
Particle Dark Matter - a theoretical overview

Maxim Pospelov FTPI, U of Minnesota

- Introduction.
- Quick implications of the recent LZ results.
- *Models with blind spots for direct detection*: a. very light dark matter, b. strongly interacting dark matter.
- New opportunities in direct dark matter detection.
- Outlook.

Why identifying dark matter is difficult

Av. Density ~ 0.3 GeV/cc – not a lot

 $L_{min} \sim 10^{21} \text{ cm}$

We need to extrapolate 19 orders of magnitude! **Theory is the first step!**

 $10^2 \,\mathrm{cm}$ -exp~few * 1

Current ideas about particle DM genesis

At some early cosmological epoch of hot Universe, with temperature T >> DM mass, the abundance of these particles relative to a species of SM (e.g. photons) was

Normal: Sizable interaction rates ensure thermal equilibrium, $N_{DM}/N_{\gamma}=1$. Stability of particles on the scale $t_{Universe}$ is required. *Freeze-out* calculation gives the required annihilation cross section for DM -> SM of order ~ 1 pbn, which points towards weak scale. These are **WIMPs**. (asymmetric WIMPs are a variation.)

Very small: Very tiny interaction rates (e.g. 10⁻¹⁰ couplings from WIMPs). Never in thermal equilibrium. Populated by thermal leakage of SM fields with sub-Hubble rate (*freeze-in*) or by decays of parent WIMPs. [Gravitinos, sterile neutrinos, and other "feeble" creatures – call them **super-WIMPs**]

Huge: Almost non-interacting light, m< eV, particles with huge occupation numbers of lowest momentum states, e.g. $N_{DM}/N_{\gamma} \sim 10^{10}$. "Super-cool DM". Must be bosonic. Axions, or other very light scalar fields – call them **super-cold DM**.

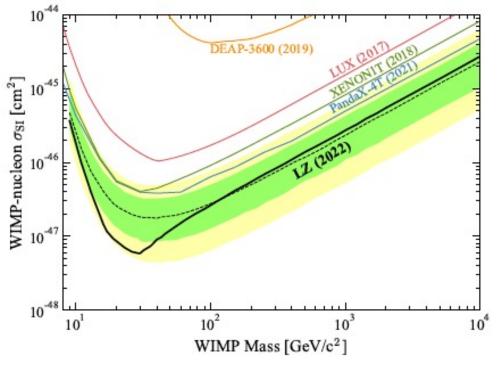
Many reasonable options. Signatures can be completely different.

Macroscopic DM? Primordial Black holes, of course. But this is not the only possibility. Topological and non-topological solitons, clumps of DM etc.

Examples of DM-SM mediation

•

1. Z-mediation Z-boson SM states Higgs - mediation 2. 3 H-boson SM states Photon / dark photon 3. mediation dott photom & SM states Superpartner mediation - quark scalar quark anti-quark


- Topic of WIMPs was
 dominated by SUSY
 neutralinos for a long time.
 In the absence of any
 experimental hints at SUSY
 at the LHC, the focus
 shifted to other models.
- Current discussion of DM increasingly shifts away from SUSY to other "minimalistic" options.
- Mass range of possible WIMPs is much larger than originally envisaged by Lee and Weinberg.

Implication of the successful stream of Xebased DM experiments

- Series of successful experiments: Xenon-100,1T; LUX, LZ; PandaX's have pushed the limits on the nucleon cross section for weak-scale mediated Dark Matter.
- While Z-exchange based models (a-la Lee and Weinberg) has long been ruled out, new constraints put significant pressure on Higgsmediated models, pushing them into multi-TeV territory. Loopinduced Higgs/W-box models (e.g. SUSY Higgsino-like) will "soon" be probed.
- Large mass and self-shielding properties also allow for the breakthrough sensitivities for the electron recoil (E_{recoil} > 200 eV), providing strong constraints on light DM, and on exotic particle emission from the Sun.

Interpreting recent LZ results for the Higgsmediated scalar DM model

arXiv:2207.03764v1

 The best sensitivity at m_{DM} ~ 30 GeV drops below 10⁻⁴⁷cm² benchmark

In the scaling regime, $m_{DM} > m_{Xe}$, the limit on the DM-nucleon cross section is $\sigma < 2.5 \ 10^{-46} \ cm^2 (m_{DM}/TeV)$

This has strong implications for particle physics models of WIMP DM.

