TT deformations and holography: review and open questions

Monica Guica

IphT, CEA Saclay

What is the TT deformation?

What are TT deformations?

- finely tuned irrelevant flow integrability preserved
- well-defined S-matrix → UV completeness
- not an RG flow

irrelevant deformations of 2d QFTs → UV complete QFTs that are non-local

1) theoretical interest → classify integrable 2d QFTs

Smirnov & Zamolodchikov '16

irrelevant deformations of 2d QFTs → UV complete QFTs that are non-local

- theoretical interest → classify integrable 2d QFTs
 Smirnov & Zamolodchikov '16
 - $2\rightarrow 2$ S -matrix \rightarrow unitary, analytic & crossing -symm.

$$S_{\{\alpha\}}(\theta) = S_{\{0\}}(\theta)\,e^{-i\sum_s\alpha_s\sinh(s\theta)}\;,\quad s\in 2\mathbb{Z}+1$$
 rel. rapidity CDD ambiguity

- $T\overline{T} \leftrightarrow s = 1$
 - → effect of changing S-matrix asymptotics on QFT?
- study effect on gnd. state energy $E_0(R)$ via TBA
 - \rightarrow square root singularity @ finite R \rightarrow Hagedorn
 - → this behaviour may be generic

Camilo, Fleury, Lencses, Negro & Zamolodchikov '21

irrelevant deformations of 2d QFTs → UV complete QFTs that are non-local

- 1) theoretical interest → classify integrable 2d QFTs
 - → effect of changing S-matrix asymptotics on QFT?
- 2) QCD string

Dubovsky, Flauger, Gorbenko '12-'14 Dubovsky et al. '12-

irrelevant deformations of 2d QFTs → UV complete QFTs that are non-local

- 1) theoretical interest → classify integrable 2d QFTs
 - → effect of changing S-matrix asymptotics on QFT?
- 2) QCD string

 Dubovsky, Flauger, Gorbenko '12-'14

 Dubovsky et al. '12-
 - $T\overline{T}$ deformed free bosons \rightarrow Nambu-Goto
 - = lowest term in effective string action

Caselle, Fioravanti, Gliozzi, Tateo '13

- integrability broken at higher order
- good agreement with lattice simulations

- 1) theoretical interest → classify integrable 2d QFTs
 - → effect of changing S-matrix asymptotics on QFT?
- 2) QCD string
- 3) non AdS holography

- 1) theoretical interest \rightarrow classify integrable 2d QFTs
 - → effect of changing S-matrix asymptotics on QFT?
- 2) QCD string
- 3) non AdS holography

- 1) theoretical interest \rightarrow classify integrable 2d QFTs
 - → effect of changing S-matrix asymptotics on QFT?
- 2) QCD string
- 3) non AdS holography
- 4) holography, other $(T\overline{T} \text{ flow} \leftrightarrow \text{ radial Einstein eqn.})$

- 0) highly tractable: exact f.s. spectrum, S-matrix, etc.
- 1) theoretical interest → classify integrable 2d QFTs
 - → effect of changing S-matrix asymptotics on QFT?
- 2) QCD string
- 3) non AdS holography
- 4) holography, other $(T\overline{T} \text{ flow} \leftrightarrow \text{ radial Einstein eqn.})$

Plan

- review of the basic field-theoretical propeties of TT
- holographic dictionary & its extensions
- the "single-trace" TT deformation & non-AdS holography

• will concentrate on the $T\overline{T}$ deformation (in particular of 2d CFTs).

Other deformations will be mentioned only if something qualitatively new can be learned from them.

• irrelevant deformations of 2d QFTs \rightarrow bilinears of two (higher spin) conserved currents J^A , J^B

lacktriangledown define $\mathcal{O}_{J^AJ^B}$:

$$\lim_{y o x}\epsilon^{lphaeta}J^A_lpha(x)J^B_eta(y)={\cal O}_{J^AJ^B}(x)+$$
 derivative terms Zamolodchikov '04

SZ '16

nice factorization properties

• deformation :
$$\frac{\partial S(\mu)}{\partial \mu} = \int d^2x \, \mathcal{O}_{J^AJ^B}(\mu)$$

• irrelevant deformations of 2d QFTs \rightarrow bilinears of two (higher spin) conserved currents J^A , J^B

ullet define $\mathcal{O}_{J^AJ^B}$:

$$\lim_{y o x}\epsilon^{lphaeta}J^A_lpha(x)J^B_eta(y)=\mathcal{O}_{J^AJ^B}+$$
 derivative terms Zamolodchikov '04

SZ '16

nice factorization properties
$$\frac{\partial S(\mu)}{\partial \mu} = \int d^2x \, \mathcal{O}_{J^AJ^B}(\mu) = \int d^2z \, (T_{zz}T_{\bar{z}\bar{z}} - T_{z\bar{z}}^2)$$

$$\text{"$T\bar{T}$"} \text{"$det T"}$$

$$[\mu] = (length)^2$$

examples:

 $Tar{T}:~J_{lpha}^{A}=T_{lpha}{}^{A}~,~J_{eta}^{B}=T_{eta}{}^{B}~(imes\epsilon_{AB})$ (2,2) Cavaglia, Negro, Szecsenvi, Tateo '16

- irrelevant deformations of 2d QFTs \rightarrow bilinears of two (higher spin) conserved currents J^A, J^B
- lacktriangledown define $\mathcal{O}_{J^AJ^B}$: $\lim_{y o x} \epsilon^{\alpha\beta} J^A_{\alpha}(x) J^B_{\beta}(y) = \mathcal{O}_{J^AJ^B} + \text{derivative terms}$ Zamolodchikov '04 SZ '16

nice factorization properties

• deformation :
$$\frac{\partial S(\mu)}{\partial \mu} = \int d^2x \, \mathcal{O}_{J^AJ^B}(\mu)$$

- irrelevant deformations of 2d QFTs \rightarrow bilinears of two (higher spin) conserved currents J^A , J^B
- lacktriangledown define $\mathcal{O}_{J^AJ^B}$: $\lim_{y o x} \epsilon^{\alpha\beta} J^A_{\alpha}(x) J^B_{\beta}(y) = \mathcal{O}_{J^AJ^B} + \text{derivative terms}$ Zamolodchikov '04 SZ '16

nice factorization properties

• deformation :
$$\frac{\partial S(\mu)}{\partial \mu} = \int d^2x \, \mathcal{O}_{J^AJ^B}(\mu)$$

