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Work to appear with Gustavo-Joaquin Turiaci and Sameer Murthy as
well as references to a number of past works also involving Matthew

Heydeman, Wenli Zhao, Jan Boruch and Murat Kologlu.
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3 related questions for the special case of extremal and near-extremal black holes

Q1: What 1s the energy gap between extremal black hole states and the lightest near-extremal states?

P
Egap = energy scale at which there is a breakdown of black hole thermodynamics?

? 1
B Q30p

[Preskill et al "91, Maldacena and Susskind 96, Maldacena and Strominger "97]




3 related questions for the special case of extremal and near-extremal black holes

Area

Q2: Are extremal black holes states truly degenerate ( dext BH. ~ €46N )?
N——

Protected by what
symmetry?




3 related questions for the special case of extremal and near-extremal black holes

Q3: If there truly is a degeneracy, we should have dqy . € Z-
Can the gravitational path integral reproduce a microstate count, including the integerness of such a count?



What the gravitational path integral seemingly tell us tfor extremal black holes

The extremal entropy including quantum corrections

Area

dext BH. = # exp|So + clog So | where Sy =
4G N

[Cardoso, de Wit, Kappeli, Mohaupt "04, Sen 08, "09, Banerjee, Gupta, Sen "10, Banerjee, Gupta, Mandal, Sen "11, Sen "11, ...]



What the gravitational path integral seemingly tell us tfor extremal black holes

The extremal entropy including quantum corrections

Area
4G N

dext BH. = # exp|So + clog So | where Sy =

_ AAnunexplicably large (in the non-supersymmetric cases)

degeneracy

To answer Q1 and Q2 for both non-supersymmetric and supersymmetric extremal black holes,
I want to quickly revisit this computation.



The background

AdS; X §?




The types of modes that we have to include

_ AdS5;xS? 4 AdS5;xS?
g,ul/_g/u/ 2 +huV7 A/L_Alu g +a’,u7

* Modes with non-zero eigenvalues in the quadratic expansion action

non-zero __ SCnon-zero
1-loop - ~0



The types of modes that we have to include

_ AdS5;xS? 4 AdS5;xS?
g,ul/_g/u/ 2 +huV7 A/L_Alu g +a’,u7

* Modes with non-zero eigenvalues in the quadratic expansion action

non-zero __ SCnon-zero
1-loop - ~0

e Zero modes of the action

zero-modes __ zero-modes zero-modes
Z = / Dy DA

S

-~

Large diffeomorphisms &
large gauge transformations



An example of a boundary zero mode: Reissner-Nordstrom black holes

[Sen and collaborators]

bridge between {
two communities (L




The one-loop determinant

[Sen and collaborators]

Cnon-zero zero-modes
Zl—loop — S() /Dh =

uv

/ Regularized to

C = Cpon-zero T Czero = , 0, finite or 0o ?
Massless 4D field content '

B S_Wlof%zl + ng + 621, + 11ny)
- 0 Large-diffeos
Isometries




How to regulate the zero modes: going to finite temperature

___extremal T'corr.
g/ﬂ/ — g,uz/ + g;u/ +hMV
N——

Gives a non-zero weight to the
zero-modes that were present at T' = 0.

1

“Would-be” zero modes



How to regulate the zero modes: going to finite temperature

For Reissner-Nordstrom black holes at fixed charge and angular momentum:

The old

7\
7 N\

Zen(T, Q) = e50~ 180 (964+n:+62n +11nr) log So
Y

X /__)iff(sl) De  exp [Q%plfol/T du{e(u),u}] (14+0(1/50)).

SL(2,R)

A

-~

The new:

A strongly coupled theory of “would-be” zero-modes

A failure of semiclassics

[connections to Almheirt, Polchinski'15, Maldacena, Stanford, Yang 16, Almheir1, Kang 10,
Moitra, Trivedi and coll. "18, Larsen, Zeng 19, LVI and Turiact "20, LVI, Turiact and Murthy "22 and numerous other papers]



The partition function of non-supersymmetric near-extremal black holes

The old

7\
7 N\

Zeu(T, Q) = 50— 185 (964415 +62n,+11nr) log So
Y

v <Q3€P1T>3/2 €2W2Q3gP1T (14 0(1/Sy)).

