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QFTs from geometry

This is a talk about “geometric engineering”: I will view string
theory as a tool for associating Quantum Field Theories (QFTs)
T [X] to singular manifolds X, and I will explain how the
generalised symmetries of T [X] can be read from X.

More precisely: to any given theory T [X] we can associate a
“symmetry TFT” Symm[T [X]], a TFT in one dimension higher
encoding symmetries and anomalies of the theory, and all its
gaugings.

It turns out that Symm[T [X]] is significantly easier to understand
than T [X] itself, so our goal will be to construct
Symm[X] := Symm[T [X]] directly from the geometry.



Introduction Geometric engineering The symmetry theory Generalisations Conclusions

QFTs from geometry

This is a talk about “geometric engineering”: I will view string
theory as a tool for associating Quantum Field Theories (QFTs)
T [X] to singular manifolds X, and I will explain how the
generalised symmetries of T [X] can be read from X.

More precisely: to any given theory T [X] we can associate a
“symmetry TFT” Symm[T [X]], a TFT in one dimension higher
encoding symmetries and anomalies of the theory, and all its
gaugings.

It turns out that Symm[T [X]] is significantly easier to understand
than T [X] itself, so our goal will be to construct
Symm[X] := Symm[T [X]] directly from the geometry.



Introduction Geometric engineering The symmetry theory Generalisations Conclusions

QFTs from geometry

This is a talk about “geometric engineering”: I will view string
theory as a tool for associating Quantum Field Theories (QFTs)
T [X] to singular manifolds X, and I will explain how the
generalised symmetries of T [X] can be read from X.

More precisely: to any given theory T [X] we can associate a
“symmetry TFT” Symm[T [X]], a TFT in one dimension higher
encoding symmetries and anomalies of the theory, and all its
gaugings.

It turns out that Symm[T [X]] is significantly easier to understand
than T [X] itself, so our goal will be to construct
Symm[X] := Symm[T [X]] directly from the geometry.



Introduction Geometric engineering The symmetry theory Generalisations Conclusions

Why

Given a Lagrangian description of T [X] it is in principle possible
(but subtle) to find its generalised symmetry structure.

(See
Rudelius’ and Ohmori’s talks for nice reviews of generalised
symmetries, but in a nutshell: symmetry = topological operator.)

Lots of progress on this in the last few years, see the talks by
Rudelius, Ünsal, Komargodski, Nardoni and Ohmori in this
conference for beautiful examples of symmetries and their
applications.

Nevertheless, in the context of geometric engineering having a
Lagrangian description of T [X] is more the exception than the rule:
what we know is the topology (and sometimes metric) of X.

It is precisely in the cases where we don’t know a Lagrangian that
the information about symmetries and anomalies is most valuable,
for example to suggest/test dualities.
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Why

A more formal reason to care about this problem is that it hints
towards a geometric version of the Landau paradigm: as we will see
the map X → Symm[X] is very sensitive to the details of X.

Geometric Landau question
Can we reconstruct X (modulo string dualities and deformations)

given Symm[X]?

(In terms of Shlomo’s analogies on Tuesday: which pieces of the
skeleton do you need to recognise which animal it is?)

There is a categorical version of this question, where we ask about
some category associated to X instead. For instance, in some cases
we can associate a cluster category to X. The Grothendick group
of this cluster category is easy to read from Symm[X]. [Caorsi,
Cecotti ’17], [Del Zotto, IGE, Hosseini ’20], [Del Zotto, IGE ’22].
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Geometric engineering

For reasons of analytic control we want to impose restrictions on
the manifolds X that we consider. These are:

X is non-compact, to decouple gravity. To make our life
simpler I’ll assume that X is a real cone over some base B.

In order for the field theory to be supersymmetric, we assume
that X has reduced holonomy (Calabi-Yau, for instance).

For instance, if X is a complex two-fold, these assumptions restrict
it to be an ALE space of the form C2/Γg, with Γg ⊂ SU(2). This is
a cone over S3/Γg, with Γg acting freely on S3. On C2 the origin is
fixed by all elements of Γg, so we have an orbifold singularity there.

If we place IIB string theory on this geometry we obtain a (2, 0)
SCFT g(2,0) in six dimensions, arising from modes at the singularity.
These theories are believed to be indexed by Γg, or equivalently by
an algebra g of type an, dn, e6, e7 or e8.
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Local vs global

One important property of the (2, 0) theory with algebra g is that
upon reduction on T 2 with complex structure τ it gives rise to 4d
N = 4 SYM with algebra g and complexified gauge coupling τ . Let
me call this object g4.