- irrelevant deformations of 2d QFTs \rightarrow bilinears of two (higher spin) conserved currents J^A , J^B
- lacktriangle define ${\cal O}_{J^AJ^B}$:

$$\lim_{y\to x} \epsilon^{\alpha\beta} J^A_\alpha(x) J^B_\beta(y) = \mathcal{O}_{J^AJ^B} + \text{derivative terms}$$

Zamolodchikov '04

SZ '16

nice factorization properties

• deformation :
$$\frac{\partial S(\mu)}{\partial \mu} = \int d^2x \, \mathcal{O}_{J^AJ^B}(\mu)$$

examples:

$$T\bar{T}: J_{\alpha}^{A} = T_{\alpha}^{A}, J_{\beta}^{B} = T_{\beta}^{B} (\times \epsilon_{AB})$$

(2,2) SZ '16

SZ '16

universal

$$Jar{T}:\;\;J^A_lpha=J_lpha\;,\;\;J^B_eta=T_{etaar{z}}$$
 Lorentz

(1,2) MG '17

arbitrary combin. of $\,Tar{T},\,JT_a$, etc. Lefloch & Mezei; Frolov '19

integrable $T\bar{T}^{(s)}$ (generalized $T\bar{T}$): higher spin currents \leftarrow integrability

• deformed theory non-local (scale $\mu^{\#}$) but argued UV complete

Basic observables

• place $T\overline{T}$ - deformed theory on a cylinder (R) \rightarrow Hilbert space unchanged, only $H(\mu)$ and its eigenvalues

■ Burger's eqn \rightarrow universal deformed finite-size energies $E_n^{(\mu)}(R)$ determined only by the initial ones (P=0)

$$E_n^{(\mu)}(R)=E_n^{(0)}(R+\mu E_n^{(\mu)})$$
 Thermodynamic Bethe Ansatz
$$S_{2\to 2}^{(\mu)}(\theta)=e^{i\mu m^2\sinh\theta}S_{2\to 2}^{(0)}(\theta)$$
 (integrability)

• similar exact results for $Jar{T}$ spectrum and of arbitrary combinations of $Tar{T}$ and JT_a M.G. '17

Basic observables

• place $T\overline{T}$ - deformed theory on a cylinder (R) \rightarrow Hilbert space unchanged, only $H(\mu)$ and its eigenvalues

■ Burger's eqn \rightarrow universal deformed finite-size energies $E_n^{(\mu)}(R)$ determined only by the initial ones (P=0)

at the core of many exact results

$$E_n^{(\mu)}(R) = E_n^{(0)}(R + \mu E_n^{(\mu)})$$

$$S_{2\rightarrow 2}^{(\mu)}(\theta) = e^{i\mu m^2 \sinh \theta} S_{2\rightarrow 2}^{(0)}(\theta)$$

$$e^{\frac{i\mu s}{2}} \quad \text{massless}$$

Thermodynamic Bethe Ansatz (integrability)

Basic observables

• place $T\overline{T}$ - deformed theory on a cylinder (R) \rightarrow Hilbert space unchanged, only $H(\mu)$ and its eigenvalues

■ Burger's eqn \rightarrow universal deformed finite-size energies $E_n^{(\mu)}(R)$ determined only by the initial ones (P=0)

(beyond integrability)

Dubovsky, Gorbenko, Mirbabayi '17

$$E_n^{(\mu)}(R) = E_n^{(0)}(R + \mu E_n^{(\mu)})$$

$$S_{\mu}(p_i^{\alpha}) = e^{i\mu \sum_{i,j} \epsilon_{\alpha\beta} p_i^{\alpha} p_j^{\beta}} S_0(p_i^{\alpha})$$

Thermodynamic Bethe Ansatz

(integrability)

classically, closed-form expression for the deformed Hamiltonian density
$$\mathcal{H}=rac{\sqrt{1+4\mu\mathcal{H}_{CFT}^{(0)}+4\mu^2\mathcal{P}^2-1}}{2\mu}$$

Jorjadze, Theisen '20

TT - deformed CFT spectrum & thermodynamics

• if the seed theory is a CFT $E_n^{(0)}=rac{\Delta}{R}$, then $E_n^{(\mu)}(R)=E_n^{(0)}(R+\mu E_n^{(\mu)})$ yields E_n

$$E_n^{(\mu)}(R) = \frac{R}{2\mu} \left(\sqrt{1 + \frac{4\mu E_n^{(0)}}{R} + \frac{4\mu^2 P^2}{R^2}} - 1 \right)$$

$$(P \neq 0)$$

$$S(E) = S_{Cardy}(E^{(0)}(E)) = \sqrt{\frac{2\pi c}{3}(ER + \mu E^2)}$$

$$\mu>0$$
 : ground state energy $E_0=-rac{c}{12R}$ becomes complex for $R< R_{min}=\#\sqrt{\mu c}$

- Hagedorn behaviour $S \propto E$ at high energy $T_H = R_{min}^{-1}$

$$\mu < 0$$
: all states with $E_0 > \frac{R}{4|\mu|}$ acquire imaginary energies \rightarrow finite # of real-energy states

TT - deformed CFT spectrum & thermodynamics

• if the seed theory is a CFT $E_n^{(0)}=rac{\Delta}{R}$, then $E_n^{(\mu)}(R)=E_n^{(0)}(R+\mu E_n^{(\mu)})$ yields E_n^{ullet}

$$E_n^{(\mu)}(R) = \frac{R}{2\mu} \left(\sqrt{1 + \frac{4\mu E_n^{(0)}}{R} + \frac{4\mu^2 P^2}{R^2}} - 1 \right)$$

$$(P \neq 0)$$

thermodynamics: smoothly deformed levels \rightarrow unchanged density of states

$$S(E) = S_{Cardy}(E^{(0)}(E)) = \sqrt{\frac{2\pi c}{3}(ER + \mu E^2)}$$

$$\mu > 0$$
 : ground state energy $E_0 = - rac{c}{12R}$ becomes complex for $R < R_{min} = \# \sqrt{\mu c}$

- Hagedorn behaviour $S \propto E$ at high energy $T_H = R_{min}^{-1}$

Hagedorn behaviour
$$S \propto E$$
 at high energy $T_H = R_{min}^{-1}$

$$\mu < 0$$
: all states with $E_0 > \frac{R}{4|\mu|}$ acquire imaginary energies \rightarrow finite # of real-energy states

instability?

interpretation: < truncate away imaginary energies?