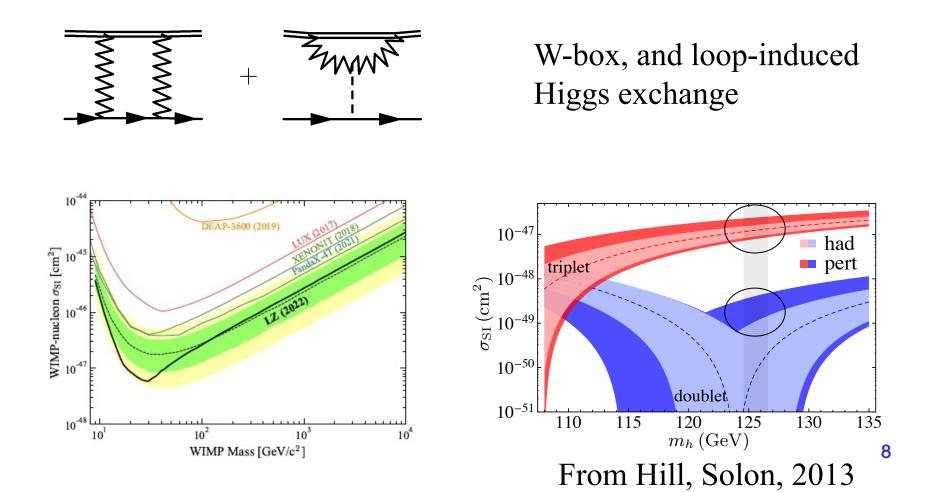
$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2} (\partial_{\mu} S)^2 - m_0^2 S^2 + \lambda S^2 (H^{\dagger} H)$$

Interpreting recent LZ results for the Higgsmediated scalar DM model

Combining together a prior on the dark matter annihilation cross section, λ^2

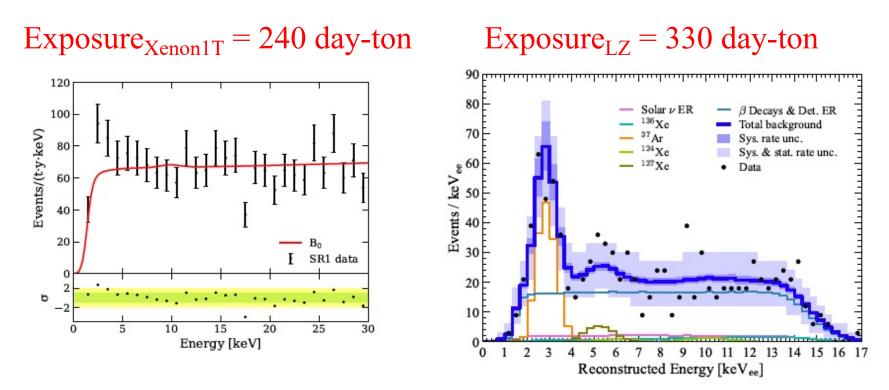
$$\langle \sigma_{ann} v \rangle = \frac{\chi}{4\pi m_S^2} \simeq 10^{-36} \mathrm{cm}^2 \times c$$

with the expression for the Higgs-boson-mediated nucleon-DM scattering cross section $\sigma_{pS} = \frac{\lambda^2}{\pi^2 m_S^2} \frac{m_p^2 (200 \,\text{MeV})^2}{m_h^4}$

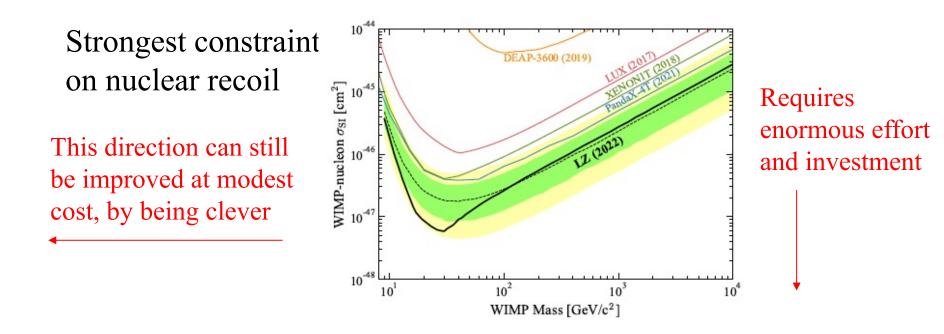

and using LZ limit $\sigma_{pS} < 2.5 \ 10^{-46} \ \text{cm}^2 (m_S/\text{TeV})$ we obtain the limit

$$m_S \gtrsim 1 \,\mathrm{TeV}$$

It implies that the coupling constant λ becomes moderately large, $\lambda > 0.15$, making it larger than the Higgs self-interaction coupling. *Subsequent experimental improvements may completely rule out this minimal type of models.*


Next frontier – loop-mediated EW interaction

Models of heavy particles that have EW interactions but do not have a direct coupling to the Z-boson (e.g. due to small mass splitting) will interact via EW loops


Implication for electron recoil?

