is both
proportional to c and of dimension 3.

The resulting full equation of motion for an x indepen-
dent v9 vacuum solution is
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e��G5/2
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p
1 + F(@⇢v9)2

⌘
= 0

(24)

In the UV the solution is of the form m+ c/⇢2. We find
solutions numerically by shooting from the IR boundary
conditions v9(⇢min) = ⇢min (this is required for the IR
mass gap to be consistent with the gap described by the
loci in Figure 1) and v09(⇢min) = 0. We display the results
in Figure 2. The numerics become highly tuned as ⇢min

approaches one and the U-shaped loci become infinitely
wide but the results look very consistent with the UV
quark mass being zero in this limit (which is the case for
the D7 embedding in a uncompactified D5 background).
For small separations of the domain walls, large ⇢min, the
quark mass scales as 1/⇢min as we found in similar con-
figurations in [2]. The massless embedding shows chiral
symmetry breaking behaviour generating the ⇢min = 1
mass gap.
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Figure 3: A plot of M2
⇡ against mq with a guiding linear

function plotted (red).

Pions

The quark condensate and mass are complex objects and
we would expect a second degree of freedom in the dual
that forms a complex pair with v9. Let us call this v10
although there is no such field in the DBI action. We can
immediately write down it’s equation following that for
v9 since it has a U(1) symmetry that mixes it with that
field. The equation of motion for fluctuations of v10 in
the background of the v9 vacuum solution is simply
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e��G5/2

x G3/2
v

p
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+M2e��⇢2G3/2
x G5/2

v

G1/2
v (⇢)

(@⇢x4)
v10p

1+F(@⇢v9)2
= 0

(25)

This equation is therefore su�cient to compute the be-
haviour of the Goldstone mode and its radially excited
states of the theory. v10 does not appear explicitly in the
model but this is because the v9 + iv10 complex number
can be written as v9ei� and then a U(1)A transformation
used to set � = 0. The degrees of freedom though re-
main and the solutions will emerge as components of the
gauge fields which are present on the U-shaped locus. It
is easiest to compute using the logic here though.

The Goldstone nature of this v10 state follows simply
from (25). If one sets M2 = 0 and v10 equal to the
v9 background solution then (25) is simply (24). This
solution though can only be used as a physical state
for the massless theory since we require that asymptot-
ically it falls to zero so it describes a fluctuation of the
operator (rather than asymptoting to a source). Away
from the massless quark theory we must solve (25) nu-
merically with v010(⇢min) = 0 and vary M2 to achieve
v10(1) = 0. We show our numerical data in Figure 3.
The results sensibly match a Gell-Mann-Oakes-Renner
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QCD DW AdS/QCD Improved

DW AdS/QCD

m⇢ 775 MeV 775⇤ gq = 0.247

m⇡ 139 MeV 139⇤ gv = 0.656

ma 1230 MeV 1, 955 gA = 1.287

FV 345 MeV 345⇤

FA 433 MeV 726.7

f⇡ 93 MeV 135.3 128.8

Mv,n=1 1465 MeV 3284 1881.8

MA,n=1 1655 MeV 5043 2752.5

Table 1: Mesonic observables - QCD values and the

basic Domain Wall AdS/QCD model’s predictions.

Starred quantities are used to fix parameters as

described in the text. In the final column we list the

values of the higher dimension operator couplings in the

improved version of the model - here f⇡, and the excited

state masses are predicted.

See [9] for recent examples of this methodology in alter-
native AdS/QCD set ups.

In particular we proceed as follows. We start by consider-
ing di↵erent background embeddings for v9 that asymp-
tote in the UV to di↵erent source values. For each we
compute the pion mass. We then fix by hand the ratio
of the vector meson mass to the pion mass to its ob-
served value and find the wave function, which does not
asymptote to zero in the UV - we can extract the HDO
coupling from the source and operator values at the cut
o↵, assuming the presence of an operator g2V /⇤

2
|q̄�µq|2

(we will quote g2V = ⇤2
J /O). Next we fit the normaliza-

tion of the source to fit FV . In the axial sector we allow
a coupling g2A/⇤

2
|q̄�µ�5q|2 to fit the axial vector meson

mass. Now FA and f⇡ can be computed. Repeating this
for all the v9 embeddings we can achieve the physical
value of fA, fixing the background embedding. The pion
decay constant reduces a little as shown in Table 1 but
not as low as the physical value. There is a bigger im-
provement in the predictions of the radial excited state
masses as we show for the first excitations of the ⇢ and
a mesons, although they too still remain high.

III DISCUSSION

We have presented a holographic domain wall theory of
3+1 dimensional chiral quarks interacting via confining
gauge interactions. Here the gauge interactions are five
dimensional albeit with one compact dimension to gen-

erate the confinement scale. The quarks of a 4+1 di-
mensional theory are isolated on separated domain walls
where the 4+1 dimensional theory’s mass vanishes. The
holographic fields on the locus of the defects provide a
holographic description of a QCD-like theory. We have
shown the theory has chiral symmetry breaking and gen-
erates a spectrum that quite closely resembles QCD. De-
viations are likely due to the gauge coupling growing into
the UV - we have included a UV cut o↵ to stop this
growth and included some higher dimension operators at
the cut o↵. The spectrum is then improved but the full
e↵ects of the higher dimension gauge dynamics are not
suppressed.

