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A holographic CFT is defined as the asymptotic of a sequence of theories Tc with increasing 
central charge, with certain sparseness properties. 

In e.g. 2d CFTs or 4d SCFTs, central charges cannot vary as a function of exactly marginal 
couplings, so we can think of the label c as the central charge itself.
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central charge, with certain sparseness properties. 

In e.g. 2d CFTs or 4d SCFTs, central charges cannot vary as a function of exactly marginal 
couplings, so we can think of the label c as the central charge itself.

Studies of holographic CFT generally take one of two approaches: 

1) Work at finite c, then extrapolate to large c

2) Expand around c = ∞



It is not clear that 1) must have a smooth c →∞ limit; or, whether the limit would be unique. 

It is not clear that 2) must closely approximate the physics at large but finite c – i.e. that its 
solutions can be “smoothly completed” to a fully consistent finite c solution. 

These are two different bootstrap problems,  

separated by a “barrier” at large but finite c. 
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It is not clear that 1) must have a smooth c →∞ limit; or, whether the limit would be unique. 

It is not clear that 2) must closely approximate the physics at large but finite c – i.e. that its 
solutions can be “smoothly completed” to a fully consistent finite c solution. 

These are two different bootstrap problems,  

separated by a “barrier” at large but finite c. 
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Space of bootstrap solutions, 
extrapolated to large c

Space of solutions to the 
large c bootstrap



In the holographic context, Approach 2), i.e.          , is computing semiclassical gravity observables. 

These can look rather different from their quantum counterparts at finite GN. 

Recent evidence that boundary observables of semiclassical gravity appear ensemble averaged. 

This poses certain puzzles from the microscopic perspective of AdS/CFT. [Saad, Shenker, Stanford; 
Cotler, Jensen; Schlenker, 
Witten; Chandra, Collier, 
Hartman, Maloney; …]



In the holographic context, Approach 2), i.e.          , is computing semiclassical gravity observables. 

These can look rather different from their quantum counterparts at finite GN. 

Recent evidence that boundary observables of semiclassical gravity appear ensemble averaged. 

This poses certain puzzles from the microscopic perspective of AdS/CFT. 

It suggests that we can reinterpret the large c bootstrap as yet a third type of bootstrap: 

namely, an averaged bootstrap problem. 

Something like this:

This has new solutions.

[Saad, Shenker, Stanford; 
Cotler, Jensen; Schlenker, 
Witten; Chandra, Collier, 
Hartman, Maloney; …]





Depending on the spacetime dimension, or how we define 
the averaged bootstrap problem, this cartoon might change. 
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the averaged bootstrap problem, this cartoon might change. 



The traditional interpretation of AdS/CFT is that a quantum bulk theory & its CFT dual live in        . 

We have no reason to dispute this. 

But we need to be careful when we talk about the large c limit.

In particular, a putative theory of semiclassical gravity need not behave the same way as a 
member of        at any finite value of c. 



The traditional interpretation of AdS/CFT is that a quantum bulk theory & its CFT dual live in        . 

We have no reason to dispute this. 

But we need to be careful when we talk about the large c limit.

In particular, a putative theory of semiclassical gravity need not behave the same way as a 
member of        at any finite value of c. 

• How does one distinguish among solutions to the extrapolated bootstrap, the large c 

bootstrap, & the averaged bootstrap? At what resolution in 1/c is there a difference?

• Which of these problems is semiclassical gravity giving us a solution to? 

• Where does string theory come in?



Goal: to explore these notions, and to clarify in what sense the average interpretation appears.  

• Part I: semiclassical string theory on AdS5 x S5

• Part II: semiclassical pure 3d gravity with currents

These theories satisfy all known consistency conditions to all orders in 1/c. 

They admit average and microscopic interpretations, with interesting subtleties in the 3d case.

In both cases, understanding the constraints of SL(2,ℤ) will be important. 



Part I. 𝒩 = 4 SYM

[Based on 2201.05093 w/ S. Collier, 
and work to appear with H. Paul, H. Raj]



Consider 4d 𝒩 = 4 SYM, with simply-laced gauge group G. 

The complexified gauge coupling parameterizes an 𝒩 = 4 SUSY conformal manifold: 

This theory enjoys S-duality = invariance under SL(2,ℤ) transformations of 𝜏 (up to global identifications)

What are the implications of S-duality for the CFT data?