> McGough, Mezei, Verlinde '16 superluminal propagation → CTCs in compact space

> > Cooper, Dubovsky, Mohsen '13

 $R (\mu > 0)$ no sense for $R < R_{min}$ $(\sim T > T_H)$ $\mu < 0$ no sense for $\forall R$ finite

(P=0)

TT & string worldsheet

- D-2 $T\overline{T}$ deformed free bosons = Nambu-Goto action for string in D dim target space in static gauge
 - \rightarrow true classically for any D, and QM for D=3,26

$$X^0 = t \quad X^1 = \sigma$$

• $T\bar{T}$ deformation = change of gauge in the NG action (conformal \rightarrow static)

Dubovsky, Flauger, Gorbenko '12

ullet deformed (U,V) and undeformed (u,v) theories related by a field-dependent coord. transformation

$$U=u-2\mu\int^v dv' T_{vv}(v') \;, \qquad V=v-2\mu\int^u du' T_{uu}(u')$$
 "dynamical coord."

• general definition of $T\overline{T}$ -deformed QFTs by coupling to topological 2d gravity

$$Z_{T\bar{T}} = \int \mathcal{D}e^a_\alpha \mathcal{D}X^a \mathcal{D}\varphi \, e^{-\frac{1}{2\mu} \int d^2x \, \epsilon^{\alpha\beta} \epsilon_{ab} (\partial_\alpha X^a - e^a_\alpha) (\partial_\beta X^b - e^b_\beta) + S_{QFT}(\varphi, e^a_\alpha)}$$

Dubovsky, Gorbenko, Hernandez-Chifflet '18

- can be derived by applying Hubbard-Stratonovich trick to TT Cardy '18
- alternate def'n: JT gravity + cosmo. constant $\Lambda \propto 1/\mu$ / interpretation: 2d ghost-free massive gravity

TT & string worldsheet

- D-2 $T\overline{T}$ deformed free bosons = Nambu-Goto action for string in D dim target space in static gauge
 - \rightarrow true classically for any D, and QM for D=3,26

$$X^0 = t \quad X^1 = \sigma$$

• $T\bar{T}$ deformation = change of gauge in the NG action (conformal \rightarrow static)

Dubovsky, Flauger, Gorbenko '12

• deformed (U,V) and undeformed (u,v) theories related by a field-dependent coord. transformation

$$U=u-2\mu\int^v dv' T_{vv}(v') \;, \qquad V=v-2\mu\int^u du' T_{uu}(u')$$
 "dynamical coord."

general definition of TT -deformed QFTs by coupling to topological 2d gravity

$$Z_{T\bar{T}} = \int \mathcal{D}e^a_\alpha \mathcal{D}X^a \mathcal{D}\varphi \, e^{-\frac{1}{2\mu}\int d^2x \, \epsilon^{\alpha\beta} \epsilon_{ab} (\partial_\alpha X^a - e^a_\alpha)(\partial_\beta X^b - e^b_\beta) + S_{QFT}(\varphi, e^a_\alpha)} \, \\ \\ = \int \mathcal{D}e^a_\alpha \mathcal{D}X^a \mathcal{D}\varphi \, e^{-\frac{1}{2\mu}\int d^2x \, \epsilon^{\alpha\beta} \epsilon_{ab} (\partial_\alpha X^a - e^a_\alpha)(\partial_\beta X^b - e^b_\beta) + S_{QFT}(\varphi, e^a_\alpha)} \, \\ \\ = \int \mathcal{D}e^a_\alpha \mathcal{D}X^a \mathcal{D}\varphi \, e^{-\frac{1}{2\mu}\int d^2x \, \epsilon^{\alpha\beta} \epsilon_{ab} (\partial_\alpha X^a - e^a_\alpha)(\partial_\beta X^b - e^b_\beta) + S_{QFT}(\varphi, e^a_\alpha)} \, \\ \\ = \int \mathcal{D}e^a_\alpha \mathcal{D}X^a \mathcal{D}\varphi \, e^{-\frac{1}{2\mu}\int d^2x \, \epsilon^{\alpha\beta} \epsilon_{ab} (\partial_\alpha X^a - e^a_\alpha)(\partial_\beta X^b - e^b_\beta) + S_{QFT}(\varphi, e^a_\alpha)} \, \\ \\ = \int \mathcal{D}e^a_\alpha \mathcal{D}X^a \mathcal{D}\varphi \, e^{-\frac{1}{2\mu}\int d^2x \, \epsilon^{\alpha\beta} \epsilon_{ab} (\partial_\alpha X^a - e^a_\alpha)(\partial_\beta X^b - e^b_\beta) + S_{QFT}(\varphi, e^a_\alpha)} \, \\ \\ = \int \mathcal{D}e^a_\alpha \mathcal{D}X^a \mathcal{D}\varphi \, e^{-\frac{1}{2\mu}\int d^2x \, \epsilon^{\alpha\beta} \epsilon_{ab} (\partial_\alpha X^a - e^a_\alpha)(\partial_\beta X^b - e^b_\beta) + S_{QFT}(\varphi, e^a_\alpha)} \, \\ \\ = \int \mathcal{D}e^a_\alpha \mathcal{D}X^a \mathcal{D}\varphi \, e^{-\frac{1}{2\mu}\int d^2x \, \epsilon^{\alpha\beta} \epsilon_{ab} (\partial_\alpha X^a - e^a_\alpha)(\partial_\beta X^b - e^b_\beta) + S_{QFT}(\varphi, e^a_\alpha)} \, \\ \\ = \int \mathcal{D}e^a_\alpha \mathcal{D}X^a \mathcal{D}\varphi \, e^{-\frac{1}{2\mu}\int d^2x \, \epsilon^{\alpha\beta} \epsilon_{ab} (\partial_\alpha X^a - e^a_\alpha)(\partial_\beta X^b - e^b_\beta) + S_{QFT}(\varphi, e^a_\alpha)} \, \\ \\ = \int \mathcal{D}e^a_\alpha \mathcal{D}X^a \mathcal{D}\varphi \, e^{-\frac{1}{2\mu}\int d^2x \, \epsilon^{\alpha\beta} \epsilon_{ab} (\partial_\alpha X^a - e^a_\alpha)(\partial_\beta X^b - e^b_\beta) + S_{QFT}(\varphi, e^a_\alpha)} \, \\ \\ = \int \mathcal{D}e^a_\alpha \mathcal{D}X^a \mathcal{D}\varphi \, e^{-\frac{1}{2\mu}\int d^2x \, \epsilon^{\alpha\beta} \epsilon_{ab} (\partial_\alpha X^a - e^a_\alpha)(\partial_\beta X^b - e^b_\beta) + S_{QFT}(\varphi, e^a_\alpha)} \, \\ \\ = \int \mathcal{D}e^a_\alpha \mathcal{D}X^a \mathcal{D}\varphi \, e^{-\frac{1}{2\mu}\int d^2x \, \epsilon^{\alpha\beta} \epsilon_{ab} (\partial_\alpha X^a - e^a_\alpha)(\partial_\beta X^b - e^b_\beta) + S_{QFT}(\varphi, e^a_\alpha)} \, \\ \\ = \int \mathcal{D}e^a_\alpha \mathcal{D}X^a \mathcal{D}\varphi \, e^{-\frac{1}{2\mu}\int d^2x \, \epsilon^{\alpha\beta} \epsilon_{ab} (\partial_\alpha X^a - e^a_\alpha)(\partial_\beta X^b - e^b_\beta) + S_{QFT}(\varphi, e^a_\alpha)} \, \\ \\ = \int \mathcal{D}e^a_\alpha \mathcal{D}X^a \mathcal{D}\varphi \, e^{-\frac{1}{2\mu}\int d^2x \, \epsilon^{\alpha\beta} \epsilon_{ab} (\partial_\alpha X^a - e^a_\alpha)(\partial_\beta X^b - e^b_\beta) + S_{QFT}(\varphi, e^a_\alpha)} \, \\ \\ = \int \mathcal{D}e^a_\alpha \mathcal{D}X^a \mathcal{D}\varphi \, e^{-\frac{1}{2\mu}\int d^2x \, \epsilon^{\alpha\beta} \epsilon_{ab} (\partial_\alpha X^a - e^a_\alpha)(\partial_\alpha X^a - e^a_\alpha) + S_{QFT}(\varphi, e^a_\alpha) \, \\ \\ = \int \mathcal{D}e^a_\alpha \mathcal{D}X^a \mathcal{D}\varphi \, e^{-\frac{1}{2\mu}\int d^2x \, \epsilon^{\alpha\beta} \epsilon_{ab} (\partial_\alpha X^a - e^a_\alpha) + S_{QFT}(\varphi, e^a_\alpha) \, \\ \\ = \int \mathcal{D}e^a_\alpha \mathcal{D}X^a \mathcal{D}\varphi \, e^{-\frac{1}{2\mu}\int d^2x \, \epsilon^{\alpha\beta} \epsilon_{ab} (\partial_\alpha X^a - e^a_\alpha) \, \\ \\ = \int \mathcal{D}e^a_\alpha \mathcal{D}\varphi \, e^{-\frac{1}{2\mu}\int d^2x \, \epsilon^{\alpha\beta} \epsilon_{ab} (\partial$$

