# Towards the Positive Geometry of the massive S-matrix 

Alok Laddha

Chennai Mathematical Institute
Strings 2022, Vienna

## Acknowledgements

- Based on work with Mrunmay Jagadale at Caltech.
- Our work builds on a large body of work in the amplituhedron program as well as seminal results in past 5 years by N . Arkani-Hamed, S. He, G. Salvatori, G. Yan, D. Damgaard, L. Ferro, T. Lukowski, P. Banerjee, P. Raman, ..., H. Thomas, T. Lam, V. Pilaud, F. Chapoton, A. Padrol, G. Plamondon, G. Maneville, ....


## Motivation

- S-matrix comes in many avatars.


## Off-shell

CHY<br>formula

## Representations of the S-matrix

| Representation | Postulates | Consequence |
| :---: | :---: | :---: |
| Off-shell | (Unitarity, Locality) | Intricate analytic structure |
| On-shell Recursion | Unitarity, pole structure | locality emergent |
| CHY | Scattering equations | Unitarity as well as Locality emergent |

## What is an S-matrix of a Quantum field theory?

- If different representations sacrifice different postulates, then perhaps all of them are derived from a set of deeper postulates?


## Representations of the S-matrix

| Representation | Postulates | Consequence |
| :---: | :---: | :---: |
| Off-shell | (Unitarity, Locality) | Intricate analytic structure |
| On-shell Recursion | Unitarity, pole structure | locality emergent |
| CHY | Scattering equations | Unitarity as well as Locality emergent |

## What is an S-matrix of a Quantum field theory?

- If different representations sacrifice different postulates, then perhaps all of them are derived from a set of deeper postulates?
- "No one can be told what the (S-)matrix is. You just have to see it for yourself" - Morpheus.
- Q : What are the hard postulates of the S-matrix program?
- $\mathbf{Q}^{\prime}$ : When does a "function" in the space of external momenta classify as an scattering amplitude?
- One of the primary goals/dreams of the positive geometries program is to discover the deeper postulates and seek a "fundamental" representation of the S-matrix in which the "older" postulates are manifest.
- One of the primary goals/dreams of the positive geometries program is to discover the deeper postulates and seek a "fundamental" representation of the S-matrix in which the "older" postulates are manifest.


## Key lesson

## Star of the show

- What is a + geometry: It has boundaries of all co-dimensions. (A segment with two ends points qualifies as a + geometry, but a circle does not.)
- Locating Positive geometries in a region of Mandelstam invariants leads to S-matrix integrand of a class of local and unitary scalar QFTs.


## Dissections of Polygons

- Each tree-level planar Feynman graph with cubic vertices is dual to triangulation of an $n$-gon.
- Each one loop-level planar Feynman graph with with cubic vertices is dual to a"pseudotriangulation" of an $2 n$-gon with a hole in the center.



## Associahedron and friends

- Set of all triangulations of an $n$-gon can be glued together in a combinatorial geometric object known as Stasheff Polytope or the Associahedron $A_{n-3}$ of dimension $n-3$.
J. Stasheff, M. Tamari
- Set of all pseudo-triangulations of a $2 n$-gon can be glued together in a polytope $\hat{D}_{n}$ of dimension $n$.
N. Arkani-Hamed, H. Frost, G. Plamondon, G. Salvatori, H. Thomas

$A_{0}, A_{1}$ and $A_{2}$ associahedra

$\hat{D}_{2}$ hexagon


## Mythical polytopes

- $A_{n-3}$ and $\hat{D}_{n}$ thus neatly package all the planar, $\hbar^{0 / 1} \phi^{3}$ diagrams in a coherent relationship thanks to mutation.


## Some magical properties of the

 $A_{n-3}, \hat{D}_{n}$.- Every vertex of $A_{n-3}$ is adjacent to $(n-3)$ facets : (Simple Polytope)
- Any co-dimension $k$ boundary of $A_{n-3}$ factorizes as $A_{m} \times A_{n-k+m}$. (Hence any facet of $A_{n-3}$ can only be a square or a pentagon but never any other $n$-gon.)