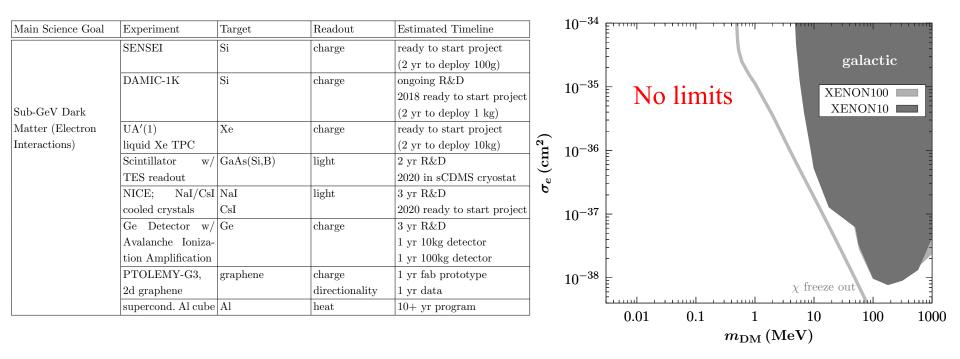
Intriguing [excess!] results from the 2020 Xenon-1T study of the electron recoil will soon be tested by the LZ collaboration.

Xenon1T collaboration's model for the background is flat. Excess/signal is consistent with a peak at ~2.5 keV. LZ has a peak identified as the background (³⁷Ar). Main intrigue: is it ${}^{37}\text{Ar} \propto 2^{-t/(35 \text{ day})}$? 9

Blind spots for WIMP scattering (latest LZ, XENON 1T and PANDA-X results)

- Optimum sensitivity, m_{WIMP} ~ m_{Nucleus} (a little lighter because of nuclear form factor).
- No sensitivity below m_{WIMP} ~ few GeV, due to exceedingly small recoil that does not give much light or scintillation. But there is sensitivity due to scattering on electrons
- There is no sensitivity to strongly-interacting particles that thermalize on the way to an underground lab.

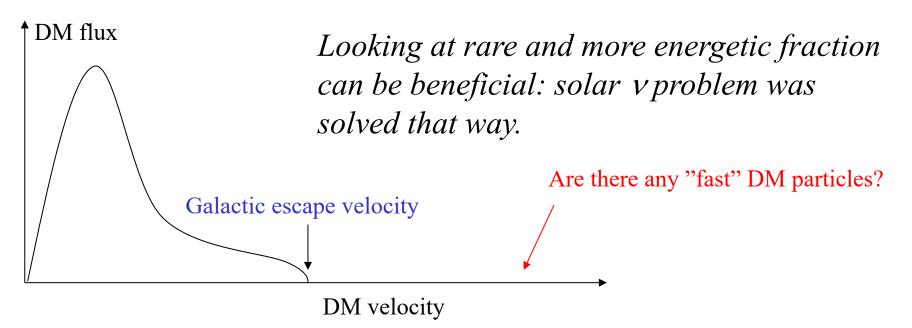
Two blind areas for direct detection


1. ~MeV scale dark matter: Kin Energy = $mv^2/2 \sim (10^{-3})^2 MeV \sim eV$. Below the ionization threshold!

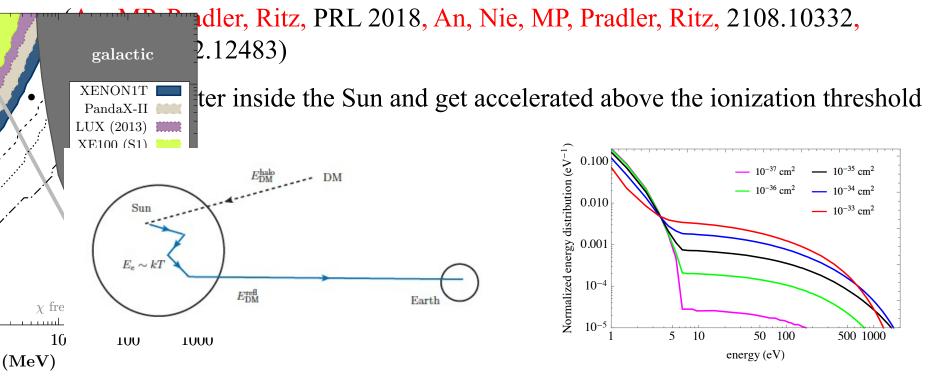
 Strongly-interacting subdominant component of Dark Matter. Thermalizes before reaching the underground lab, Kinetic energy ~ kT ~0.03 eV

(Typically cannot be entire DM, but is limited to fraction $f < 10^{-3}$)

Below the ionization threshold!