- can be derived by applying Hubbard-Stratonovich trick to TT Cardy '18
- alternate def'n: JT gravity + cosmo. constant $\Lambda \propto 1/\mu$ / interpretation: 2d ghost-free massive gravity

TT: non-local 2d QFT or Quantum Gravity?

- does the worldsheet/coupling to topological gravity description imply $T\overline{T} = 2d$ quantum gravity?
- absence of propagating graviton →

Dubovsky, Flauger, Gorbenko'12

ullet S-matrix: $\mathcal{S}_{\mu}(p_i^{lpha})=e^{i\mu\sum_{i,j}\epsilon_{lphaeta}p_i^{lpha}p_j^{eta}}\mathcal{S}_0(p_i^{lpha})$ ~ gravitational

minimum length $\Delta x_L \Delta x_R \geq \mu$

time delay \propto energy

- off-shell observables:
 - → correlation functions of (quasi-local) operators
 - → deformation ~ attaches gravitational Wilson line Cardy '19
- TT deformed CFTs : Virasoro x Virasoro symmetry (bulk)

 $T\overline{T} \approx \text{non-local CFT}$

 \rightarrow can this symmetry fix the correlation functions of special operators (primary analogues?)

TT - deformed CFTs as non-local CFTs

- symmetries: flow of energy eigenstates on the cylinder $\partial_\mu |n_\mu \rangle = \mathcal{X}_{T\bar{T}} |n_\mu \rangle$
 - ightarrow define $ilde{L}^{\mu}_m$ etc. via $\partial_{\mu} ilde{L}^{\mu}_m = [\mathcal{X}_{Tar{T}}, ilde{L}^{\mu}_m]$ with $ilde{L}^{\mu}_m(\mu=0) = L^{CFT}_m$
 - \rightarrow well-defined quantum-mechanically, satisfy Virasoro algebra (\mathbf{c} undef) by construction
 - ightarrow conserved (using $H_{Tar{T}}=f(ilde{L}_0^\mu, ilde{ar{L}}_0^\mu)$) \Rightarrow $ilde{L}_m^\mu$ are symmetries MG'21 LeFloch. Mezei '19
- classical limit : $\tilde{L}_n^{\mu,cls}=R_uL_n^{cls}=(R+2\mu H_R)\int d\sigma e^{inu}\mathcal{H}_L$ & similarly for the right-movers w.i.p with R. Monten, I. Tsiares
- in J $\overline{\mathsf{T}}$ deformed CFTs, the analogous relation $\tilde{L}_n^\mu = R\,L_n \lambda H_R J_n + rac{\lambda^2 H_R^2}{4\,\kappa}\delta_{n,0}$ + RM
 - \rightarrow definition of analogues of primary operators (Ward identities w.r.t. L_n)
 - \rightarrow their (momentum-space) correlation func. are entirely fixed by those of the undeformed CFT MG'21

e.g. 2 & 3 – point functions = CFT momentum-space correlators, but with $~\tilde{h} o h(\bar{p})~,~~\tilde{\bar{h}} o \bar{h}(\bar{p})$