## From combinatorial polytopes to geometric shapes

- But this is combinatorics. How do we go from such bare combinatorial structures to S-matrix?
- where is the dynamics?
- There is in fact "a discrete dynamics" built in the definition of these polytopes: It is the mutation rule.
- What is the

configuration space on which this dynamics is implimented?


## From Combinatorics to convex polytopes

- $A_{n-3}$ : A dynamical system with configuration space, chords of an $n$-gon : $\left\{x_{i j}\right\} \in \mathcal{R}^{\frac{n(n-3)}{2}}$
- $\hat{D}_{n}$ : A dynamical system with configuration space, chords of the punctured $2 n$-gon : $\left\{x_{i j}, x_{i \bar{i}}, x_{i}, x_{\bar{i}}\right\} \in \mathbf{R}^{n^{2}}$.


## From Combinatorics to convex polytopes

- $A_{n-3}$ : A dynamical system with configuration space, chords of an $n$-gon : $\left\{x_{i j}\right\} \in \mathcal{R}^{\frac{n(n-3)}{2}}$
- $\hat{D}_{n}$ : A dynamical system with configuration space, chords of the punctured $2 n$-gon : $\left\{x_{i j}, x_{i \bar{i}}, x_{i}, x_{\bar{i}}\right\} \in \mathbf{R}^{n^{2}}$.


Config. space of $\hat{D}_{3}$

## Where are we going?

- At this stage connection with scattering amplitudes is rather tenuous (\{ vertices of $\left.A_{n-3}\right\} \stackrel{1-1}{=}$ cubic planar graphs.)
- But as an analogy, we can think of
$X_{i j}=\left(p_{i}+\cdots+p_{j-1}\right)^{2}$ as a counterpart of $x_{i j}$.

- And e.g. $Y_{1}=\left(p_{1}+l\right)^{2}$ as a counterpart of $x_{1}$ where I is the loop momentum.


## Mutation equations

- Fix any triangulation $T_{0}$ of the planar polygon or a pseudo-triangulation $P T_{0}$ of the punctured 2 n -gon.
- Mutation rules $\Longrightarrow$ following set of equations.

$$
y_{I J}=-c_{I J} \forall \text { chords } \notin T_{0} / P T_{0}
$$

$(I, J)$ collectively denotes chords of a triangulation or pseudo-triangulation.

- In the case of planar polygon without a puncture,

$$
y_{i j}=x_{i, j+1}+x_{i+1, j}-x_{i j}-x_{i+1, j+1}
$$

## ABHY realisation

- For the associahedron, these equations were first derived by Arkani-Hamed, Bai, He, Yan and are known as ABHY equations.
- They were later integrated in quiver representation theory and representation theory of a class of algebras called gentle algebras by (V. Bazier-Matte, N. Chapelier-Laget, G. Douville, K. Mousavand, H. Thomas, E. Yildrim ), (A. Padrol, V. Palu, V. Pilaud, G. Plamondon)
- For $\hat{D}_{n}$ : (Arkani-Hamed, He, Salvatori, Thomas) (AHST), (Mrunmay Jagadale, AL)


## ABHY associahedron

## A striking result

- For any choice $T_{0} / P T_{0}$ and of positive constants $c_{I J}$, the solutions to $\mathrm{ABHY} / \mathrm{AHST}$ equations generate convex realisations of $A_{n-3}^{T_{0}}, \hat{D}_{n}^{P T_{0}}$ is positive hyper-quadrant of the configuration space : $x_{I J} \geq 0$.
- As an example, let $T_{0}=\{(2,4), \ldots,(2, n)\}$


## ABHY/AHST polytopes

- Starting with $T_{0}, A_{n-3}^{\text {abhy }}$ lies entirely inside the positive subspace spanned by $\left\{x_{13}, \ldots, x_{1, n-2}\right\}$.
- Precisely $n-3$ pairs of co-dimension one facets are parallel to each other.
- Any vertex of
$A_{n-3}=\left\{x_{m n}=0\right\}$ for a set of chords which constitute a triangulation of the $n$-gon.
- The AHST convex realisation of $\hat{D}_{2}$ is in the positive region of $\left\{x_{1}, x_{2}\right\}$ looks like.