We will focus on SL(2,ℤ)-invariant observables,

𝒩= 4 SYM

e.g.

[Montonen, Olive; Olive, Witten; Osborn; Argyres, Kapustin, 
Seiberg; Vafa, Witten; Sen; Gomis, Okuda; Dorey, 
Hollowood, Khoze, Mattis, Vandoren; Green, Gutperle; 
Banks, Green; Green, Miller, Vanhove; …]



Spectral Decomposition of 𝒩= 4 SYM

Idea: apply SL(2, ℤ) spectral theory = Harmonic analysis on the fundamental domain, ℱ.

A square-integrable, SL(2, ℤ)-invariant function admits a unique decomposition into an 

SL(2, ℤ)-invariant eigenbasis of the Laplacian on the UHP.
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Idea: apply SL(2, ℤ) spectral theory = Harmonic analysis on the fundamental domain, ℱ.

A square-integrable, SL(2, ℤ)-invariant function admits a unique decomposition into an 

SL(2, ℤ)-invariant eigenbasis of the Laplacian on the UHP.

1. Constant 2. Continuous: Eisenstein series 3. Discrete: Maass cusp forms

Smooth Chaotic (arithmetic)

e.g. [Sarnak]
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Idea: apply SL(2, ℤ) spectral theory = Harmonic analysis on the fundamental domain, ℱ.

A square-integrable, SL(2, ℤ)-invariant function admits a unique decomposition into an 

SL(2, ℤ)-invariant eigenbasis of the Laplacian on the UHP.



Spectral Decomposition of 𝒩= 4 SYM

Why do 𝒩 = 4 SYM observables admit a spectral decomposition?

In any CFT, well-defined observables are finite for any coupling, modulo possible divergences at 

boundaries of moduli space. But in 𝒩 = 4 SYM, the cusp just maps to the free theory. 

Free 𝒩= 4 SYM
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Spectral Decomposition of 𝒩= 4 SYM

Why do 𝒩 = 4 SYM observables admit a spectral decomposition?

In any CFT, well-defined observables are finite for any coupling, modulo possible divergences at 

boundaries of moduli space. But in 𝒩 = 4 SYM, the cusp just maps to the free theory. 

Ensemble averaging is easy to define in a CFT with a conformal manifold ℳ:

A natural choice of measure (not unique) is the Zamolodchikov measure. 

In 𝒩= 4 SYM, due to maximal SUSY,  

Free 𝒩= 4 SYM

[Benjamin, Collier, Fitzpatrick, 
Maloney, EP]

Contrast with



Spectral Decomposition of 𝒩= 4 SYM

This formalism makes many things physically transparent – especially regarding instantons/NP effects. 

Assuming a widely-held mathematical conjecture about the cuspidal eigenspectrum, it implies that zero-

and one-instanton sectors fully determine all k>1-instanton sectors. 

The appearance of < 𝕆 > also gives a useful formalism for studying statistics of the “SL(2, ℤ) ensemble”. 

e.g. the variance:

These features, independent of holography, would be the subject of another talk.



Example: Integrated correlators

A nice example are certain integrated four-point functions <22pp> of half-BPS operators 𝒪𝑝:

Extremely simple in the spectral decomposition:

• Cusp overlap vanishes

• Non-perturbative corrections to weak coupling expansion vanish

• Explains/generalizes various observations of [DGW]

[Binder, Chester, Pufu, Wang; 
Dorigoni, Green, Wen]

Polynomials – all fixed by 
algebraic recursion from 
p=2 at N=2

[Collier, EP] 
[Paul, EP, Raj]



Example: Integrated correlators

A nice example are certain integrated four-point functions <22pp> of half-BPS operators 𝒪𝑝:

Extremely simple in the spectral decomposition:

• Cusp overlap vanishes

• Non-perturbative corrections to weak coupling expansion vanish

• Explains/generalizes various observations of [DGW]

(Why? For what types of 
observables?)

[Binder, Chester, Pufu, Wang; 
Dorigoni, Green, Wen]

Polynomials – all fixed by 
algebraic recursion from 
p=2 at N=2

[Collier, EP] 
[Paul, EP, Raj]



Large N

In the ‘t Hooft limit,

To develop this expansion, the algorithm is clear:

It pops out rather easily that everything from the spectral integral is suppressed at large N and 𝜆.

