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 and SQFT𝒟

❖ SQFT for us — Unitary, Poincare, (at least) Minimal Supersymmetry

❖ Typically discussion starts by choosing a space-time dimension

𝒟
* Unless explicitly stated all constructions will be assumed to be at least minimally supersymmetric

❖ SCFTs — Superconformal symmetry; Fixed points of RG flows  *

SCFTUV +Δ SCFTIR **RG

** Might be interacting SCFT, gapped, or free theory



Higher  SQFTs𝒟

❖ Classification of superconformal algebras in 𝒟 ≤ 6

❖ in  can have Lagrangian descriptions in 𝒟 = 4 𝒟

❖ in  have a plethora of such descriptions𝒟 < 4

❖ Three known roads to constructing interacting SCFTs 

❖ Field theoretic:    Lagrangians in 𝒟 ≤ 4
❖ Stringy:                String/M-theory constructions in all 𝒟

(Singular) geometry; branes; holography

❖ Numerous relations between the three

❖ Hybrid:                 Stringy construction  QFT deformations →

Interacting SCFTs

⊕

(Nahm 77; Kac 77; Minwalla 97)

❖ in  are not deformations of a free theory in 𝒟 > 4 𝒟



Space of ALL SCFTs

❖ This space includes:
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❖ Free fixed points 

❖ Deformation of these

❖ Limits of String Theory

❖ Anything else (??)

❖ Deformations of these

Space of all 
SCFTS

( )𝒟 ≤ 6



Charting the Space of ALL SCFTs

❖ Every known SCFT has a name:  SQCD, , AD,  MN, E-string, 
conformal matter…

TN E8
❖ The animal={Operators, all correlation 

functions}

❖ The skeleton={Symmetries, Anomalies, 
BPS spectra, Moduli spaces, Conformal 
manifolds, (S)Partition functions} 

❖ Construction: Lagrangian or Stringy 

𝒟 = 6 :

𝒟 = 5 : 𝒟 = 4 :

𝒟 = 3 :



Structure of the Space of ALL SCFTs

❖ The names are not unique

❖ We might be able to construct the same 
SCFT using various construction

❖ A deformation of a free fixed point    
(red  Lagrangian)≜

❖ A deformation of a strongly coupled 
SCFT (superpotential, gauging)

❖ A geometric deformation of an SCFT 
(place on a compact geometry)

❖ A stringy construction



Progress on the following questions:

❖ Enumerate SCFTs

❖ Find the skeletons

❖ Derive the structure of relations

(Moduli spaces, (generalized) symmetries and anomalies, BPS states)

(Various types of dualities and emergence of symmetry)

(Different constructions, string theoretic and field theoretic)
See Strings 2015 Heckman, Strings 2017 Kim

See Strings 2021 Shao

See Strings 2014 Tachikawa; Strings 2018 Cordova

❖ Much of the progress follows exploring relations between different 
SQFTs in a given , across different , and SQFTs and string theory𝒟 𝒟

❖ Goal: Understand the structure of the space of all SCFTs



Plan:
❖ SQFTs from String Theory

❖ SQFTs from SQFTs

❖ SQFTs from SQFTs in given  𝒟

❖ SQFTs from SQFTs across  𝒟

❖ Moduli spaces ❖ In-  dualities𝒟 ❖ Lagrangians

❖  from 𝒟 = 5 𝒟 = 6 ❖  from 𝒟 = 4 𝒟 = 6

❖ In-  dualities from Across-  dualities𝒟 𝒟 ❖  Dualities𝒟 = 6

❖  SCFTs from  SCFTs𝒟 = 6 𝒟 < 6

❖ SQFTs from SQFTs across  𝒟

❖ Across-  dualities𝒟



SCFTs from string theory: general 𝒟

❖ Construct SCFTs from String Theory by decoupling gravity

See Strings 2015 Heckman

❖ Brane constructions ❖ String theory on non compact spaces 
with singularities❖ Holography

❖ Conjectured classifications of  SCFTs𝒟 = 6

❖ A large variety of  SCFTs𝒟 = 5

❖ A variety of  SQFTs𝒟 = 4

Eg Heckman, Morrison, Vafa 13; Heckman, Morrison, Rudelius, Vafa 15; 
Bhardwaj, Morrison, Tachikawa, Tomasiello 18; Heckman, Rudelius 18

