From $\mathcal{N}=2$ Supersymmetry to Adjoint QCD

Emily Nardoni

[2207.xxxxx]

with Eric D'Hoker and Thomas Dumitrescu

[2012.11843], [2208.xxxxx]

with the above and Efrat Gerchkovitz

Goal: probing strong coupling dynamics of 4d gauge theories

 Today: new perspectives on the strong coupling dynamics of non-supersymmetric gauge theories.

"4d adjoint QCD"

SU(N) gauge theory with N_f = 2 adjoint Weyl fermions $\lambda_{\alpha}^{i=1,2}$

• Approach: break $\mathcal{N}=2$ supersymmetry.

determine the IR phase

I) Probing the IR phase of adjoint QCD with $\mathcal{N}=2$ supersymmetry

Standard lore for $N_f = 2$ adjoint QCD

Chiral symmetry breaking: $\langle \operatorname{tr} \lambda^i \lambda^j \rangle \neq 0$, leading to

$$SU(N_f=2)_R \stackrel{\langle \lambda \lambda \rangle}{\to} U(1)^*$$
 $U(1)_r \stackrel{\mathrm{ABJ}}{\to} \mathbb{Z}_{4N} \stackrel{\langle \lambda \lambda \rangle}{\to} \mathbb{Z}_4$ \to N copies of a $\mathbb{CP}^1 = \frac{SU(2)}{U(1)}$ $\mathbb{Z}_N \cong \mathbb{Z}_{4N}/\mathbb{Z}_4$

Confinement: unbroken $\mathbb{Z}_N^{(1)}$ 1-form center symmetry.

Standard lore for $N_f = 2$ adjoint QCD

Chiral symmetry breaking: $\langle \operatorname{tr} \lambda^i \lambda^j \rangle \neq 0$, leading to

$$SU(N_f=2)_R \stackrel{\langle\lambda\lambda\rangle}{\to} U(1)^*$$
 $U(1)_r \stackrel{\mathrm{ABJ}}{\to} \mathbb{Z}_{4N} \stackrel{\langle\lambda\lambda\rangle}{\to} \mathbb{Z}_4$ \to N copies of a $\mathbb{CP}^1 = \frac{SU(2)}{U(1)}$ $\mathbb{Z}_N \simeq \mathbb{Z}_{4N}/\mathbb{Z}_4$

Confinement: unbroken $\mathbb{Z}_N^{(1)}$ 1-form center symmetry.

- * The U(1) Cartan must be unbroken by the Vafa-Witten theorem. [Vafa, Witten '84]
- Adding a small fermion mass in the \mathbb{CP}^1 vacua \to the N confining vacua of $\mathcal{N}=1$ SYM
- Nice parallels to the $\mathcal{N}=2$ origin of confinement in the $\mathcal{N}=1$ vacua. [Seiberg, Witten '94][Douglas, Shenker '95]

Strategy: breaking $\mathcal{N}=2$ supersymmetry

[Cordova, Dumitrescu '18][D'Hoker, Dumitrescu, Gerchkovitz, EN '22]

 $\mathcal{N}=2$ super Yang Mills with G gauge group

G gauge theory with 2 adjoint Weyl $\lambda_{\alpha}^{i=1,2}$

T preserves all symmetries (except SUSY) and anomalies.

Can we use the supersymmetric embedding to explore the IR dynamics of *non*-supersymmetric SU(N) adjoint QCD?

Tracking SUSY-breaking to the IR

• $T \sim \text{tr} \bar{\phi} \phi$ lies in the **protected** stress tensor multiplet, and is tracked on the Coulomb branch to the Kähler potential K,

[Luty, Rattazzi '99][Abel, Buican, Komargodski '11][Cordova, Dumitrescu '18]

$$\mathcal{T} \longrightarrow K = \frac{1}{2\pi} \sum_{m=1}^{N-1} \operatorname{Im}(\bar{a}_m \, a_{Dm})$$
SW periods

- For $M \ll \Lambda$ we can reliably analyze $V_{\rm SUSY} = M^2 \mathcal{T}$.
 - * This requires the **entire** $\mathcal{N}=2$ low-energy effective action $(K, \tau_{mn},...)$ determined by the SU(N) Seiberg-Witten solution.

[Seiberg, Witten '94] [Argyres, Faraggi '94] [Klemm, Lerche, Theisen, Yankielowicz '94]

A dual description as a function of M

• For $M\gg \Lambda$ we flow to adjoint QCD.

Key result: we construct a dual motivated/deduced from softly-broken Seiberg-Witten theory, which interpolates from small to large M.

The dual leads to a compelling qualitative picture of the dynamics as a function of M, and predicts the \mathbb{CP}^1 phase of adjoint QCD.

II) SUSY-breaking at small *M* and the role of the Kähler potential

The Kähler potential for SU(2)

• $K(u) \sim \text{Im}(\bar{a}a_D)$ is a known function of $u \sim \text{tr}\phi^2$ (see next slide). It is convex with a single minimum at the origin, where K(0) < 0.

see [Luty, Rattazzi '99] [Cordova, Dumitrescu '18]

A new expansion for the SU(N) periods [D'Hoker, Dumitrescu, EN '22]

• The periods are functions of N-1 complex u_n . Explicit, integrated solutions are known for N=2,3.