Direct detection, scattering of DM on electrons, 2017 slide

- For a given DM mass particle, in the MeV and sub-MeV range, the recoil energy of electrons is enhanced compared to nuclear recoil by M_{nucl}/m_{e}
- Sensitivity to energy depositions as low as 10 eV reality *now*.
- Near future -O(1eV) sensitivity and below. Impressive SENSEI results in 2020.
- Huge number of proposals: *using superconductors, graphene, Weyl semimetals,* 12 *DNA, to push threshold lower.*

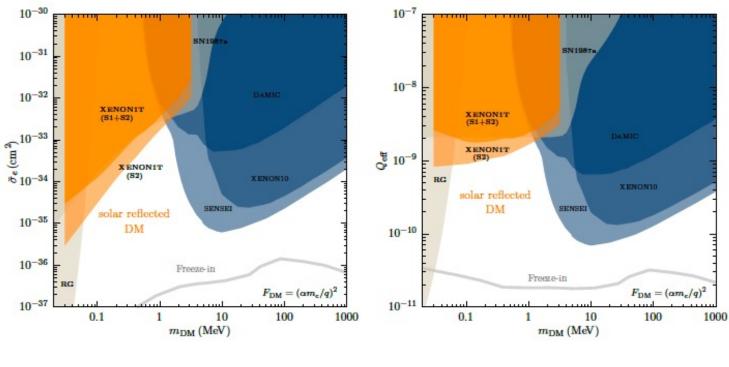

Main limitation of light WIMP searches

- The kinetic energy of galactic dark matter is limited by $E_{gal, max} = m_{DM} (v_{escape})^2/2.$
- For MeV-range DM, this energy is below the ionization energy of Xe (13 eV). For MeV DM maximum kinetic energy is ~ 1 eV
- Are there processes that bring DM energy above $E_{gal, max}$?

Case 1: DM scattering on electrons. Case 2: DM scattering on nucleons

"Reflected DM": extending the reach of Xe experiments to WIMP scattering on electrons

- Initial kinetic energy $m_{dm}(v_{dm})^2/2$ with $v_{dm} \sim 10^{-3}$ c (that has an endpoint at ~600 km/sec)can be changed by scattering with electrons, $v_{el} \sim (2 T_{core} / m_e)^{1/2} \sim up$ to 0.1 c. In particular $E_{reflected}$ can become larger than $E_{ionization}$.
- Huge penalty in the flux of "reflected" DM ~ 10⁻⁶ $\Phi_{\text{refl}} \sim \frac{\Phi^{\text{halo}}}{4} \times \begin{cases} \frac{4S_g}{3} \left(\frac{R_{\text{core}}}{1 \text{ A.U.}}\right)^2 \sigma_e n_e^{\text{core}} R_{\text{core}}, & \sigma_e \ll 1 \text{ pb}, \\ S_g \left(\frac{R_{\text{scatt}}}{1 \text{ A.U.}}\right)^2, & \sigma_e \gg 1 \text{ pb}. \end{cases}$


Contact mediator, limits on σ_e

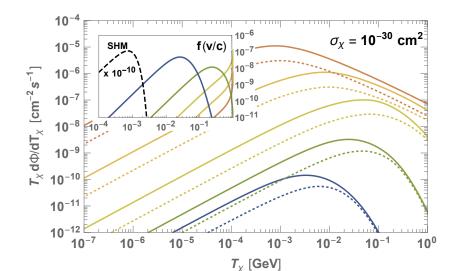
An, Nie, MP, Pradler, Ritz, 2017, 2021

- Large Xe-based detectors improve sensitivity to σ_e through reflected flux.
- If the scattering on ions is very strong, it can degrade energy of escaping particle and soften the constraining power.
- See also similar investigation by Emken 2021.