The average is all that’s left!

Admits large N genus expansion

(Nonzero modes and, 
therefore, cusp forms are 
exponentially suppressed in N.)



Large N

In the ‘t Hooft limit,

To develop this expansion, the algorithm is clear:

It pops out rather easily that everything from the spectral integral is suppressed at large N and 𝜆.

The average is all that’s left!

Admits large N genus expansion

(Nonzero modes and, 
therefore, cusp forms are 
exponentially suppressed in N.)

Leading term of <𝒪>



Supergravity as an SL 2, ℤ Average

[Binder, Chester, Pufu, Wang]

[Paul, EP, Raj]

An equivalence between large N ensemble averaging and strong coupling in planar 𝒩= 4 SYM:

Let’s demonstrate this for the integrated correlators of single-particle operators. 

• ’t Hooft limit:

• Ensemble average:
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Supergravity as an SL 2, ℤ Average

An equivalence between large N ensemble averaging and strong coupling in planar 𝒩= 4 SYM:

Let’s demonstrate this for the integrated correlators of single-particle operators. 

• ’t Hooft limit:

• Ensemble average:

Extends to all genera

This is the finite term remaining after string theory regularization of UV divergences of g-loop supergravity. 

(The ensemble average lands exactly on string theory renormalization scheme.)

[Binder, Chester, Pufu, Wang]

[Paul, EP, Raj]
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[Perhaps this can be rectified by cutting off the integral. 

In any case, it is not obvious a priori what to do, why to do it, and how to do it in an SL(2, ℤ)-invariant way.]



Supergravity as an SL 2, ℤ Average

This result has sometimes been said to be “obvious” or “bizarre”. 

Let me at least address one of these... 

At large N with fixed 𝜏, . So the leading-order average looks trivial. 

However, the average of any subleading term is infinity:

[Perhaps this can be rectified by cutting off the integral. 

In any case, it is not obvious a priori what to do, why to do it, and how to do it in an SL(2, ℤ)-invariant way.]

In short, large N and averaging do not commute.

(This argument also would not yield the correspondence at g>0. )



Comments

• The traditional holographic correspondence still holds. 

• The ensemble average is emergent at strong coupling and large N.

• This applies to observables with a genus expansion – e.g. double-trace dimensions, KK correlators.
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Comments

• The traditional holographic correspondence still holds. 

• The ensemble average is emergent at strong coupling and large N.

• This applies to observables with a genus expansion – e.g. double-trace dimensions, KK correlators.

Can we compute 𝓝= 4 SYM averages directly?

• We have not examined heavy/black hole observables. 



Comments

How does this fit with recent ideas about apparent averaging in AdS/CFT?

We are doing an actual average over moduli. 

This allowed us to derive a version of “gravity = averaging”. 

Contrast with suggestion of [Schlenker-Witten]: apparent averaging in AdS/CFT arises from difference between 

smooth large N asymptotics of heavy CFT data and the actual, chaotic sequence at large-but-finite values of N. 



Comments

How does this fit with recent ideas about apparent averaging in AdS/CFT?

We are doing an actual average over moduli. 

This allowed us to derive a version of “gravity = averaging”. 

Contrast with suggestion of [Schlenker-Witten]: apparent averaging in AdS/CFT arises from difference between 

smooth large N asymptotics of heavy CFT data and the actual, chaotic sequence at large-but-finite values of N. 

Note: if 𝒩= 4 SYM theories are the unique 4d 𝒩= 4 SCFTs – an unproven (!) but reasonable (?) belief – then we 

have carried out an example of averaging over a space of CFTs with a given symmetry algebra at large fixed 

central charge. 

One might take our results to indicate that this is not how (apparent) averaging arises in general AdS/CFT.

On the other hand, we should study heavy/black hole observables. 



Part II: Semiclassical Pure 3d Gravity

[To appear, with G. Di Ubaldo]



Part II: Semiclassical Pure 3d Gravity

(Focus on 𝜕AdS3 = T2)

[To appear, with G. Di Ubaldo]



Pure 3d gravity: what is the goal?

Pure 3d gravity = sequence of theories which asymptotes, at large c, to a theory with no primary 

states below the semiclassical black hole threshold. 