[Seiberg, Witten '94] [Klemm, Lerche, Theisen '95] [Ito, Yang '95]...

$$a_m, a_{Dm} \sim \oint_{A_m, B_m} \lambda \sim \begin{cases} {}_2F_1(\mathbf{u}) & SU(2) \\ F_4(\mathbf{u}, \mathbf{v}) & SU(3) \end{cases}$$

• Result: we obtain a simple, **all-orders** Taylor series expansion for a_m, a_{Dm} around $u_n \sim 0$, given in terms of

$$\int_0^\xi \lambda = \sum_{\{\ell_n\}=0}^\infty V_{\{\ell_n\}}(\xi) \; u_1^{\ell_1} \cdots u_{N-1}^{\ell_{N-1}} \qquad \xi = \text{2N root of unity}$$
 simple functions

Features of the SU(N) Kähler potential

• We have analytic and numerical evidence that the *SU*(2) picture remains qualitatively correct.

The physics of the small M vacuum

- $V_{\rm SUSY}$ only gives mass to the scalars.
- This vacuum is in the **Coulomb phase**, with unbroken $SU(2)_R \times \mathbb{Z}_{4N}$ chiral symmetry.
- This analysis is reliable at small M, but would be a surprising prediction for the phase of adjoint QCD!
- If adjoint QCD confines and breaks chiral symmetry, the true vacuum requires at least one **phase transition** from this small M vacuum.

Interlude: Dialing up M and the physics of the multi-monopole points

The BPS spectrum in the SU(N) strong coupling chamber

• There are N towers of N-1 mutually local dyons rotated by $\mathbb{Z}_N \subset \mathbb{Z}_{4N}$

[Lerche '00] [Alim, Cecotti, Cordova, Espahbodi, Rastogi, Vafa '11] [Chuang, Diaconescu, Manschot, Moore, Soibelman '13] ...

The multi-monopole points as a candidate dual

 One state from each tower becomes massless at each of the *N* multi-monopole points.

- Strategy: use the EFT of the light monopoles as a dual description that captures the physics of the massive BPS states.
 - * Focus on 1 MM point—the rest are related by the \mathbb{Z}_N .

Exploring the dual as a function of M

• The dual description at the multi-monopole points is a $U(1)_D^{N-1}$ abelian Higgs model, with:

```
vector multiplets (a_{Dm}, \dots) \leftrightarrow a_{Dm} = 0 at the MM point hypermultiplets (h_m^{i=1,2}, \dots) \leftrightarrow monopoles
```

• Add $V_{\rm SUSY} = M^2 \mathcal{T}$ to the effective action, where \mathcal{T} matches onto K upon integrating out the monopoles.

Key features of the scalar potential $V = V_{\rm SUSY} + V_{\rm SUSY}$

$$V_{\text{SUSY}} \sim \sum_{m} |a_{Dm}|^{2} (\bar{h}^{i} h_{i})_{m} + \sum_{m,n} (t^{-1})_{mn} \left[(\bar{h}^{i} h_{j})_{m} (\bar{h}^{j} h_{i})_{n} - \frac{1}{2} (\bar{h}^{i} h_{i})_{m} (\bar{h}^{j} h_{j})_{n} \right]$$

$$V_{\text{SUSY}} \sim M^{2} \left(N \sum_{m} \text{Im}(a_{Dm}) \sin \frac{\pi m}{N} + \sum_{m,n} t_{mn} a_{Dm} \bar{a}_{Dn} - \sum_{m} (\bar{h}^{i} h_{i})_{m} + \dots \right)$$

The matrix of effective gauge couplings ${
m Im} au_D = t$

$$V_{\text{SUSY}} \sim \sum_{m} |a_{Dm}|^{2} (\bar{h}^{i} h_{i})_{m} + \sum_{m,n} (t^{-1})_{mn} \left[(\bar{h}^{i} h_{j})_{m} (\bar{h}^{j} h_{i})_{n} - \frac{1}{2} (\bar{h}^{i} h_{i})_{m} (\bar{h}^{j} h_{j})_{n} \right]$$

$$V_{\text{SUSY}} \sim M^{2} \left(N \sum_{m} \text{Im}(a_{Dm}) \sin \frac{\pi m}{N} + \sum_{m,n} t_{mn} a_{Dm} \bar{a}_{Dn} - \sum_{m} (\bar{h}^{i} h_{i})_{m} + \dots \right)$$

$$t_{mn}(\mu) \sim -\delta_{mn} \ln \frac{\mu}{\Lambda} + \ln \Lambda_{mn} + \dots$$

$$\Lambda_{mm} = 16N \sin^3 \frac{\pi m}{N} , \quad \Lambda_{m,n\neq m} = \frac{\sin^2 \frac{\pi (m+n)}{2N}}{\sin^2 \frac{\pi (m-n)}{2N}}$$
 couple the $U(1)_D$'s

The detailed structure of the threshold corrections Λ_{mn} leads to interesting predictions for the dynamics.