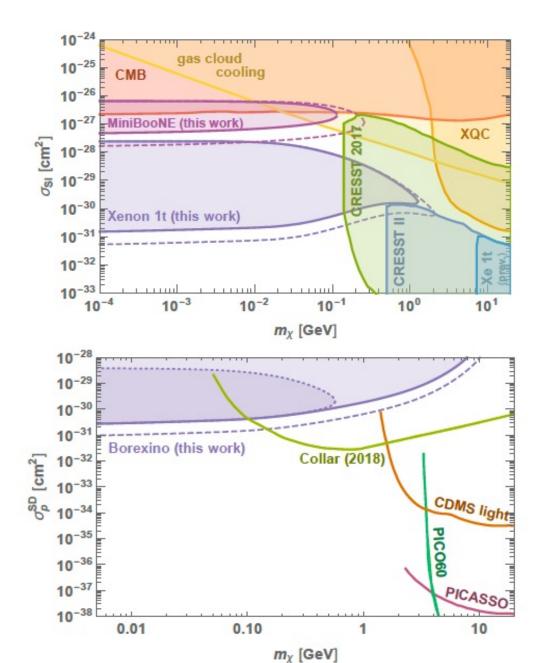
Massless mediators, limits on σ_e

cross section normalized on $q=m_e\alpha$

Effective charge

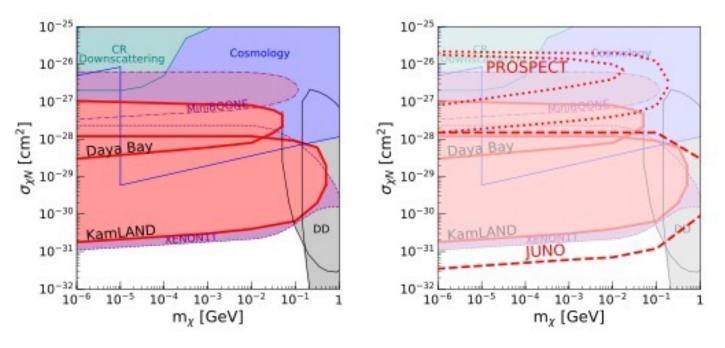

An, Nie, MP, Pradler, Ritz, 2108.10332

- Large Xe-based detectors improve sensitivity to σ_e through reflected flux.
- Second case, massless mediator = milli-charged dark matter, Xe1T is sensitive to $Q_{eff} \sim 10^{-9}$ e.


Light DM accelerated by cosmic rays

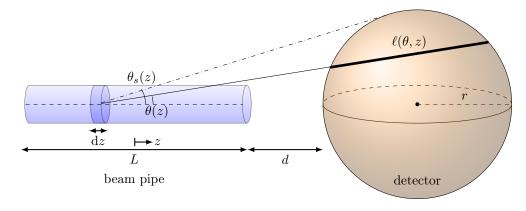
- There is always a small energetic component to DM flux (Bringmann, Pospelov, PRL 2019, others) due to interaction with cosmic rays.
- Typically: MeV DM mass \rightarrow eV kinetic energy \rightarrow sub-eV nuclear recoils. No limits for $\sigma_{nucleon-DM}$ for DM in the MeV range.
- This is not quite true because there is always an energetic component for DM, not bound to the galaxy. Generated through the very same interaction cross section: σ_{χ}

Main idea: Collisions of DM with cosmic rays generate subdominant DM flux with ~ 100 MeV momentum – perfect for direct detection type recoil.


Resulting limits on WIMP-nucleon scattering

• Spin-independent limits. [Notice the constraint from Miniboone, from measurements of NC nu-p scattering]. Exclusion of σ = 10⁻²⁹-10⁻³¹cm² !

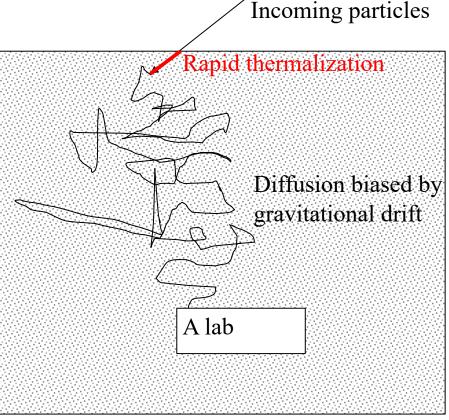
• Scattering on free protons in e.g. Borexino is also very constraining for the spin-dependent scattering.