This can be defined for any choice of chiral algebra,       . The minimal choice is 

The basic challenge in constructing                  is that a sum over smooth classical saddle points 
appears to be inconsistent. This is the essential tension in pure gravity: SL(2,ℤ) vs. unitarity. 

[Maxfield, Turiaci; Cotler, 
Jensen; Eberhardt]

∃ a consistent                  w/o off-shell configurations?

If so, which CFT problem is it solving?
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Moreover, what constitutes a “non-perturbative sequence” at finite c is not uniquely defined: two 
sequences of theories which differ only in their non-perturbative (finite c) completions could both 
sensibly be called “pure quantum gravity”.



Pure 3d gravity: what is the goal?

Let’s discuss what it would mean to find such a theory. 

A holy grail of pure 3d gravity might be to construct a consistent quantum theory, at finite GN. 

What distinguishes this sequence of “pure” theories in the bulk, and what defines them as 
“gravitational” in a regime where we know what means, is their asymptotic behavior at small G N. 

Moreover, what constitutes a “non-perturbative sequence” at finite c is not uniquely defined: two 
sequences of theories which differ only in their non-perturbative (finite c) completions could both 
sensibly be called “pure quantum gravity”.

From this point of view, our first goal should be to find a theory with the desired spectral gap that is 
consistent to all orders in a semiclassical expansion – that is, at resolutions >> 𝑒−𝑆. 

This has not yet been achieved.



Pure 3d gravity: Historical review (post-Farey tail)

MWK: can we build a consistent                  as a sum over all smooth classical saddles?

Definitions:

[Dijkgraaf, Maldacena, Moore, Verlinde; Moore, Manschot; Witten; Maloney, Witten; Keller, Maloney; Benjamin, Ooguri, Shao, Wang]
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Pure 3d gravity: Historical review (post-Farey tail)

MWK: can we build a consistent                  as a sum over all smooth classical saddles?

+ SL(2,ℤ)-invariant

+ Geometric

– Divergent

– Negative

± Continuous

Definitions:

[Dijkgraaf, Maldacena, Moore, Verlinde; Moore, Manschot; Witten; Maloney, Witten; Keller, Maloney; Benjamin, Ooguri, Shao, Wang]

Smooth 
classical 
saddles

1)

2)

Schematically,



Pure 3d gravity: Historical review (post-Farey tail)

Ways out:

• Add matter
o Not pure gravity

• Add off-shell configs
o Yet to be made explicit (SL(2,ℤ)? j=0 gap?)

• Put on an ensemble hat (design probability distribution of CFT data, match to 3d gravity)
o Not SL(2,ℤ)-invariant (spins continuous; no possible average over bona fide large c CFT)
o Works saddle-by-saddle

[Benjamin, Collier, Maloney; 
Alday, Bae]

[Maxfield, Turiaci]

[Chandra, Collier, Hartman, Maloney]



Let’s make a few conceptual points. 

[Nilsson]
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The problem with MWK is not that it has negativity. 

The problem is that it has a lot of negativity. 

Define an integrated negativity: 

The total negativity of MWK is exponentially large in the entropy:

Conceptual Point 1
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to all orders in 1/c:
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In pure gravity, the chaotic regime extends all the way down to threshold. 

Therefore, at resolutions >> 𝑒−𝑆 the spectrum will appear continuous.*

No “average over CFTs” is necessary to interpret a continuum: smearing over energies is sufficient. 
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A continuous density of states above threshold is what we should expect in pure gravity, 

to all orders in 1/c:

In a chaotic theory, the mean level spacing in the heavy spectrum is ~ 𝑒−𝑆. 

In pure gravity, the chaotic regime extends all the way down to threshold. 

Therefore, at resolutions >> 𝑒−𝑆 the spectrum will appear continuous.*

No “average over CFTs” is necessary to interpret a continuum: smearing over energies is sufficient. 

This resonates with recent observations on operator algebras in gravity, and the (non-)existence 

of the black hole Hilbert space: at scales >> 𝑒−𝑆, black hole microstates are washed out. 

[Liu, Leutheusser; Witten; Chandrasekhan, 
Longo, Penington, Witten]

[Strings talks by Liu, Witten]

Conceptual Point 2
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Generically (w/o SUSY), we should not work at scales ~ 𝑒−𝑆 when constructing Z as a sum over saddles. 

Instead, we really mean

For example, we usually identify Zsaddle with a Virasoro character, which is one-loop exact to all orders in 

perturbation theory; but Zsaddle could receive NP corrections. 