In lattice simulations using the domain wall fermion
method the gauge fields are isolated on the defects and
independent of the higher dimensions. It would be in-
teresting to try to arrange such a set up holographi-
cally using multi-centre brane solutions, although non-
supersymmetric multi-centre solutions are hard to find.

We have presented the model on the surface of a single
D7 brane generating just a single flavour of quarks. How-
ever, one would expect the domain wall trick to generate
non-abelian SU(Nf )L⇥ SU(Nf )R flavour symmetries - on
a domain wall only a single chiral quark is massless whilst
the other is massive, so the interaction with the adjoint
scalar superpartner of the gauge field is suppressed on the
wall. Thus the theory on the surface of Nf D7 branes is
just that of the abelian case but fields are promoted to
Nf ⇥Nf matrices and the full action should be traced in
flavour space. The bosonic fields will form U(Nf ) multi-
plets of the vector flavour symmetry with the masses and
couplings of the abelian case we have described.

In conclusion we believe it has been interesting to gener-
ate a new type of AdS/QCD model which uses the do-
main wall fermion method. The method may allow a
wider class of chiral theories to be explored in the future.
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Thermal Transitions
Naively the black hole horizon eats sequential Us and there’s a first order meson melting 
transition….

Here with LUV and T,  you must be careful not to make a one to one identification 
between width and UV mass… the surface fluctuation lets you precisely ID the mass… 
and the meson melting transition is second order…. (first top down example of that?)
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where N = T7
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d⌦2. The factor
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and blows up as v ! 0 which encourages the D7 to bend
away from v = 0 by switching on v9 and generating chiral
symmetry breaking. The equation for the D7 embedding
that encodes this is
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The UV solution is v9 ' M + C/⇢ (' U/2U0) and so
the mass is proportional to MU0 and the condensate (of
dimension four in 4+1d) to CK2U2

0 (note that the con-
densate is a derivative with respect to the mass on the
action so naturally picks up the K2 factor from (15)).
We will avoid this chiral symmetry breaking (and any
interaction with any anti-podal anti-D7) by taking con-
figurations where M ! 1 except on domain walls.

Domain Walls

Our final ingredient is to introduce a quark mass that
has spatial dependence in the x4 direction. We take the
UV mass to be M except, on the boundary,

v9 = �M � w/2 < x4 < w/2 (17)

We expect 3+1d chiral fermions to be isolated at the
two discontinuities where M = 0. We will now work
in the infinite M limit [2] so that any issues with the
4+1d quarks are pushed to the far UV and so that the
x4 derivative of v9 becomes a delta function. One must
be careful to include appropriate Jacobian factors in the
form of the delta function (these are those that e↵ectively
reduce the D7 action to that of a 6 brane). We have, with
M vanishing on the contour x4(⇢)

@⇢v9 =
1

G1/2
v (@4⇢)

�����
locus

�(x4 � x4(⇢)) (18)

We now insert this factor into the D7 action (14) assum-
ing that v9 = 0 (formally v9 ⌧ M) giving

Slocus = �N

Z
d4x d⇢ ⇢2e��G2

xG
3/2
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1 +

Gx

Gv
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(19)

which is an action that determines the locus on which
M = 0 in the ⇢�x4 plane. (19) has a conserved quantity
which we denote C and we find
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Figure 1: The loci of the domain walls in the ⇢� x4

plane for di↵erent choices of C/⇢min. Here we set

KU0 = 1 for numerics.

Note the large ⇢ limit of this is 4
p
2/(CK7/2U5/2

0 ⇢7/2)
and C has energy dimension -5.

The solutions are U-shaped in the ⇢� x4 plane with the
minimum ⇢ value given when the denominator vanishes.
We display these solutions in Figure 1.

II THE DOMAIN WALL THEORY

We now wish to describe holographically the 3+1d chiral
fermions living on the domain walls and their interactions
- this is the Domain Wall AdS/QCD theory. One wants
solutions of the D7 brane world volume fields that are of
the form of a delta function on the loci found above and
shown in Figure 1. To find such solutions we, by hand,
dimensionally reduce the D7 brane action in (14) onto
the loci by imposing a delta function of the form in (18).

The Quark Mass and Condensate

As a first example let’s find the vacuum configuration
describing the quark condensate by considering just the
field v9. We obtain the action

SD7 = �N
R
d4x d⇢ ⇢2e��G5/2

x
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v

G1/2
v (⇢)

(@⇢x4)

⇥

q
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2

(21)

where

F = 1 +
Gv

Gx(@⇢x4)2
(22)

It’s worth noting that in the large ⇢ limit for the pieces
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Figure #: A cartoon showing the evolution of a Domain

Wall system with constant m/⇤ under an increase of

temperature T (red, dashed) to T 0 > T (red, solid), the

connected locus begins to “square o↵”. Upon increase

from T 0
to Tc > T 0

(red, dotted) the tip of the locus falls

into the horizon and the locus becomes disconnected

(dotted, black). A UV cuto↵ is also depicted in the

cartoon (Purple).



Conclusions

Holographic models of QCD continue to be interesting play grounds…

Holography is a remarkably simple method to get a ball park answer for 
behaviour including with higher dimension reps… effective theory ideas give 
systematically improvement (perfect action ideas)…  

Models have an interesting interplay with current lattice frontier… and highlight 
aspects of strong coupling we don’t understand – confinement as a BF bound 
violation; how quarks decouple at strong coupling…

Domain wall chiral fermions are a new top down direction – refining 
understanding of U shaped brane configurations  - alternative AdS/QCD - can 
we do more exotic chiral gauge theories this way? 