Updated limits on WIMP-nucleon scattering

- More neutrino experiments can be used to "fill the gaps", Beacom and Cappiello, 1906.11283
- If the DM cross section is large-ish, an interesting spin-off can be considered in an underground laboratory environment where one could use existing particle beams to "accelerate" DM in a first collision and detect it using DM detectors in a second collision (in collaboration with Moore, McKeen, Morrissey, Ramani, 2202.08840)

Using underground accelerators to "accelerate" dark matter

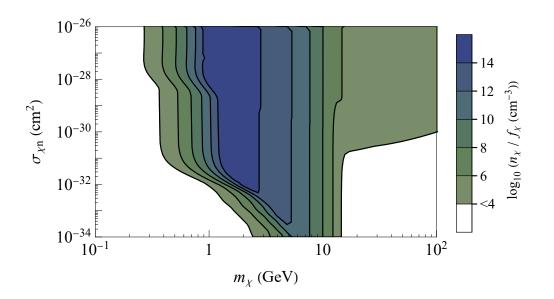
- Some of the underground Labs that host Dark Matter detectors, also have nuclear accelerators (e.g. LUNA, JUNA etc) in a completely different setting: studies of nuclear reactions.
- We propose to couple nuclear accelerators and dark matter detectors: accelerated protons (or other nuclei) can strike DM particles that can subsequently be detected with a nearby detector.


This is going to be relevant for models with large DM-nuclear cross section (blind spot #2), where A. interaction is enhanced, B. density is enhanced.

- Rapid thermalization
- Flux conservation: $v_{in}n_{halo} = v_{terminal} n_{lab}$.
- Terminal sinking velocity is determined by the effective mobility and gravitational forcing

$$v_{\rm term} = \frac{3M_{\chi}gT}{m_{\rm gas}^2n\langle\sigma_t v_{\rm th}^3\rangle}$$

- Change in velocity from incoming $\sim 10^7$ cm/s to typical sinking velocity of 10 cm/s (for a 100 mbn σ) results in $n_{lab} \sim 10^6 n_{halo}$. Not visible to direct detection.
- At masses < 10 GeV upward flux is important and density goes up.


MP, Rajendran, Ramani 2019 MP, Ramani 2020, Berlin, Liu, MP, Ramani, in prep

Dark matter traffic jam

Density of trapped particles: best mass range = few GeV.

 Lowest mass – evaporation, Highest mass – traffic jam, intermediate mass – trapping with almost uniform distribution inside Earth's volume.

• Enhancement of the density can be as high as 10^{14} .

Spectrum of recoil

• Energy of nuclei in the detector after experiencing collision with the accelerated DM.

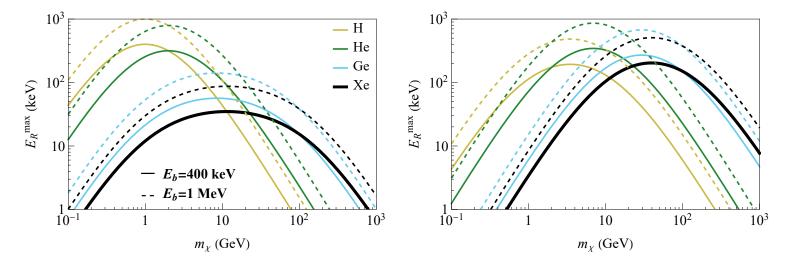
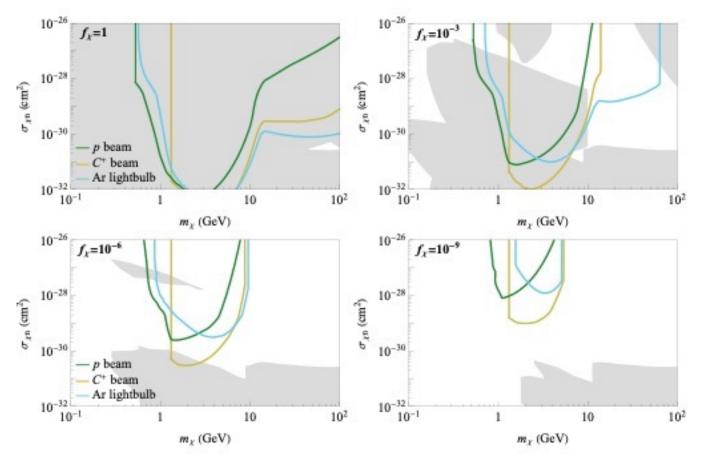