What I have just described fully specifies the behaviour of local
operators in g4, but it does not fully fix the theory. For example it
does not fully fix the partition function on compact manifolds.

For instance, for g = su(2) it does not tell us whether in the path
integral we should sum over SU(2) bundles or all SO(3) bundles.
All matter is in the adjoint of SU(2), which is a representation of
SO(3), so both choices are consistent.

The standard prescription is to decorate g4 with some extra
structure (a choice of global form for the gauge group) to define a
proper 4d theory.
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g4 as a relative theory
The way string theory “sees” this is a bit different.

We can think of
g4 itself as a “relative theory” [Freed, Teleman ’12]: in physical terms
it is a set of boundary gapless modes for a TFT in one dimension higher
(4 + 1 = 5 here). This 5d TFT includes information about the
symmetries, anomalies and gaugings of all theories with local dynamics
given by g4. We refer to this TFT as the “symmetry theory” Symm[g4].

Symm[g4] is often simple. For instance, for g = su(N) its most
interesting part is a ZN gauge theory with action

SSymm = 2πi ·N
∫
B2 ∧ dC2 .
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“Absolute” theories
We can obtain more familiar 4d theories by introducing a gapped
interface ρ between Symm[g4] and an invertible TFT, the anomaly
theory (in case anomalies remain, otherwise ρ is a boundary).

Colliding ρ and g4 we obtain what we usually think of as SYM
theories in d = 4 with a choice of global form. The possible choices
of ρ were classified by [Aharony, Seiberg, Tachikawa ’13] from a
different viewpoint. The connection with the picture above was
essentially done (for SU(N), holographically) in [Witten ’98], and
extended to the di, ei cases in [IGE, Heidenreich, Regalado ’19].
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Back to 10d

Our starting point is not the 4d theory g4 onM4, but rather IIB on
M4 × C2/Γg × T 2.

How do we reproduce the previous discussion
from the string theory perspective? That is, where is Symm[g4] in
the string construction?

My goal will be to derive Symm[g4] without using any knowledge
about the Lagrangian of the theory.



Introduction Geometric engineering The symmetry theory Generalisations Conclusions

Back to 10d

Our starting point is not the 4d theory g4 onM4, but rather IIB on
M4 × C2/Γg × T 2. How do we reproduce the previous discussion
from the string theory perspective? That is, where is Symm[g4] in
the string construction?

My goal will be to derive Symm[g4] without using any knowledge
about the Lagrangian of the theory.



Introduction Geometric engineering The symmetry theory Generalisations Conclusions

Back to 10d

Our starting point is not the 4d theory g4 onM4, but rather IIB on
M4 × C2/Γg × T 2. How do we reproduce the previous discussion
from the string theory perspective? That is, where is Symm[g4] in
the string construction?

My goal will be to derive Symm[g4] without using any knowledge
about the Lagrangian of the theory.



Introduction Geometric engineering The symmetry theory Generalisations Conclusions

Heavy branes
We are interested in understanding generalised symmetries. The
objects charged under generalised symmetries are generically
extended operators. Where are these in our geometric setup?

These are infinitely heavy branes inserted into our configuration.
The mass of a wrapped brane is proportional to the volume
wrapped in X. So defects will arise from branes wrapping
non-compact cycles ending on the singular point.



Introduction Geometric engineering The symmetry theory Generalisations Conclusions

Heavy branes
We are interested in understanding generalised symmetries. The
objects charged under generalised symmetries are generically
extended operators. Where are these in our geometric setup?

These are infinitely heavy branes inserted into our configuration.

The mass of a wrapped brane is proportional to the volume
wrapped in X. So defects will arise from branes wrapping
non-compact cycles ending on the singular point.



Introduction Geometric engineering The symmetry theory Generalisations Conclusions

Heavy branes
We are interested in understanding generalised symmetries. The
objects charged under generalised symmetries are generically
extended operators. Where are these in our geometric setup?

These are infinitely heavy branes inserted into our configuration.
The mass of a wrapped brane is proportional to the volume
wrapped in X. So defects will arise from branes wrapping
non-compact cycles ending on the singular point.



Introduction Geometric engineering The symmetry theory Generalisations Conclusions

Charge operators

So defect operators (generalised Wilson/’t Hooft lines) in the field
theory are branes wrapping non-compact cycles. They are in
general not topological, so they are not symmetries.

The symmetry operators are rather the flux operators measuring
which non-compact lines we have in our configuration:
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Behaviour at infinity
To fully specify the string background we need to specify the
expectation value of these flux operators at infinity.