\ . 7
-~

The new:
Large quantum correction at small temperature

[putting together computations of Sen and collaborators together with Stanford, Witten "17]



The partition function of non-supersymmetric near-extremal black holes

Zgn°(Q)
ZBH (T7 Q)

A\ 4
-~

— 0

At least non-perturbatively smaller
degeneracy

for extremal non-supersymmetric

black holes than naively predicted.



The density of states  Z() = / dEp(E)e PP

[LVI and Turiact 20, VI, Turiact and Murthy "22]

S# S()

E = Eext : 1 E




Summary: Q1 and Q2 answered (no supersymmetry)

[LVI and Turiact 20, VI, Turiact and Murthy "22]

p(E),

58#650 R ———

|
>
|

b = Eext 1 E
lp1Q3

Answer to Q1 and Q2: In Einstein-Maxwell theory, no gap and no degeneracy



How about black holes that preserve supersymmetry at extremality?



Supersymmetric black holes

For supersymmetric black holes in AdS or flatspace the same one-loop computation
and accounting for the ”would-be” zero-modes, leads to wildly different conclusions.



The density of states
Example: for black holes in 4D flatspace in A/ > 2 supergravity

p(E)

[LVI, Heydeman, Turiaci and Zhao "20]

A

S# So }-----—"-"""""“"""="=""="="==-"="°"7




Summary: Q1 & Q2 answered (with supersymmetry)

[LVI, Heydeman, Turiaci and Zhao "20]

p(E)

A

5’8%'5650 ————————————————————————

>

1
lp1Q3 L

Egap —

Answer to Q1 and Q2: Thus, in supergravity in flat space, there is a gap and a massive degeneracy,
consistent with expectation from microstate counting and with the stringy constructions of the gap.



Summary: non-SUSY vs SUSY at zero temperature

Action =0 whenT =0

Large super-diffeos
Super-isometries

Large diffeos
Isometries




A non-integer degeneracy

degeneracy

ngesogz

Can we however do better for extremal supersymmetric black holes
and reproduce the degeneracy in a microscopic model?



The basis of our comparison:

1/8-BPS black holes in N/ = 8 supergravity in
4D ftlatspace



The microscopic degeneracy in a D1/D5 construction

Charges of the black hole

~ N
C—2,1< n, 14 ) — gmicro<AZ
A:;;L—EQ

[5D black holes degeneracies obtained by Maldacena, Moore, Strominger "99,
related through a 4D /5D lift to 4D degeneracies in Gaiotto, Strominger, Yin ‘05, Shih, Strominger, Yin "05]



The microscopic degeneracy in a D1/D5 construction

Charges of the black hole

~ =
C—2,1( n, 14 ) — Slmicro(AZ
A:;;—KQ

[Maldacena, Moore, Strominger "99, Gaiotto, Strominger, Yin "05, Shih, Strominger, Yin "05]

Hardy-Ramanujan-Rademacher expansion for the microscopic degeneracy:

Kloosterman sum
over exponential

JE phases

o0 _ T A P e

dmicro(A> — Z 6_9/2 17/2( c ) KC(A)
c=1 ~ ~ -

Convergent sum with
successtvely smaller
exponential terms



Addressing Q3: Can we reproduce this formula exactly by using the gravitational path integral?

[a lot of progress has been made using localization in supergravity by Dabholkar, Gomes, Gupta, Jeon, Reys, Murthy.]

Close, but was not completed.



: Lo
Asymptotically
: AdSQ X SQ
. with
. PSU(1,12)
QZ,=Lo—Jo Ssuagra(A) = Ssugra + AQeqV Zgrav(00) = Zgrayv(0)

[Banerjee, Banerjee, Gupta, Mandal, Sen "09, Dabholkar, Gomes, Murthy "10, "11 and 14, de Wit, Reys, Murthy 18]



The path integral localizes to Qeq v =0
—~—

all physical fermions
in the theory



AdSQ X SQ AdSQ X SQ

The path integral localizes to e = 0.
p 8 q
\/

all physical fermions
in the theory

We will take the perspective that the gravitational path integral requires a sum over topologies.