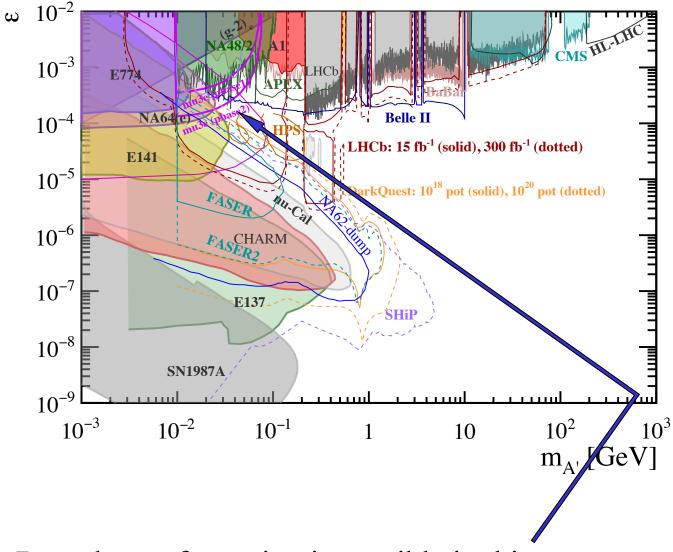
FIG. 3. Maximum nuclear target recoil energies E_R^{max} for dark matter upscattered by beams of protons (left) or carbon (right) with kinetic energies $E_b = 0.4$ MeV (solid) and $E_b = 1.0$ MeV (dashed) for a selection of target nuclei.

Energy of accelerator is \sim MeV, and given that the thresholds in many detectors are keV and lower, this detection scheme is realistic.

New reach in the parameter space

 While 100% fraction of these DM particles is excluded by combination of ballon + underground experiments (gray area), the accelerator+detector scheme is sensitive to small f_chi.

 This is a promising scheme that can be tried without additional enormous investment, with existing accelerators (LUNA, JUNA)


Final idea: dark photon mediated interaction may lead to Dark Matter – Nucleus bound state

• Consider a stable elementary particle charged under U(1)'.

$$\mathcal{L} = -\frac{1}{4} (F'_{\mu\nu})^2 - \frac{\varepsilon}{2} F'_{\mu\nu} F_{\mu\nu} + \frac{m_{A'}^2}{2} (A'_{\mu})^2 + \bar{\chi} (iD_{\mu}\gamma_{\mu} - m_{\chi})\chi,$$

- The choice of parameters of interest: $\varepsilon \sim$ up to 10^{-3} ; $m_{A'} \sim 10-100$ MeV, $m_{\chi} \sim 10$ - 1000s GeV or larger, $\alpha_{dark} \sim 10^{-2} - 1$.
- Given the choice of parameters abundance can be calculated, assuming the standard cosmological history. However, I am going to treat fraction f_{χ} as a free parameter taking it small.
- Thus, the standard *visible dark photon* constraints apply.
- With Berlin, Liu, Ramani, 2110.06217

Constraints on visibly decaying dark photons

Bound state formation is possible in this corner

Nucleus-DM potential

$$V(\mathbf{r}_{\chi}) = -\varepsilon \sqrt{\alpha \alpha_d} \sum_{i=e,p} Q_i \frac{\exp(-m_{A'}|\mathbf{r}_{\chi} - \mathbf{r}_i|)}{|\mathbf{r}_{\chi} - \mathbf{r}_i|}$$
$$\to \varepsilon_{\text{eff}} \alpha \sum_e \frac{\exp(-m_{A'}|\mathbf{r}_{\chi} - \mathbf{r}_e|)}{|\mathbf{r}_{\chi} - \mathbf{r}_e|} - Z\alpha\varepsilon_{\text{eff}} V(\mathbf{r}_{\chi}, R_N)$$

$$V(\mathbf{r}_{\chi}, 0) = \exp(-m_{A'}|\mathbf{r}_{\chi} - \mathbf{r}_{N}|)/|\mathbf{r}_{\chi} - \mathbf{r}_{N}|.$$

- For a point-like nucleus = Yukawa potential.
- Since α_{dark} can be large, $\varepsilon_{eff} \equiv \varepsilon \times \sqrt{\alpha_d/\alpha} \lesssim O(10)\varepsilon$

Two important consequences of sizeable couplings:

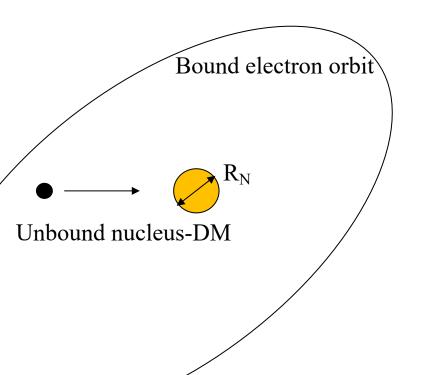
- 1. Elastic scattering cross section on nuclei is large
- 2. Strong enough attractive force affords bound states

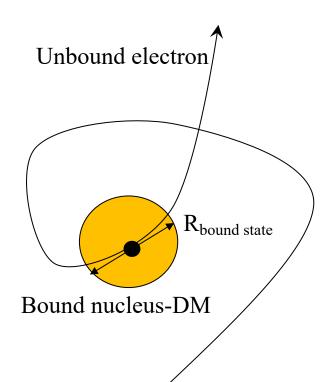
A possible scenario for direct detection (including Xenon excess)

- Small enough f_{χ} so that surface and balloon experiments are not sensitive.
- Density enhancement after thermalization (traffic jam). Becomes **invisible** to elastic scattering.
- No bound states with light elements no efficient capture during the sinking
- Efficient capture in an experiment containing heavy enough elements (Xenon, of course. Also, Iodine, Tl etc...).

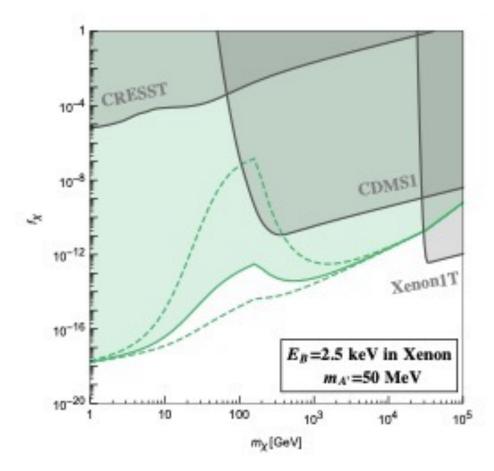
 $Z + \chi \rightarrow (Z \chi) + \text{Energy}$

- Main feature of the signal: electron-like mono-energetic energy release.
- Possibly non-trivial time structure (i.e. daily and seasonal modulation)

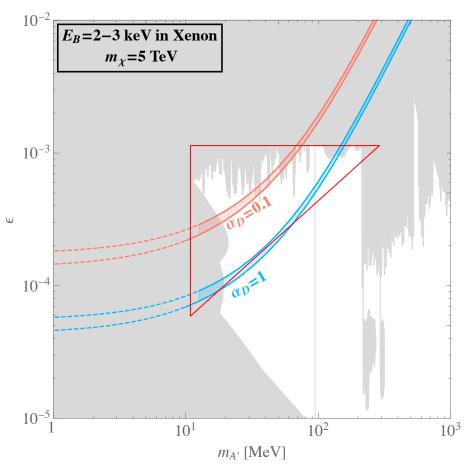

Capture process


• Auger-style process with the ejection of an atomic electron.

 $A + \chi \rightarrow (A^+\text{-ion }\chi) + \text{electron}$


Dominates over photon emission.

• Calculable using perturbation theory



One can probe exceedingly small admixtures of DM particles that can bind to Xe nucleus

- Anywhere along the boundary of green, Xenon1T excess can be explained.
- If the *unknown* α_{dark} , we do not know "exact" ε parameter that can₃₀ explain the excess.

Zooming in onto dark photon target parameter space

- A roughly triangular shape of the parameter space, ~ one decade long on each side can explain the Xenon1T excess at small f_χ.
- This parameter space is [hopefully] going to be explored by the LHCb and HPS experiments.

Conclusions

- Considerable investment goes into attempts to directly detect dark matter – it is a distinct possibility, especially if DM is a WIMP.
- LZ experiment is another milestone in the WIMP searches, toping the competitors at the moment, for the search of m_{DM} > few GeV. Has a huge potential of improving limits on electron recoil.
- Strong limits can be imposed even in "blind spot" areas using subdominant components of the flux. *Dark matter "reflected" from solar electrons, Dark Matter "accelerated" by cosmic rays.*
- Coupling of underground accelerators with dark matter detectors will allow probing strongly-interacting sub-component of dark matter. If the coupling is strong enough and force is attractive, bound states with heavy elements can form, providing exquisite sensitivity in DD exp.
- The diversity of DM models creates a diversity of experimental signatures – now it is the right time to explore them, as much investment is made into direct detection of dark matter.