(Branes; Branes probing singularities; F-theory)

Eg Giveon, Kutasov 98; Shapere, Vafa 99; Acharya, Witten 01; many many others

Starting with Seiberg 96; Morrison, Seiberg 96; Katz, Klemm, Vafa 96; Intriligator, Morrison, Seiberg 97 

(  supersymmetry:
at least 8 supercharges)

(1,0) or (2,0)

(  supersymmetry: 8 supercharges)𝒩 = 1

(  supersymmetry: at least 8 supercharges;
:  4 supercharges)

𝒩 ≥ 2
𝒩 = 1

Aharony, Hanany 97; Brandhuber, Oz 99; many many others



Plan:
❖ SQFTs from String Theory

❖ SQFTs from SQFTs

❖ SQFTs from SQFTs in given  𝒟

❖ SQFTs from SQFTs across  𝒟

❖ Moduli spaces ❖ In -dualities𝒟 ❖ Lagrangians

❖  from 𝒟   𝒟   ❖  from 𝒟   𝒟 

❖ In-  dualities from Across-  dualities𝒟 𝒟 ❖  Dualities𝒟 

❖  SCFTs from  SCFTs𝒟   𝒟 

❖ SQFTs from SQFTs across  𝒟

❖ Across  dualities𝒟



Relations I: SQFTs from SCFTs in Fixed 𝒟

❖ For  start from free fields and deform by relevant 
deformations (superpotential, gauging global symmetries) 

𝒟 ≤ 4

❖ Resulting theory might be a gapped, free, or interacting SQFT  

❖ For  deforming an SCFT by relevant deformations a 
given SCFT can flow to an interacting, gapped or  free theory      

𝒟 ≤ 5

❖ For  can explore moduli spaces of vacua (VEVs) to 
construct new SQFTs: might be free or interacting

𝒟 ≤ 6

RG

❖ Such VEV deformations (tensor branch) of SCFTs are 
described by anomaly free Lagrangians in 𝒟 = 6VEV

❖ In  real mass deformations can lead to IR free gauge 
theory, deformations of which are again IR free      

𝒟 = 5

 Cordova, Dumitrescu, Intriligator 16 



Skeletons I: Moduli Spaces of Vacua

 Bhardwaj 15 Ggauge ∈ {SU(3) , SO(8) , F4 , E6 , E7 , E8}

SCFT

Higgs Branch

❖ Theories with 8 supercharges (  minimal supersymmetry,  ): 
Invariant definition of branches of Moduli Spaces of Vacua: Higgs branch 
and Tensor/Coulomb branch

𝒟 > 4 𝒟 = 4 𝒩 > 1

❖ Tensor ( )/Coulomb ( ) branch: Typically described on 
general locus by a simple gauge theory in 

𝒟 = 6 𝒟 < 6
𝒟 > 3

Classification of  SCFTs via the Coulomb branch geometries (Seiberg-Witten curves)𝒟 = 4

Classification of  SCFTs via the tensor branch; Eg single gauge group no matter:𝒟 = 6

Seiberg 96; Bershadski, Vafa 96

Starting with Seiberg, Witten 94; Argyres, Martone 20

SCFT

❖ Higgs branches more complicated: A prescription (motivated  by brane 
constructions) to conjecture the structure of the Higgs branches: an 
auxiliary object called the ``magnetic quiver’’ 

′￼′￼Coulomb Branch′￼′￼
Cabrera, Hanany, Yagi 18; 

many more 
Bourget, Cabrera, Grimminger,

 Hanany, Sperling, Zayac, Zhong 19;
many more



Skeletons I: Moduli Spaces of Vacua

❖  In , as the  R-symmetry is , the Higgs and the Coulomb 
branches are similar (leading to the phenomenon of Mirror symmetry): two branches are 
distinct but no invariant way to say which is Coulomb and which is Higgs   

* 𝒟 = 3 𝒩 = 4 SU(2)H × SU(2)C

❖  In  with  the known theories  have moduli spaces related to real 
crystallographic groups while for  the moduli spaces are conjectured to be 
given by complex crystallographic groups  

* 𝒟 = 4 𝒩 = 4
𝒩 = 3

Γ

❖ The two branches are distinct in general but there are hints of interesting interplay.