TT - deformed CFTs as non-local CFTs

• symmetries: flow of energy eigenstates on the cylinder $\partial_{\mu}|n_{\mu}
angle=\mathcal{X}_{Tar{T}}|n_{\mu}
angle$

- classical limit : $\tilde{L}_n^{\mu,cls}=R_uL_n^{cls}=(R+2\mu H_R)\int d\sigma e^{inu}\mathcal{H}_L$ & similarly for the right-movers w.i.p. with R. Monten, I. Tsiares
- in $J\overline{\mathsf{T}}$ deformed CFTs, the analogous relation $\tilde{L}_n^\mu = R\,L_n \lambda H_R J_n + \frac{\lambda^2 H_R^2}{4\,\kappa}\delta_{n,0}$ + RM
 - \rightarrow definition of analogues of primary operators (Ward identities w.r.t. L_n)
 - → their (momentum-space) correlation func. are entirely fixed by those of the undeformed CFT

MG'21

e.g. 2 & 3 – point functions = CFT momentum-space correlators, but with $~ ilde h o h(ar p)~,~~ ilde {ar h} o ar h(ar p)$

TT - deformed CFTs as non-local CFTs

• symmetries: flow of energy eigenstates on the cylinder $\partial_{\mu}|n_{\mu}
angle=\mathcal{X}_{Tar{T}}|n_{\mu}
angle$

$$\begin{array}{c} \rightarrow \text{ define } \; \tilde{L}_m^\mu \; \text{ etc. via } \; \partial_\mu \tilde{L}_m^\mu = [\mathcal{X}_{T\bar{T}}, \tilde{L}_m^\mu] \; \text{ with } \; \tilde{L}_m^\mu (\mu = 0) = L_m^{CFT} \\ \\ \rightarrow \; \text{ well-defined quantum-mechanically, satisfy Virasoro algebra (\mathbf{C} undef) by construction} \\ \\ \rightarrow \; \text{ conserved (using } \; H_{T\bar{T}} = f(\tilde{L}_0^\mu, \tilde{\bar{L}}_0^\mu) \;) \; \Rightarrow \; \tilde{L}_m^\mu \; \text{ are symmetries } \\ \\ \; \text{ LeFloch, Mezei '19} \end{array}$$

- classical limit : $\tilde{L}_n^{\mu,cls} = R_u L_n^{cls} = (R+2\mu H_R) \int d\sigma e^{inu} \mathcal{H}_L$ & similarly for the right-movers w.i.p with R. Monten, I. Tsiares
- in $\overline{\mathsf{JT}}$ deformed CFTs, the analogous relation $(\tilde{L}_n^\mu) = R L_n \lambda H_R J_n + \frac{\lambda^2 H_R^2}{4 \sqrt{4 \sqrt{3}}} \delta_{n,0} + \mathsf{RM}$ assumed at full quantum level assumed at full quantum level $(\tilde{L}_n^\mu) = R L_n \lambda H_R J_n + \frac{\lambda^2 H_R^2}{4 \sqrt{3}} \delta_{n,0} + \mathsf{RM}$
 - \rightarrow definition of analogues of primary operators (Ward identities w.r.t. L_n)
 - → their (momentum-space) correlation func. are entirely fixed by those of the undeformed CFT

MG'21

e.g. 2 & 3 – point functions = CFT momentum-space correlators, but with ~ ilde h o h(ar p)~,~~ ilde ar h o ar h(ar p)

TT: non-local 2d QFT or Quantum Gravity?

- does the worldsheet/coupling to topological gravity description imply $T\overline{T} = 2d$ quantum gravity?
- absence of propagating graviton →

Dubovsky, Flauger, Gorbenko'12

• S-matrix: $\mathcal{S}_{\mu}(p_i^{lpha})=e^{i\mu\sum_{i,j}\epsilon_{lphaeta}p_i^{lpha}p_j^{eta}}\mathcal{S}_0(p_i^{lpha})$ ~ gravitational

minimum length $\Delta x_L \Delta x_R \geq \mu$

time delay \propto energy

- off-shell observables:
 - → correlation functions of (quasi-local) operators
 - → deformation ~ attaches gravitational Wilson line Cardy '19
- TT deformed CFTs : Virasoro x Virasoro symmetry (bulk)

 $T\overline{T} \approx \text{non-local CFT}$

- \rightarrow can this symmetry fix the correlation functions of special operators (primary analogues?)
- \rightarrow if yes, then $T\overline{T}$ = original CFT seen though the "prism of the dynamical coord."
 - 1 ↔ 1 correspondence all observables

Holography

Holographic dictionary for TT - deformed CFTs

- seed CFT: large c, large gap, dual to Einstein gravity + low-lying matter fields
- $T\overline{T}$: double trace \rightarrow mixed boundary conditions for dual bulk field (non-dynamical graviton)
 - 1. use Hubbard-Stratonovich trick/variational principle to relate $Z_{\mu}[J]=Z_{\mu=0}[J+vevs]$ only uses large N field theory
 - 2. interpret result in terms of bulk field data (using undeformed dictionary)
- asymptotic AdS₃ metric

$$ds^2 = \frac{\ell^2 d\rho^2}{4\rho^2} + \left(\frac{g_{\alpha\beta}^{(0)}}{\rho} + g_{\alpha\beta}^{(2)} + \dots\right) dx^{\alpha} dx^{\beta}$$

• result: $\gamma_{\alpha\beta}(\mu) \stackrel{\mathbf{1}}{=} \gamma_{\alpha\beta}(0) - \mu \hat{T}_{\alpha\beta}(0) + \mu^2 \hat{T}_{\alpha}{}^{\gamma} \hat{T}_{\gamma\beta}(0) \qquad \qquad \langle T_{\alpha\beta}(\mu) \rangle = \dots$

$$\stackrel{\textbf{2.}}{=} g_{\alpha\beta}^{(0)} - \frac{\mu}{4\pi G \ell} g_{\alpha\beta}^{(2)} + \frac{\mu^2}{(8\pi G \ell)^2} g_{\alpha\gamma}^{(2)} g^{(0)\gamma\delta} g_{\delta\beta}^{(2)} = \text{fixed}$$
 (Chern-Simons): Llabres '19

 $g_{\alpha\beta}^{(0)} \leftrightarrow \gamma_{\alpha\beta}(0) , \qquad g_{\alpha\beta}^{(2)} \leftrightarrow 8\pi G \ell \, \hat{T}_{\alpha\beta}(0)$

- for $\gamma_{\alpha\beta}(\mu)=\eta_{\alpha\beta}$ build phase space & compute the deformed energy spectrum
 - \rightarrow perfect match to field-theory formula (both signs of μ , matter field vevs on \rightarrow universal!)