## Positive geometries $\stackrel{1-1}{=}$ Canonical forms

- $A_{n-3}^{\text {abhy }}, \hat{D}_{n}^{\text {ahst }}$ are + geometries in the positive domains of the embedding space.
-     + geometries have a striking property: They induce and are in fact defined by a unique form whose rank is same as dimension of the geometry. N. Arkan-Hamed, Y.Bai, T.Lam

$$
\begin{aligned}
& \Omega_{1}=\left(\frac{1}{x_{13}}+\frac{1}{x_{24}}\right) d x_{13} \\
& \Omega_{2}=\left(\frac{1}{x_{13} x_{14}}+\ldots+\frac{1}{x_{24} x_{14}}\right) d x_{13} \wedge d x_{14}
\end{aligned}
$$

- The form is sum over all possible triangulations (pseudo-triangulations) / Feynman graphs
- Choice of $T_{0} / P T_{0}$ only changes the choice of basis $\left(d x_{13} \wedge d x_{14}\right.$ in the above case)


## From dissections to Positive geometries

- We started with a topological observation that tree-level or one-loop planar Feynman diagrams(tree-level or one loop) are dual to dissections of a planar $n$-gon.
- The specific set of dissections define a dynamical system (in fact a specific class of algebras) whose corresponding equations generate a convex realisation of a class of polytopes= canonical forms in the cartersian embedding space.
- These canonical forms define planar S-matrix of (a class of) bi-adjoint scalar QFTs.
- Bi-adjoint scalars have two color indices and once we fix both the color orderings in $\frac{S_{n}}{Z_{n}} \times \frac{S_{n}}{Z_{n}}$ of external states, only planar graphs contribute.


## From Positive geometries in $\mathrm{R}^{N}$ to the S-matrix of bi-adjoint scalars

- $(i, j)$ chord cuts the propagator on which $\left(p_{i}+\ldots+p_{j-1}\right)$ are incident.
- Let $\vec{x}$ denote the vector in the embedding space (either $\mathbf{R}^{\frac{n(n-3)}{2}}$ or $\mathbf{R}^{\boldsymbol{n}^{2}}$.)
- Let $\vec{X}=\left(X_{13}, X_{14}, \ldots\right)$ denote the vector in the kinematic space of Mandelstam invariants.
- We assume that space-time dimension is larger then number of external particles so that $X_{i j}$ are independent. (D. Damgaard, L. Ferro, T. Lukowski, R. Moerman)
- We assume that all the external particles are massless. (Not a restrictive assumption)

It is natural to consider a class of mappings,

$$
x_{i j}=(\mathbf{g} \cdot \vec{X})_{i j}-m_{i j}^{2}
$$

where $\mathbf{g} \in G L\left(N=\frac{n(n-3)}{2} / n^{2}\right)$ and $\left\{m_{i j}^{2}\right\} \geq 0$ constants.

- We only analyse diagonal g. (Intriguing possibilities of connection between more general maps and non-planar amplitudes ?)


## $\Omega_{A_{n-3}}$ to S-matrix

| $\mathbf{g}$ | $m_{i j}$ | tree-level S-matrix |
| :---: | :---: | :---: |
| Id | 0 | massless bi-adjoint $\phi^{3}:$ ABHY |
| $\mathbf{g}_{1}$ | $m_{i j}=m$ | (perturbative) S-matrix in $\lambda_{1} \phi_{m=0}^{3}+\lambda_{2} \phi_{m=0}^{2} \phi_{m}+\lambda_{2} \phi_{m}^{3}$ with all massive propagators. |