Cordova, Gaiotto, Shao 16

❖  There is no universal understanding of branches of vacua with less than eight supercharges *

Beem, Lemos, Liendo, Peelaers, Rastelli, van Rees 13

Eg Argyres, Bourget, Martone 19; Tachikawa, Zafrir 19; Kaidi, Martone, Zafrir 22
ℳ = ℂ3 rank /Γ

❖  Intriguing connection between Coulomb branches of   theories and 
their Higgs (Schur) branches through VOA algebra computations.
* 𝒩 = 2 𝒟 = 4

Hwang, Pasquetti, Sacchi 20/21; Pasquetti, SR, Sacchi, Zafrir 19

❖  Intriguing connection between mirror symmetry of   theories and 
phenomena of self-duality/emergence of symmetry of   theories
* 𝒩 = 4 𝒟 = 3

𝒩 = 1 𝒟 = 4
See talk by Pasquetti



Relations II: in-  Dualities𝒟

❖ The same SCFT can be obtained by deforming different 
SCFTs: Duality (two or more equivalent descriptions) 

❖ This can be an IR duality if RG flow is involved, or conformal 
duality if no flow is involved

❖ An SCFT can be deformed in different ways to obtain 
different SQFTs: UV Duality

❖ One might be able to obtain a given SCFT by exploring 
moduli space of one SCFT and deforming another

❖ An example is AD theories: moduli spaces of  SCFTs and 
RG fixed point of deformed free fixed points

𝒩 = 2

❖ For  this becomes interesting as we can learn about the 
strongly coupled UV SCFT through the different IR SQFTs

𝒟 = 5

Maruyoshi, Song 16; 



Duality examples: Fixed 𝒟

❖  : huge variety of examples with weakly coupled 
conformal manifolds
𝒟 = 4 𝒩 = 1

❖    UV dualities; Eg:𝒟 = 5 𝒩 = 1

❖   IR dualities;   conformal dualities𝒟 = 4 𝒩 = 1 𝒟 = 4 𝒩 = 2, 4
Seiberg 94

ℳc

?

See talk by Pasquetti

Leigh, Strassler 95 Green, Komargodski, Seiberg, Tachikawa,  Wecht  10

SR, Zafrir 18; SR, Sabag, Zafrir 20

G2 SQCD with 3 × 7 ⊕ 27

SCFT1

SCFT2

SCFT1

SCFT1

SCFT2

SCFT2

3 × (2, 2, 1) ⊕ 2 × (2, 1, 3) ⊕ 2 × (1, 2, 3̄) ⊕ (1, 1, 6) ⊕ (1, 1, 6̄)

ℳc

SCFT1

SCFT2

SU(3) × SU(2) × SU(2) quiver with

See eg Aharony, Hanany 98; Bergman, Rodriguez-Gomez, Zafrir 14; Bhardwaj 19;  Apruzzi, Schafer-Nameki, Wang 19

SU(2) × SU(2) with hyper in (2, 2)

SU(3) with 2 × 3 hyper

Eg:

S − duality

S − duality



Matter dimM G
free

F
G

gen

F
a, c

1 NS = 1, NAS = 1, N + 4 U(1)2⇥ U(1)N+3
a = 26N2+21N�1

48 ,

NF = 2N + 6 (5 for SU(2N + 6) for N > 2 has a 1d c = 14N2+15N�1
24

N = 2) subspace preserving
SO(2N + 6� 2x)

⇥USp(2x) for x < N � 1
for N � 2 has a 1d

subspace preserving U(1)
⇥USp(2N � 2)⇥ SO(8)