[Dabholkar, Gomes, Murthy "10, "11 and "14]



AdSQ X 52 AdSQ X SQ

The path integral localizes to Qeq v =0
~—~—

all physical fermions
in the theory

The scalars in the vector supermultiplets have an entire localization locus which we parametrize by @
with 1= 0,1, ..., n,

scalar of graviphoton
[Dabholkar, Gomes, Murthy 10, Gupta, Murthy "12]



Evaluating the localized gravitational path integral

Related to
o _ scale of
The on-shell localizing action AdS, x S2
/qub O +4m T F (1) ) Zy 100 (")
exp(—ﬂqf +4m Im ) ] ¢
9 ) 1-loop
term prepotential

[Dabholkar, Gomes, Murthy "10, 11 and "14, Murthy and Reys "13]



Evaluating the localized gravitational path integral

Related to

: o _ scale of
) The on-shell localizing action AdS, x S2

v e\

1 1
— / H [d¢l] eXp ( — Tqr ¢ +47T ImF(¢ )J) Zl—loop(¢0)
I=0 “ e
term prepotential

@ ks 1
/H [do' ). eXp( [—Wq (b +47rImF(gb )]) 1 -loop. ¢ (¢°) ?top, ( 2
non-trivial Topological
c-dependence term

[Dabholkar, Gomes, Murthy "14] — \EKC(A)




In N = 8 supergravity the prepotential is quadraticin @', ..., ¢™

scalar of
graviphoton

d¢0 0 xAe® o
=S Kl) [ ()
0 N—

The missing

ingredient

[progress was made but the contribution of all supermultiplets had not been computed
by Gupta, Ito and Jeon 15, Murthy and Reys "15, Murthy and Jeon "18]



Once again, Zi-loop, c (PO) — Z})-lllcl)lc{)p, c (IOO ) Zsero-modes (PO>



Once again, Zl—loop, c(po) — Z})_Lll(l)lc{)p, c(pO)Zzero—modes (,00>

bIUIk ( ¢O) H 1 ( ¢O) [LVI, Murthy, Turiaci "22]
1-loop, ¢ 1 oop, ¢
M € N =2 multiplets ~
(Weyl, spin-3 /2, Beautlfully

vector, hyper, chiral) computed using 6&9
Atiyah-Bott

fixed-point formula.

Complicated expression
in ¢’ and c.



Once again, Zl—IOOP,C(pO) - leo-Lllgc{)p, c(PO)ZzerO—modes (PO>

Simple ¢p2dependence and
completely c-independent!

bulk 0 | | 0 0\5
1 loop, c (gb ) 1 loop, <¢ ) — <¢ )
M € N =2 multiplets

(Weyl, spin-3/2,
vector, hyper, chiral)

[LVI, Murthy, Turiaci *22]



Once again, Zl_loop,c(po) — zbulk

b 1k 0
1 ll(l)op, (¢ ) H
M € N =2 multiplets

(Weyl, spin-3/2,
vectot, hyper, chiral)

Zzero—modes, c (¢O) —

Large superdiffeos

1-loop, ¢

Superisometries

(,00 ) Zzero—modes (,00>

Simple ¢p2dependence and
completely c-independent!