Consider our D-dimensional spacetimeMD, which we take to be a
d-dimensional manifoldMd where the QFT lives times a
(D− d)-dimensional cone CD−d over a D− d− 1 base BD−d−1. In
order to determine the behaviour at infinity, we’ll quantise the
theory taking the cone radial direction as “time”, and
MD−1 :=Md × BD−d−1.
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Behaviour at infinity

Quantising string theory is of course very difficult, but we can
understand the basic physics by studying (generalised) Maxwell
theory for a p-form Cp, with action

SgM =

∫
MD

Fp+1 ∧ ?Fp+1

with Fp+1 = dCp.
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Flux non-commutativity
In generalised Maxwell theory we have flux measuring operators
Φe(ηe), Φm(ηm) with ηe ∈ Hp(MD−1;R/Z) and
ηm ∈ HD−p−2(MD−1;R/Z).

If there is no torsion we have

Hk(MD−1;R/Z) = Hk(MD−1;Z)⊗ R/Z
= HD−k−1(MD−1;Z)⊗ R/Z

and we can write (k = D − p− 2)

Φm(ηm) = exp(2πiα

∫
η̃m

Fp+1)

with η̃m ∈ Hp+1(MD−1;Z) and α ∈ R/Z, which is a familiar
expression for the operator measuring magnetic flux. [Gukov,
Witten ’08], [Gaiotto, Kapustin, Seiberg, Willett ’08]
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Flux non-commutativity

If there is torsion the story is more subtle (see [Freed, Moore,
Segal ’06]), but working in cohomology with R/Z coefficients is the right
prescription valid in all cases.

As shown in [Moore ’04], [Freed, Moore, Segal ’06] we have

Φe(ηe)Φ
m(ηm) = e2πi L(β(ηe),β(ηm))Φm(ηm)Φe(ηe)

with
β : Hk−1(MD−1;R/Z)→ TorHk(MD;Z)

a Bockstein map and

L : TorHp(MD−1)× TorHD−p−2(MD−1)→ R/Z

the “linking pairing”.
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Flux non-commutativity

The details are really not that important now. The important thing
is that the operators measuring flux at infinity do not necessarily
commute when there is torsion.

So in this case it is not possible to
simply turn off all fluxes at infinity. This would correspond to
setting all Φe,m(ηe,m) = 1, but if for instance

Φe(ηe)Φ
m(ηm) = −Φm(ηm)Φe(ηe)

this is inconsistent. One has to make choices!

In [IGE, Heidenreich, Regalado ’19] we performed an analysis of the
choices at infinity taking this phenomenon into account, and in this way
reproduced the rules in [Aharony, Seiberg, Tachikawa ’15].

A virtue of the boundary perspective is that it straightforwardly extends
to theories without a Lagrangian formulation.
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Other cases
This philosophy is very general, and it explains (and predicts) the
higher form symmetries of geometrically engineered QFTs in a
multitude of settings. See also [Tachikawa ’13] for a derivation of the
higher form symmetries from class-S (without punctures) and [Del Zotto,
Heckman, Park, Rudelius ’15] for a more direct translation of [Aharony,
Seiberg, Tachikawa ’15].

By now there is a very good understanding of how to determine higher
form symmetries for a multitude of ways of engineering field theories
geometrically:
[Morrison, Schäfer-Nameki, Willett ’20], [Albertini, Del Zotto, IGE,
Hosseini ’20], [Bah, Bonetti, Minasian ’20], [Closset, Schäfer-Nameki,
Wang ’20], [Del Zotto, IGE, Hosseini ’20], [Apruzzi, Dierigl, Lin ’20],
[Bhardwaj, Schäfer-Nameki ’20], [Cvetič, Dierigl, Lin, Zhang ’20],
[Gukov, Hsin, Pei ’20], [Bhardwaj, Hübner, Schäfer-Nameki ’21],
[Hosseini, Moscrop ’21], [Cvetič, Dierigl, Lin, Zhang ’21], [. . . ]
(Not all cases are understood, for instance N = 3 S-folds aren’t.)

All this approaches can be related, but the non-commuting flux viewpoint
connects well with the “symmetry theory” approach.
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Relative theories
So in geometric engineering we have something like a “QFT on a
singularity relative to the string theory bulk”:

the full QFT is only
defined only after specifying boundary values for the supergravity
fields, even in the deep IR limit where dynamical excitations for the
bulk decouple. There’s always a non-trivial topological sector due
to the non-commuting flux operators that doesn’t decouple.

This relates a D-dimensional field theory to a (D + n)-dimensional
topological bulk, with n > 1. I will now reduce this picture to the
better understood relative QFTs of Freed and Teleman, with n = 1:
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How symmetry theories appear in string theory
Consider, for concreteness, M-theory onM7 × C2/Γ.