2 NS = 2, NAS = 3, 1 U(1)⇥ SU(2) U(1)⇥ SU(2) a = 125
48 ,

N = 2 ⇥SU(3) c = 65
24

3 NS = 2, NAS = 2, 1 U(1)⇥ SU(2)2 U(1)2 a = 259
48 ,

N = 3 c = 133
24

4 NS = 1, NAS = 5, 1 U(1)2 ⇥ SU(2) U(1)⇥ SU(2) a = 133
48 ,

NF = 2, N = 2 ⇥SU(5) ⇥USp(4) c = 73
24

5 NS = 1, NAS = 3, 7 U(1)⇥ SU(3) ; a = 341
24 ,

N = 5 has a 1d subspace c = 44
3

preserving SU(2)

6 NS = 1, NAS = 3, 10 U(1)2 ⇥ SU(2) U(1) a = 457
48 ,

NF = 2, N = 4 ⇥SU(3) has a 1d subspace c = 241
24

preserving SU(2)2

7 NS = 1, NAS = 3, 19 U(1)2 ⇥ SU(3) ; a = 23
4 ,

NF = 4, N = 3 ⇥SU(4) has a 1d subspace c = 25
4

preserving U(1)⇥ SU(2)
⇥USp(4)

8 NS = 1, NAS = 3, 27 U(1)2 ⇥ SU(3) ; a = 139
48 ,

NF = 6, N = 2 ⇥SU(6) has a 1d subspace c = 79
24

preserving U(1)⇥ SU(2)4

Table 12.

• In case 6 the preserved SU(2) groups are the one rotating the fundamentals and the
SU(2) ⇢ SU(2)⇥ U(1) ⇢ SU(3). The Cartan of the SU(2) rotating the fundamentals
cannot be broken.

• In case 7 the symmetries are embedded as follows USp(4) ⇢ SU(4), SU(2) ⇢ SU(2)⇥
U(1) ⇢ SU(3). There is also a 1d subspace preserving the SO(4) ⇢ SU(4), SU(2) ⇢
SU(2)⇥ U(1) ⇢ SU(3) symmetry.

• In case 8 the symmetries are embedded as USp(2) ⇥ SO(4) ⇢ SU(6) and SU(2) ⇢
SU(2) ⇥ U(1) ⇢ SU(3). The preserved U(1) is a combination of the commutant and
intrinsic U(1) groups.

– 34 –

Matter dimM G
free

F
G

gen

F
a, c

1 G = SU(4), 1 U(1)4 ⇥ SU(2) U(1)2 ⇥ SU(2) a = 61
16 ,

N20 = 1, N
S
= 1, c = 31

8
NAS = 1,

N
F
= 1, NF = 2

2 G = SU(4), 2 U(1) ; a = 85
24 ,

N200 = 1, NAd = 1 c = 10
3

3 G = SU(4), 1 U(1)⇥ SU(4) SU(2)2 a = 179
48 ,

N200 = 1, NAS = 4 c = 89
24

4 G = SU(4), 2 U(1)3 ⇥ SU(2)3 SU(2)2 a = 61
16 ,

N200 = 1, NAS = 2, has a 1d subspace c = 31
8

NF = N
F
= 2 preserving U(1)⇥ SU(2)2

5 G = SU(6), 1 U(1)3 ⇥ SU(2) SU(2)2 a = 437
48 ,

N20 = 3, NAd = 1, ⇥SU(3) c = 227
24

NAS = 1, N
F
= 2

6 G = SU(6), 3 U(1)⇥ SU(2)2 ; a = 425
48 ,

N20 = 2, NAd = 2 has 1d subspace c = 215
24

preserving U(1)2

7 G = SU(6), 3 U(1)3 ⇥ SU(2)2 U(1)⇥ SU(2)2 a = 37
4 ,

N20 = 2, NAd = 1, ⇥SU(4) has a 1d subspace c = 39
4

NAS = 2, N
F
= 4 preserving U(1)2 ⇥ USp(4)

8 G = SU(6), 2 U(1)4 ⇥ SU(2)⇥ U(1)2 ⇥ SU(2) a = 151
16 ,

NAd = 1, N20 = 2, SU(3)⇥ SU(5) has 1d subspace c = 81
8

NAS = 1, preserving U(1)3 ⇥ USp(4)
NF = 3, N

F
= 5 also has 1d subspace

preserving U(1)2

⇥SU(2)⇥ SU(3)

Table 9.

• In case 9 the preserved SU(2) is SU(2)
F
.