1loop, (¢O) — (¢0)5

[LVI, Kologlu, Turiaci 21, LVI, Murthy, Turiaci "22]



Putting everything together we have,

boundary

zero-modes

T=0 S d¢’ 0y5 1 —madd_ _m
Zii'(8) =3 KD [ om0 5o
bulk one-loop

c=1

determinant

[LVI, Murthy, Turiaci *22]



Putting everything together we have,

boundary

zero-modes
_ - de? 1 _ 7800«
T=0 _ 0\5 dc 0
i) = K8) [ o @ o e o

bulk one-loop

determinant

> ~ A
=3 KA) (L)

C
B Account

of the “would-be” zero-modes
1s crucial

[LVI, Murthy, Turiaci "22]



Answer to Q3:
ZI%:I?O(A) — dmicrO(A>

An exact integer from the gravitational path integral



Concluding remarks and outlook:
AdS, holography revisited

In higher dimensional holography, the scale of quantum gravity corrections is controlled by lAQS / /p

In Ad82 holography, there are two scales 53/2 ~ Uaqs/lpy ~ lg2 /lp) and T/Egap



Concluding remarks and outlook:
AdS, holography revisited

In higher dimensional holography, the scale of quantum gravity corrections is controlled by £ads/fpi

In Ad82 holography, there are two scales 53/2 ~ Uaqs/lpy ~ lg2 /lp) and T/Egap

The statistical mechanics of near-extremal black holes

p(E)

4 Y, 4

p(E)

[
»

E E

The presence of the “would-be” zero _ A non-perturbatively dense spectrum even at

modes low—energies



Concluding remarks and outlook:
The outstanding problem near-extremality

To make this a conventional QM we’d like to make the spectrum discrete.



Concluding remarks and outlook:
The outstanding problem near-extremality

To make this a conventional QM we’d like to make the spectrum discrete.

p(E1) p(E2) #0

While the sum over topologies might tell us information about the spectral statistics of the
theory , without a full control over stringy and
non-perturbative corrections there is no way to guess this discrete, and most likely chaotic,
spectrum from the bulk perspective.



Concluding remarks and outlook:
All hope 1s not lost, the AdS, groundstate is different

The sum over topologies is absolutely necessary,
but is nevertheless under control.



d B

The topological expansion is under control for both the degeneracy and BPS
index. In both cases, there is no factorization puzzle since we find that both the
degeneracy and BPS index have no connected contributions.

755 Z5 = 0

[LVL, K , Turiaci “21]



Concluding remarks:

All hope is not lost, the AdS, groundstate is different

Thank you!
Questions?

v

Many more examples

Exact AdS, |
holography to come



Appendix



Lloop =\ qet i, \ dete H

heat kernel of multiplet(t) = indD19(t) = Trke, DloetH — Trceoker DloetH



Tre (etH) — Try (etH) center of AdS
det (1 — 0z /0x) &
where N and S
poles of

SZ

=1 ind(Dyo)(t) = >
{2]5(t)=x}

L
|

Tre (fyetH) — Try (vetH)
det (1 — 0% /0x)

c>1: ind (Dl()

’YGZ {z|Z(y,t)==}



We first arrange all fields and ghosts into a cohomology complex, of the form (P, ¥, Qeq®, Qeq¥)

Near the fixed points, the space looks locally like R?* so we only need to look at irreps of & and W,
including all fields and ghosts, under SO(4) in order to evaluate the indices using the appropriate characters.



2(¢+q ") —4
(1-¢q)?(1—q¢ 1)’
2(¢+q7 ') —4
(1—q)?(1—¢g 1)’
20+ 47%) ~6la+ ) + 8
1—q?(—g 12
Spin- g © indypim 3/2(D10)(t) = 2(q (Jlrg q));(r14£qq:q)2 ) 4,

Chiral : indchiral(Dlo)(t) =0.

Vector : indyect.(D10)(t) =

Hyper : indhyper(D10)(t) = —

Weyl : indVVeyl<Z)10> (t) —




Putting the AN = 2 supergravity multiplets together into an A" = 8 supergravity Weyl
multiplet, we have:

Independent

of t!

3 ——
N =8 Weyl ~ Weyl + 6(spin—§ + vect.) + 15 vect. + 10 hyper : de 2(D1o)(t) =—=10.

Simple ¢’dependence and
completely c-independent!

bulk
111éop, (¢O) || 1loop, (¢O) — (¢0)5
M € N =2 multiplets

(Weyl, spin-3/2,
vector, hyper, chiral)