The approach in [IGE, Heidenreich, Regalado ’19] uses a modified
asymptotic structure.
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How symmetry theories appear in string theory
Consider, for concreteness, M-theory onM7 × C2/Γ.

The approach in [IGE, Heidenreich, Regalado ’19] uses a modified
asymptotic structure.

This suggests a strategy for deriving the symmetry theory associated to
the field theory: dimensional reduction on the link of the singularity:
[Apruzzi, Bonetti, IGE, Hosseini, S. Schäfer-Nameki ’21]
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How symmetry theories appear in string theory
Consider, for concreteness, M-theory onM7 × C2/Γ.

The approach in [IGE, Heidenreich, Regalado ’19] uses a modified
asymptotic structure.

In this picture the boundary conditions at infinity that we need to specify
in string theory correspond to ρ, so the object that arises from reduction
is the symmetry theory. (“Symmetry inflow” instead of “anomaly inflow”.)
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The BF theory

In the full theory on S3/Γ×X8 there are non-commuting flux
operators wrapping1 t× σ2 and t′ × σ5, with
t, t′ ∈ H1(S3/Γ) = Γab and σi ∈ Hi(X

8). Their commutation
relations (on a spatial sliceM7 of X8) are

Φ(t× σ2)Φ(t′ × σ5) = e2πiL(t,t′)σ2·σ5Φ(t′ × σ5)Φ(t× σ2) .

1Going to homology so I can draw pictures.
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The BF theory (continued)

Fix Γ = ZN for concreteness. Then L(t, t) = 1/N for the generator
t of H1(S3/ZN ) = ZN . From the point of view of the effective
theory on X8 we have ZN 2-surface operators and 5-surface
operators whose relative phase goes with the intersection number
divided by N :

Φ(t× σ2)Φ(t× σ5) = e2πiσ2·σ5/NΦ(t× σ5)Φ(t× σ2) .

This is the 8d ZN theory with topological action

Stop = 2πiN

∫
X8

B2 ∧ dC5 .

(In upcoming work with S. Hosseini we derive this more directly
from a reduction on S3/Γ, following [Belov, Moore ’06].)
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Mixed anomalies
(2112.02092, with F. Apruzzi, F. Bonetti, S. Hosseini and S. Schäfer-Nameki)

The 7d theory, in addition to the 1-form and/or 4-form symmetries
acting on Wilson lines / ’t Hooft surfaces, has a U(1)I continuous
2-form symmetry acting on instanton surfaces.

There is a mixed ’t Hooft anomaly between the U(1)I symmetry
and the 1-form symmetry, of the form

Sanomaly =
rg
2

∫
X8

F
(4)
I ∪ P(B2)

with rgP(B2)/2 the fractional instanton number in the presence of
a background for the 1-form symmetry, F (4)

I = dC(3) and C(3)
I the

background for the instanton 2-form symmetry.

This anomaly theory can be derived by “reducing”∫
M11

C3G4G4 + C3X8 on S3/Γ, keeping track of the torsion
sector. (See also recent work by [Cvetič, Dierigl, Lin, Zhang ’21].)
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Differential cohomology
KK reductions beyond de Rham

Mathematically, we want to extract a (discrete) cohomology
invariant on d+ 1 dimensions from the Chern-Simons coupling
“
∫
Link10−d(C3 ∧G4 ∧G4 + C3 ∧X8)”.

Tricky:
C3 is not globally well defined
and G4 = 0.

Luckily these problems essentially cancel each other: we can make
sense of this by using differential cohomology (aka
Cheeger-Simons cohomology or Deligne cohomology), a way of
packing differential forms and cohomology classes together, and
then the answer is nonzero.
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Results in 7d

Ssymm = . . .+

(
−1

2

∫
S3/Γ

t̆ ? t̆

)∫
M8

γ̆4B̆
2
2 .

We can identify the term in brackets (times B̆2
2), with the

fractional instanton number ninst. In particular rg/2 is given by the
classical level −1

2 spin-Chern-Simons invariant of S3/Γ evaluated
on a flat connection:

rg
2

= −1

2

∫
S3/Γ

t̆ ? t̆ .

This geometrizes field theory results in [Witten ’00], [Córdova, Freed,
Lam, Seiberg ’19], so it allows us to compute anomalies in the space of
coupling constants for non-Lagrangian theories.
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2-groups

So far I have discussed “ordinary” p-form symmetries. But by now
we know that the general story is significantly more interesting,
with generalisations of this structure in multiple directions.