Holographic dictionary for TT - deformed CFTs

seed CFT: large c, large gap, dual to Einstein gravity + low-lying matter fields

- MG. Monten '19
- (Chern-Simons): Llabres '19
- TT: double trace → mixed boundary conditions for dual bulk field (non-dynamical graviton)
 - **1.** use Hubbard-Stratonovich trick/variational principle to relate $Z_{\mu}[J] = Z_{\mu=0}[J + vevs]$ only uses large N field theory
 - 2. interpret result in terms of bulk field data (using undeformed dictionary)
- asymptotic AdS₃ metric

$$ds^2 = \frac{\ell^2 d\rho^2}{4\rho^2} + \left(\frac{g_{\alpha\beta}^{(0)}}{\rho} + g_{\alpha\beta}^{(2)} + \ldots\right) dx^\alpha dx^\beta$$

result:

$$\gamma_{\alpha\beta}(\mu) \stackrel{\mathbf{1}}{=} \gamma_{\alpha\beta}(0) - \mu \hat{T}_{\alpha\beta}(0) + \mu^2 \hat{T}_{\alpha}{}^{\gamma} \hat{T}_{\gamma\beta}(0)$$

$$\stackrel{\mathbf{2}}{=} g_{\alpha\beta}^{(0)} - \frac{\mu}{4\pi G \ell} g_{\alpha\beta}^{(2)} + \frac{\mu^2}{(8\pi G \ell)^2} g_{\alpha\gamma}^{(2)} g^{(0)\gamma\delta} g_{\delta\beta}^{(2)}$$

- $T_{\alpha\beta} \gamma_{\alpha\beta}T$ $g_{\alpha\beta}^{(0)} \leftrightarrow \gamma_{\alpha\beta}(0) , \qquad g_{\alpha\beta}^{(2)} \leftrightarrow 8\pi G \ell \, \hat{T}_{\alpha\beta}(0)$

 - both signs of \(\mu \)
 other (matter) vevs can be on
 - only depend on asymptotics
- for $\gamma_{\alpha\beta}(\mu) = \eta_{\alpha\beta}$ build phase space & compute the deformed energy spectrum

MG, Monten '19

 \rightarrow perfect match to field-theory formula (both signs of μ , matter field vevs on \rightarrow universal!)

Remarks

- 1st instance of mixed bnd. conditions on AdS₃ metric \rightarrow bulk & boundary have independent definitions
 - \rightarrow standard situation: given bulk + consistency \rightarrow infer properties of boundary theory
- change bnd. conditions on $AdS_3 \rightarrow radical$ modification of the boundary theory: $local \rightarrow non-local$
- possibility of precision holography, despite irrelevant deformation
 - → perfect match of bulk/boundary spectrum
 - → symmetries : ASG [≈] Virasoro x Virasoro (subtleties in matching)

- → match correlation functions?
- → entanglement entropy?
- field theory feedback → test & sharpen rules for ASG & holographic dictionary
- $J\overline{T} \rightarrow mixed bnd.$ conditions b/w metric & CS gauge field ~ Compere-Song-Strominger in metric sector

Pure gravity

- the FG expansion terminates $ds^2 = \frac{\ell^2 d\rho^2}{4\sigma^2} + \frac{g_{\alpha\beta}^{(0)} + \rho\,g_{\alpha\beta}^{(2)} + \rho^2\,g_{\alpha}^{(2)}{}^{\gamma}g_{\gamma\beta}^{(2)}}{\sigma}\,dx^{\alpha}dx^{\beta}$
- $\left| \rho_c = -\frac{\mu}{4\pi G\ell} \right| \quad \mu < 0$ • $\gamma_{\alpha\beta}(\mu)$ coincides with the induced metric at
- $\langle T_{\alpha\beta}(\mu) \rangle$ coincides with the Brown-York stress tensor at ρ_c
- $ho=
 ho_c$ in mixed phase space can be mapped to $r_c^2=
 ho_c^{-1}$ in standard BTZ (independently of the mass)
- in agreement with observation that TT deformed energies

of ''black hole in a box''
$$E(\mu) = \frac{R}{2|\mu|} \left(1 - \sqrt{1 - \frac{4|\mu|M}{R} + \frac{4\mu^2J^2}{R^2}}\right)$$
 McGough, Mezei, Verlinde '16

observation: onset of imaginary energies coincides with $r_{Schw}=r_c$ ($@M_{max}=rac{R}{4|u|}$

TT – deformed CFTs (dual to pure gravity) w/ $\mu < 0$ & truncated to real energy states

Quantum (pure) gravity in AdS₃ with a sharp radial cutoff

Applications of the finite cutoff idea

MMV proposal → stunningly simple holographic realization of QG with a finite cutoff (vs. Wilsonian RG)

- $T\overline{T}$ trace relation $Tr(T) = -\mu \det T$ maps to radial constraint Einstein equation (3d pure gravity)
- generalizations: higher-dim'l $T\overline{T} \rightarrow$ engineered to reproduce higher D pure gravity with Dirichlet at r_c

factorization ← large N, has a cutoff

M. Taylor '18

Hartman, Kruthoff, Shaghoulian, Tajdini '18

- de Sitter cosmology: $T\overline{T} + \Lambda_2 \rightarrow \text{engineered to reproduce flow from AdS}_3 \text{ to dS}_3$ dS microstates

Gorbenko, Silverstein, Torroba '18, Silverstein et al. '21

- "bulk reconstruction" (QI) Caputa, Kruthoff, Parrikar '20; Chandra, de Boer, Flory, Heller, Hortner
- precise specif., UV complenetness ~ definite/tractable QM system dual to gravity in a finite volume

Open questions

what is the precise relation between

mixed boundary conditions

general (matter)

- in-depth study of pure 3d gravity at finite cutoff & comparison to $\mu < 0$ TT Kraus, Monten, Myers '21 Ebert, Hijano, Kraus, Monten, Myers '22: Kraus, Monten, Roumpedakis '22
- observables that distinguish between the two possibilities?
 - → energy, stress tensor correlation functions match, but do not distinguish
 - → entanglement entropy? first-principles derivation & comparison to the bulk