* We computed these by analyzing the Seiberg-Witten periods near the MM point. [D'Hoker, Dumitrescu, Gerchkovitz, EN '20]

analysis initiated by [Douglas, Shenker '95], [D'Hoker, Phong '97] also see [Edelstein, Mas '99], [Edelstein, Gomez-Reino, Marino '00], [Bonelli, Grassi, Tanzini '17]

Key features of the scalar potential

$$V_{\text{SUSY}} \sim \sum_{m} |a_{Dm}|^{2} (\bar{h}^{i} h_{i})_{m} + \sum_{m,n} (t^{-1})_{mn} \left[(\bar{h}^{i} h_{j})_{m} (\bar{h}^{j} h_{i})_{n} - \frac{1}{2} (\bar{h}^{i} h_{i})_{m} (\bar{h}^{j} h_{j})_{n} \right]$$

$$V_{\text{SUSY}} \sim M^{2} \left(N \sum_{m} \text{Im}(a_{Dm}) \sin \frac{\pi m}{N} + \sum_{m,n} t_{mn} a_{Dm} \bar{a}_{Dn} - \sum_{m} (\bar{h}^{i} h_{i})_{m} + \dots \right)$$

* Tadpole from matching onto K

- * Positive a_{Dm} masses
- * Tachyonic monopole masses $\Rightarrow h$'s want to condense
- *D-terms \leftrightarrow ferromagnetic spin chain: $s_m^a = \bar{h}_m \sigma^a h_m$,

$$\sim \sum_{m < n} (t^{-1})_{mn} (\vec{s}_m \cdot \vec{s}_n) + \dots$$
 where $(t^{-1})_{m,n \neq m} < 0 \implies \vec{s}_m \sim \vec{s}_n$

III) A cascade of phase transitions and the \mathbb{CP}^1 at large M

Result: a cascade of 1st order phase transitions

[D'Hoker, Dumitrescu, Gerchkovitz, EN '22]

At small M: all $\langle h_m \rangle = 0$. Coulomb phase consistent with previous small-M analysis.

Increasing M: $\langle h_m \rangle$, $\langle h_{N-m} \rangle$ activate pair-wise (C-preserving) in a series of 1st order phase transitions.

- * The transitions approximately track: $M_{*m} \lesssim M_m^{\rm BPS} \sim \Lambda \sin \frac{\pi m}{N}$
- * A **robust** feature of every higher phase: $SU(2)_R \to U(1)^*$ ($h_m^i \sim h_n^i$ due to *D*-terms) *consistent with VW

At large-M: all monopoles condense.

The large-M phase

- $\langle h_m \rangle \neq 0 \leftrightarrow U(1)_{Dm}$ higgsed. All monopoles condense $\Rightarrow \mathbb{Z}_N^{(1)}$ unbroken \rightarrow confinement
- All fluctuations get a mass except the 2 NGB from the $SU(2)_R$ chiral symmetry breaking (due to $t_{m,n\neq m}$) \rightarrow a \mathbb{CP}^1
- 1 copy at each MM point $\rightarrow N \ \mathbb{CP}^1$'s \mathbb{Z}_N

Summary: the predicted phase of adjoint QCD from $\mathcal{N}=2$

property of the large-M phase	comes from?
confinement	tachyonic h -mass in ${\mathcal T}$
$SU(N_f=2) \to U(1)^{*}$	ferromagnetic structure of <i>t</i> + SUSY D-terms
all fluctuations massive except 2 massless NGB	off-diagonal structure of t
$\mathbb{Z}_{4N} o \mathbb{Z}_4$	symmetry relating MM points
<i>CT</i> unbroken [★] I	tadpole in K + symmetry of MM points
C unbroken	dynamics
$ extstyle{N} ext{-scaling of }\langle\lambda\lambda angle\sim N$	structure of t + SUSY relating $\langle \lambda \lambda \rangle \sim \langle hh \rangle$
N -scaling of vacuum energy $V\sim -N^2$	off-diagonal structure of t

match the \mathbb{CP}^1 phase

^{*} consistent with VW for adjoint QCD

true in *all* phases in the cascade (except first)

Summary: the predicted phase of adjoint QCD from $\mathcal{N}=2$

property of the large-M phase	comes from?
confinement	tachyonic h -mass in ${\mathcal T}$
$SU(N_f=2) \to U(1)^{*}$	ferromagnetic structure of <i>t</i> + SUSY D-terms
all fluctuations massive except 2 massless NGB	off-diagonal structure of t
$\mathbb{Z}_{4N} o \mathbb{Z}_4$	symmetry relating MM points
<i>CT</i> unbroken [★] I	tadpole in K + symmetry of MM points
C unbroken	dynamics
N-scaling of $\langle \lambda \lambda \rangle \sim N$	structure of t + SUSY relating $\langle \lambda \lambda \rangle \sim \langle hh \rangle$
$\emph{N} ext{-scaling of vacuum energy} \ V \sim -N^2$	off-diagonal structure of t

match the \mathbb{CP}^1 phase

Thank you!

^{*} consistent with VW for adjoint QCD

true in *all* phases in the cascade (except first)