## $\mathrm{g}_{1}$

$$
x_{i j}=\alpha_{i j} X_{i j}-m_{i j}^{2}
$$

For the second row $\left(\mathbf{g}_{1},\left\{m_{i j}\right\}_{1}\right)$

$$
\begin{aligned}
\alpha_{i j} & =1 \mathrm{if}(j-i)=2 \bmod \mathrm{n} \\
& =\frac{\lambda_{2} \lambda_{3}}{\lambda_{1}^{2}} \text { otherwise }
\end{aligned}
$$

## Tree-level Perturbative S-matrix

- Consider the interaction $\lambda_{1} \phi_{m=0}^{3}+\lambda_{2} \phi_{m=0}^{2} \phi_{m}$ of two bi-adjoint scalars with unequal masses. Mrunmay Jagadale, AL
- Push-forward of ABHY canonical form by a specific class of linear maps $f_{l}^{(0)}\left(\lambda_{1}, \lambda_{2}\right)$ generates the perturbative S-matrix upto order $\lambda_{2}^{2}$. Mrunmay Jagadale, AL.

$$
\begin{aligned}
& \sum_{l=1}^{\left[\frac{n}{2}\right]} \frac{1}{I} f_{l}^{\star} \Omega_{n-3}^{\text {abhy }}= \\
& \mathcal{M}_{n}^{\text {planar }}\left(p_{1}, \ldots, p_{n}\right) d X_{13} \wedge \ldots \wedge d X_{1, n-2}+O\left(\lambda_{2}^{3}\right)
\end{aligned}
$$

## One loop integrands

- These structures are universal : For $\hat{D}_{n}$ polytope with a canonical form $\Omega_{n^{2}}$ in $\mathbf{R}^{n^{2}}$, identity map between $x_{i j}, x_{i}, x_{i \bar{i}}$ and $\left\{X_{i j}, X_{i}, X_{i \bar{i}}\right\}$ pushforwards the canonical form to the (two copies of) the one loop integrand of massless bi-adjoint $\phi^{3}$. AHST, (Arkani-Hamed, H. Frost, G. Plamondon, G. Salvatori, H. Thomas)
- There exists a class of linear maps $f_{i, j}^{1}$ which push-forward $\Omega_{n^{2}}$ to produce one loop integrand of massless-massive interacting theory upto order $\lambda_{2}^{2}$.Mrunmay Jagadale, AL
- It may appear that we are stuck with cubic interactions. However as set of poles of any higher point scalar interaction is a subset of the set of poles with cubic vertices, the associahedron and $\hat{D}_{n}$ polytopes also generate S -matrix in $\phi^{p}$ theory via an operation called projection. Maneville, Pilaud, 2017
- Basic idea : ABHY/AHST mutation equations "projected" onto any subspace of $x_{i j} \geq 0$ quadrant is always a convex realisation of a combinatorial polytope known as an accordiohedron/pseudo-accordiohedron. Pinaki Banerjee, Prashanth Raman, Nikhil Kalyanapuram, Mrunmay Jagadale, AL
- Green/red projections are 8
 point tree-level amplitudes $\mathcal{M}_{8}((1, \ldots, 8) \mid \sigma(1, \ldots, n))$ in bi-adjoint $\phi^{4}$ for two distinct non-trivial permutations $\sigma$.
- The complete planar $\phi^{p}$ S-matrix is a sum over all such projections.


## ABHY/AHST as the universal polytopes

- The dynamical system associated to dissections gave us the convex realisations and the canonical forms.
- Rest was either a diffeomorphism or a proiection

- Bnd. of the Associahedron $=$ product of associahedra $\Longrightarrow$ unitarity and simple poles of $\Omega_{n-3} \Longrightarrow$ locality of the S-matrix.
- Nice Ramifications for CHY formula. (F. Cachazo, N. Early, Mrunmay Jagadale, AL)


## Jack Kerouac on the Amplituhedron Program

"One day we will find the right words and they will be simple"

Jack Kerouac