(in single-trace \overline{TT} , the EE is divergent)

Holography II

The "single -trace" $T\overline{T}$ deformation

Irrelevant flows and non-AdS holography

- AdS_3/CFT_2 gauge group: S_p (permutations)

Giveon, Itzhaki, Kutasov '17

seed symmetric product orbifold CFT

"single-trace $T\overline{T}$ " deformation (finite μ)

$$\sum_{i=1}^{p} T_i \bar{T}_i \quad \Rightarrow \quad (T\bar{T}_{def.} \mathcal{M})^p / S_p$$

 \mathcal{M}^p/S_p

The GIK proposal

 $N_5\,$ NS5 and $N_1\,$ F1 strings in the NS5 decoupling limit

$$g_s \to 0 \; , \quad \alpha' \qquad \mathsf{fixed}$$

 N_1 large

UV: Little String Theory

non-gravitational, non-local theory with Hagedorn growth

IR: AdS_3 ~ descr. by $(\mathcal{M}_{6N_5})^{N_1}/S_{N_1}$ symmetric orbifold CFT

- worldsheet σ -model: exactly marginal deformation of the WZW model describing AdS_3 by $J^-\bar{J}^-$
 - \rightarrow dual to CFT source for a (2,2) single-trace operator $\sum_{i=1}^{N_1} T_i \bar{T}_i$

Giveon, Itzhaki, Kutasov '17

$$Z_{string}[\text{NS5-F1}] = Z\left[(T\bar{T} - \text{def. CFT}_{6N_5})^{N_1} / S_{N_1} \right]$$

finite deformation $\mu = \pi \sqrt{\alpha'}$

• similar construction for single-trace $J\overline{T} \to NS-NS$ warped AdS_3 (concrete micro. realization of Kerr/CFT)

Checks and predictions

$$Z_{string}[\text{NS5-F1}] = Z\left[(T\bar{T} - \text{def. CFT}_{6N_5})^{N_1} / S_{N_1} \right]$$

- spectrum of long string excitations exactly matches single-trace $Tar{T}$ spectrum $_{{\sf GIK}\,'17}$
- black hole entropy S(E) agrees with $T\bar{T}$ entropy (Cardy \rightarrow Hagedorn)

Checks and predictions

$$Z_{string}[\text{NS5- F1}] = Z\left[(T\bar{T} - \text{def. CFT}_{6N_5})^{N_1} / S_{N_1} \right]$$

- ullet spectrum of long string excitations exactly matches single-trace $Tar{T}$ spectrum GiK '17
- black hole entropy S(E) agrees with $T\bar{T}$ entropy (Cardy \rightarrow Hagedorn)
- CFT $_P$ \rightarrow deformation of a symm. prod. orb. by a twist 2 operator long strings Eberhardt '21

Checks and predictions

$$Z_{string}[NS5-F1] = Z\left[(T\bar{T} - \text{def. CFT}_{6N_5})^{N_1}/S_{N_1} \right]$$

- ullet spectrum of long string excitations exactly matches single-trace $Tar{T}$ spectrum GiK '17
- black hole entropy S(E) agrees with $T\bar{T}$ entropy (Cardy \rightarrow Hagedorn)
- CFT $_P \rightarrow$ deformation of a symm. prod. orb. by a twist 2 operator long strings Eberhardt '21
- correlation functions $\langle \mathcal{O}(p)\mathcal{O}(-p)\rangle$ → compute using worldsheet Asrat, Giveon, Itzhaki, Kutasov '17; Giribet '17
 - \sim do not match prediction from symm. prod. orb. ($J\overline{T}$)
- holographic entanglement entropy

- w.i.p. w/ S. Chakraborty, S. Georgescu
 - ullet logarithmically divergent with $\,L\,$
- is not defined for $L < L_{min} = \frac{\pi}{2} \sqrt{N_5 \alpha'}$
- lacktriangle 2 intervals: mutual information diverges when distance = L_{min}

Chakraborty, Giveon, Itzhaki,

Kutasov '17

Infinite symmetries

• Virasoro symmetries of $T\overline{T}$ -deformed CFTs survive the symmetric product orbifold

w.i.p. w/ S. Chakraborty, S. Georgescu

- asymptotic symmetry analysis of the asympt. linear dilaton background
 - ~ Virasoro x Virasoro w.i.p. w/ S. Georgescu
 - ightarrow does not follow from the above result on the symmetries of symmetric product orbifolds of $Tar{T}$
- possible explanation:
 - $\rightarrow \exists$ analogues of the single-trace TT deformation over the entire moduli space
 - \rightarrow irrelevant deformations by (2,2) operators \rightarrow UV-complete theories (how to define them appropriately?)
 - → all theories so defined would possess Virasoro x Virasoro symmetry

+ irrelevant deformation

≈ non-local 2d CFTs

Thank you!

Conclusions

- TT, JT are a set of well-defined and highly tractable irrelevant deformations of 2d QFTs
 - → UV complete non-local QFTs
 - → deformed spectrum, S-matrix, thermodynamics extensively studied
 - → relevant for QCD string, non-AdS holography in their single-trace version

- $T\overline{T}$, $J\overline{T}$ deformed CFTs correspond to non-local CFTs \leftarrow Virasoro symmetries (f-dep. coord. transf.)
 - → it seems possible to define an analogue of primary operators
 - → correlation functions fixed in terms of those of the undeformed CFT
- what are the most general non-local CFTs (at large N)?
 - → axiomatic definition? Bootstrap?
 - → physical applications?