This also comports with how we might imagine pure 3d gravity arising from string/M-theory.

A nice example can be found in SYM:

(Wrapped D3-brane contributions to IBH ) = (NP contributions to large N saddles of                     )

[Aharony, Benini, 
Mamroud, Milan]

Conceptual Point 3



Semiclassical pure 3d gravity with currents

Proposal: just add currents. 



Semiclassical pure 3d gravity with currents

Proposal: just add currents. 

The total central charge is

We are interested in the large ctot limit, particularly c >> 1. 

Our proposed partition function for 𝑈(1)𝐷 x Vir primaries is the usual Poincare sum:

Claim: At large ctot, this gives a consistent semiclassical partition function.

[Di Ubaldo, EP]



Semiclassical pure 3d gravity with currents

This is no longer the Virasoro case. However, we gain a surprising amount:

• SL(2,ℤ)-invariant 

• Sum over geometries

• Convergent for D>1 (indeed – a physical interpretation of MWK regulator)

• Unitary for D>1

• Spectral gap is large

• Spectrum is continuous



Bulk interpretation

Consider the large c limit (where ctot = 𝑐 + 𝐷). 

To all orders in GN, this is a consistent                  for semiclassical Einstein gravity + 𝑈(1)𝐷x 𝑈(1)𝐷 CS.
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Bulk interpretation

Consider the large c limit (where ctot = 𝑐 + 𝐷). 

To all orders in GN, this is a consistent                  for semiclassical Einstein gravity + 𝑈(1)𝐷x 𝑈(1)𝐷 CS.

Double-scaling

Einstein gravity 
+ 

𝑈(1)𝐷x 𝑈(1)𝐷 CS

Fundamental graviton 

“U(1) gravity” 
+

semi-holographic Vir sector

Composite graviton

[Faulkner, Polchinski]
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Boundary interpretation(s)

1) It is the solution of a large c bootstrap problem. 

2) It is an ensemble average of CFTs, or CFT data. 

3) It is a large c CFT at resolution >> 𝑒−𝑆.

Can it be smoothly completed to finite c? This case presents an interesting wrinkle:

A unitary CFT with maximal chiral algebra 𝑈 1 x Vir, with a discrete, finitely generated spectrum has 

vanishing twist gap (accumulation point at large spin) [Benjamin, Ooguri, Shao, Wang].

These assumptions do not apply to our Z, at large c. 

They suggest a discontinuity of the limit from finite c.

( e.g. low-twist states could become null: )



Boundary interpretation(s)

This is interesting.

We seem to have a theory of semiclassical pure gravity that exhibits the paradigm articulated earlier: 
one that cannot be smoothly completed into a quantum theory, but which is consistent and has the 
physical features we would want the semiclassical theory to have to all orders in 1/c.

Semiclassical pure 3d gravity exists “in limbo”. 

[Donwood]



Boundary interpretation(s)

This is interesting.

We seem to have a theory of semiclassical pure gravity that exhibits the paradigm articulated earlier: 
one that cannot be smoothly completed into a quantum theory, but which is consistent and has the 
physical features we would want the semiclassical theory to have to all orders in 1/c.

Semiclassical pure 3d gravity exists “in limbo”. 

(This raises the interesting question of whether 𝑍 𝑐 (𝜏), viewed as a 
function of complexified central charge c, is resurgent. 

That is, whether the resummation of corrections exponentially small in 

c is enough to reconstruct the exact 𝑍 𝑐 (𝜏). 

If so, then 𝑒−𝑐 corrections are sufficient to reveal the low-twist states.)

[Donwood]



Boundary interpretation(s)

Nevertheless,

• Off-shell stuff may be necessary for consistency of CFT data at 𝑒−𝑐 resolution

• Multi-boundary configurations still suggest average interpretation

o Unitarity and modularity preserved → Possible average over bona fide large c CFTs?

• Virasoro case remains outstanding 

We hope to have deconvolved the reasons that “non-standard” elements – an average interpretation, 
off-shell configurations, etc – may or may not be required for a consistent bulk theory. 



Questions for the future

1. Resurgence of the gravitational path integral. When is 𝑒−𝑆 enough to see everything? 

2. Is GN discretized in AdS3? 

3. Scale separation as an averaged phenomenon?