For instance, we can have 2-group symmetries. [Kapustin,
Thorngren ’13], [Sharpe ’15], [Tachikawa ’17], [Córdova, Dumitrescu,
Intriligator ’18], [Benini, Córdova, Hsin ’18], [Córdova, Dumitrescu,
Intriligator ’20], [. . . ]

These were interpreted geometrically in [Del Zotto, IGE,
Schäfer-Nameki ’22], [Cvetič, Heckman, Hübner, Torres ’22], they follow
from the non-triviality of certain Mayer-Vietoris exact sequence for the
base of the cone. (But a SymmTFT description is lacking.)
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Non-invertibles

During the last couple of years a number of d > 3 field theory
examples have been found that have non-invertible symmetries:

N (M2)×N (M2) ∝ (1 + T (M2))× (condensations)

[Gaiotto, Johnson-Freyd ’19], [Heidenreich, McNamara, Montero, Reece,
Rudelius, Valenzuela ’21], [Kaidi, Ohmori, Zheng ’21], [Choi, Córdova,
Hsin, Lam, Shao ’21], [Koide, Nagoya, Yamaguchi ’21], [Roumpedakis,
Seifnashri, Shao ’22], [Bhardwaj, Bottini, Schäfer-Nameki, Tiwari ’22],
[Arias-Tamargo, Rodriguez-Gomez ’22], [Choi, Córdova, Hsin, Lam,
Shao ’22], [Kaidi, Zafrir, Zheng ’22], [Choi, Lam, Shao ’22], [Córdova,
Ohmori ’22], [Bashmakov, Del Zotto, Hasan ’22], [Aguilera Damia,
Argurio, García-Valdecasas ’22]

In upcoming work with B. Heidenreich and S. Schäfer-Nameki we’ll
explain how this structure appears in string theory.
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Conclusions

For geometrically engineered theories there is a close connection
between the symmetries of a theory and the geometry. But
crucially, the symmetries are often much easier to extract from the
geometry than many other properties of the theory. This is
particularly so for non-Lagrangian cases.

I have focused on the developments I understand best. There is a
lot of recent beautiful literature developing complementary
approaches, for example in the context of anomaly inflow. See for
instance [Bah, Bonetti, Minasian ’20].

We don’t quite have a full systematic dictionary yet, but the general
picture is gradually becoming clear.



Differential cohomology

Differential cohomology
The degree d differential cohomology group H̆d(M) fits into:

TorHp(M;Z)

Hp−1(M;R/Z) Hp(M;Z)

Hp−1(M;R)
Hp−1

Free (M;Z) H̆p(M) Hp
Free(M;Z)

Ωp−1(M)
Ωp−1

Z (M)
ΩpZ(M)

dΩp−1(M)

−β

i %I

R

dZ

τ

d

r

and enjoys a product:

H̆p(M) ? H̆q(M)→ H̆p+q(M) .



Differential cohomology

Chern-Simons terms

The differential cohomology formulation of the M-theory
Chern-Simons term “C3 ∧G4 ∧G4” is

SCS = −1

6
2πi

∫
M11

Ğ4 ? Ğ4 ? Ğ4 .

In differential cohomology, for x̆ ∈ H̆d+1(Md) we have∫
Md

x̆ ∈ H̆1(pt) = R/Z .

Note: The integral above is not well defined by itself because of
the factor of 1

6 , but it is well known that the whole M-theory action
is. [Witten ’96] This subtlety plays an important role in our discussion
(one needs to consider the full M-theory action to obtain the right field
theory answer), but I’ll not discuss it in detail.
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Differential cohomology

SymmTFTs in 5d
(2112.02092, with F. Apruzzi, F. Bonetti, S. Hosseini and S. Schäfer-Nameki)
As another example, for 5d SCFTs obtained from M-theory on
X6 = CR(L5) the resulting symmetry theory is:

SSym =

∫
W6

(
KijB

(i)
2 ∪ δC

(j)
3 + ΩijkB

(i)
2 ∪B

(j)
2 ∪B

(k)
2

+ ΥijαB
(i)
2 ∪B

(j)
2 ∪ F

(α)
2

)
where the K, Ω, Υ coefficients are classical spin-Chern-Simons
invariants on the L5.

We can compute these geometrically using
differential cohomology (see also [Cvetič, Dierigl, Lin, Zhang ’21]),
and in cases where there is a geometric interpretation we can compare
against field theory predictions. For instance, for SU(p)q we get

K11 = gcd(p, q) ; Ω111 =
q p (p− 1) (p− 2)

6 gcd(p, q)3
; Υ111 =

p (p− 1)

2 gcd(p, q)2

in agreement with [Gukov, Pei, Hsin ’20].
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