The primary condition

main idea: use interplay of the two sets of symmetry generators

$$\tilde{L}_{n}^{\mu} = R L_{n} - \lambda H_{R} J_{n} + \frac{\lambda^{2} H_{R}^{2}}{4} \delta_{n,0} , \quad \tilde{J}_{n}^{\mu} = J_{n} - \frac{\lambda H_{R}}{2} \delta_{n,0}$$

$$\tilde{\bar{L}}_{n}^{\mu} = R_{v} \bar{L}_{n} - \lambda : H_{R} \bar{J}_{n} : + \frac{\lambda^{2} H_{R}^{2}}{4} \delta_{n,0} , \quad \tilde{\bar{J}}_{n}^{\mu} = \bar{J}_{n} - \frac{\lambda H_{R}}{2} \delta_{n,0}$$

assumed full quantum

- algebra LM (L_n,J_n) : Virasoro-Kac-Moody; algebra RM (\bar{L}_n,\bar{J}_n) : non-linear modification of Vir.-KM
- LM: operators should be primary w.r.t. $L_n, J_n \to \text{primary Ward identities w/} \quad h = \tilde{h} + \lambda \bar{p}\tilde{q} + \frac{\lambda^2 \bar{p}^2}{4}$
- introduce auxiliary ops. $\tilde{\mathcal{O}}(w,\bar{w})$ defined via $\partial_{\lambda}\tilde{\mathcal{O}}(w,\bar{w})=[\mathcal{X}_{J\bar{T}},\tilde{\mathcal{O}}(w,\bar{w})]$ \leftarrow identical correlation functions and Ward identities w.r.t. \tilde{L}_n etc., as the operators in the undeformed CFT
- RM: momentum space \bar{p} , primary condition w.r.t. \bar{L}_n ??? ightarrow guess!

$$\mathcal{O}(p,\bar{p}) = \int dw d\bar{w} \, e^{-pw - \bar{p}\bar{w}} e^{Aw + B\bar{w}} e^{\lambda \bar{p} \sum_{n=1}^{\infty} (e^{nw} \tilde{J}_{-n} + e^{n\bar{w}} \tilde{\tilde{J}}_{-n})} \tilde{\mathcal{O}}(w,\bar{w}) e^{-\lambda \bar{p} \sum_{n=1}^{\infty} (e^{-nw} \tilde{J}_{n} + e^{-n\bar{w}} \tilde{J}_{n})}$$

Correlation functions

$$\mathcal{O}(p,\bar{p}) = \int dw d\bar{w} \, e^{-pw - \bar{p}\bar{w}} e^{Aw + B\bar{w}} e^{\lambda \bar{p} \sum_{n=1}^{\infty} (e^{nw} \tilde{J}_{-n} + e^{n\bar{w}} \tilde{\bar{J}}_{-n})} \tilde{\mathcal{O}}(w,\bar{w}) e^{-\lambda \bar{p} \sum_{n=1}^{\infty} (e^{-nw} \tilde{J}_{n} + e^{-n\bar{w}} \tilde{\bar{J}}_{n})}$$

• Ward identities w.r.t $\bar{L}_n, \bar{J}_n \to \text{CFT Ward identities}$ in the decompactification limit $R \to \infty$

$$h = \tilde{h} + \lambda \bar{p}\tilde{q} + \frac{\lambda^2 \bar{p}^2}{4} \qquad \qquad \bar{h} = \tilde{\bar{h}} + \lambda \bar{p}\tilde{\bar{q}} + \frac{\lambda^2 \bar{p}^2}{4}$$

- arbitrary correlation functions ightarrow $\tilde{\mathcal{O}}$ correlators = undeformed CFT correlators in flowed vacuum
 - all correlation functions of $\mathcal{O}(p,ar{p})$ are entirely determined by original CFT correlators
- e.g., 2 & 3 point functions = CFT momentum-space correlators, but with $\tilde{h} o h(\bar{p}) \;,\;\; \tilde{\bar{h}} o \bar{h}(\bar{p})$

Comments

- precision holography, despite the deformation being irrelevant
- mixed metric boundary conditions keep full dynamics of matter fields → unchanged b.c.
- change bnd. conditions on AdS3 metric → radical modification of the dual theory: local → non-local
- asymptotic symmetries
 - ightarrow expect: $T\overline{T}$ deformation breaks CFT conformal symmetries to $U(1)_L imes U(1)_R$
 - ightarrow find: $\underbrace{Virasoro(u) \times Virasoro(v)}$ with same **c** as in the undeformed CFT
 - u,v ightarrow field-dependent coordinates $U=u-\mu\int T_{vv}dv$
 - \rightarrow suggest TT deformed CFTs possess Virasoro symmetry, despite being non-local

The JT holographic dictionary

introduce sources: $J^{\alpha} \leftrightarrow a_{\alpha} \quad T^{a}_{\alpha} \leftrightarrow e^{a}_{\alpha}$

$$J^{\alpha} \leftrightarrow a_{\alpha}$$

$$T^a{}_{\alpha} \leftrightarrow e^a{}_{\alpha}$$

MG. Bzowski '18

variational principle:

variational principle:
$$\delta S_{\mu} = \delta S_{CFT} - \delta S_{J\bar{T}} = \int d^2x \left[e T^a{}_{\alpha} \delta e^{\alpha}_a + e J^{\alpha} \delta \mathbf{a}_{\alpha} - \delta (\mu_a T^a{}_{\alpha} J^{\alpha} e) \right] = \int d^2x \tilde{e} (\tilde{T}^a{}_{\alpha} \delta \tilde{e}^{\alpha}_a + \tilde{J}^{\alpha} \delta \mathbf{a}_{\alpha})$$

- new sources $ilde{e}_a^lpha = e_a^lpha \mu_a \langle J^lpha
 angle \; , \qquad ilde{\mathrm{a}}_lpha = \mathrm{a}_lpha \mu_a \langle T_lpha^a
 angle \; ,$

deformation

new vevs

$$\tilde{T}^{a}{}_{\alpha} = T^{a}{}_{\alpha} + (e^{a}_{\alpha} + \mu_{\alpha}J^{a}) \mu_{b} T^{b}{}_{\beta}J^{\beta} , \qquad \tilde{J}^{\alpha} = J^{\alpha}$$

large N field theory

Holography:

ny:
$$(T^a{}_{lpha},e^a{}_{lpha})$$
 modelled by 3d Einstein gravity $(J^{lpha},\,{
m a}_{lpha})$ $U(1)$ Chern-Simons gauge field

non-dynamical

- AdS_3 gravity with mixed boundary conditions (CSS-like, but allowing full dynamics)
- perfect match between energies of black holes and the defomed CFT spectrum

asymptotic symmetry group:

$$SL(2,\mathbb{R})_L \times U(1)_L \times U(1)_R$$

$$Virasoro - Kac-Moody \times Virasoro_R$$

$$f(x^- - \lambda \int J)$$

non-local CFT!