• In case 10 the preserved SU(3) is the diagonal one.

• In case 11 the preserved USp(6) is embedded as USp(6) ⇢ SU(6).

• In case 12 one breaks SU(8) ! U(1) ⇥ SU(2) ⇥ SU(6) where the preserved SU(6) is
the diagonal one.

• In case 13 the SU(2) groups is SU(2)
F
while the USp(4) group is embedded as USp(4) ⇢

SU(4). This case also has a 1d subspace where one preserves U(1)2 ⇥ SU(2), where
now the SU(2) is one of the two SU(2) groups in SU(4) under the same embedding.

– 30 –

Matter dimM G
free

F
G

gen

F
a, c

1 G = SO(7) 102 U(1)⇥ SU(5) U(1) a = 19
3 ,

N8 = 10, NV = 5 ⇥SU(10) has a 1d subspace c = 89
12

preserving U(1)5 ⇥ SU(2)5

2 G = SO(7), NS = 1 1 U(1)2 ⇥ SU(2) U(1)⇥ SU(2)2 a = 65
12 ,

N8 = 2, NV = 4 ⇥SU(4) c = 67
12

3 G = SO(7), NS = 1 1 U(1)2 ⇥ SU(3)2 SU(2) a = 87
16 ,

N8 = 3, NV = 3 c = 45
8

4 G = SO(7), NS = 1 1 U(1)2 ⇥ SU(2) U(1)2 ⇥ SU(2)2 a = 131
24 ,

N8 = 4, NV = 2 ⇥SU(4) c = 17
3

5 G = SO(7), NAS = 1 1 U(1) ; a = 245
48 ,

N35 = 1 c = 119
24

6 G = SO(7), N35 = 1 2 U(1)2 ⇥ SU(4) U(1)2 a = 263
48 ,

N8 = 4, NV = 1 has a 1d subspace c = 137
24

preserving U(1)2 ⇥ SU(2)

7 G = SO(7), N35 = 1 1 U(1)⇥ SU(5) USp(4) a = 11
2 ,

N8 = 5 c = 23
4

8 G = SO(8), N8S = 6 111 U(1)2 ⇥ SU(6)3 U(1)2 a = 33
4 ,

N8C = 6, NV = 6 has a 1d subspace c = 19
2

preserving U(1)4 ⇥ SU(3)2

9 G = SO(8), 1 U(1)2 ⇥ SU(2) SU(2) a = 331
48 ,

NS = 1, NAS = 1, c = 163
24

N8S = 2

10 G = SO(8), NS = 1, 4 U(1)3 ⇥ SU(2)2 U(1) a = 117
16 ,

N8S = 2, N8C = 2, ⇥SU(4) has a 1d subspace c = 61
8

NV = 4 preserving U(1)⇥ SU(2)2

11 G = SO(8), NS = 1, 1 U(1)3 ⇥ SU(6) U(1)2 ⇥ USp(4) a = 117
16 ,

N8S = 1, N8C = 1, c = 61
8

NV = 6

Table 20.

broken. Additionally, the two intrinsic U(1) groups are preserved on the entire conformal
manifold.

• In case 10 the SU(2)2 is the diagonal of the intrinsic SU(2)2 = SO(4) and SO(4) ⇢
SU(4).

• In case 11 the USp(4) is embedded in SU(6) as SO(5) ⇢ SU(5) ⇢ SU(6). The addi-
tional preserved U(1) group is the one acting on the two spinors with opposite charges,
and some combination of the intrinsic U(1) groups and the commutant of SO(5) in
SU(6).

– 43 –

Matter dimM G
free

F
G

gen

F
a, c

1 G = E6 41 U(1)⇥ SU(6)2 ; a = 171
8 ,

N27 = N27 = 6 has a 1d subspace c = 93
4

preserving SU(3)2

2 G = E6, N27 = 7 46 U(1)⇥ SU(5) ; a = 171
8 ,

N27 = 5 ⇥SU(7) has a 1d subspace c = 93
4

preserving SU(2)⇥ SU(3)

3 G = E6, N27 = 8 61 U(1)⇥ SU(4) ; a = 171
8 ,

N27 = 4 ⇥SU(8) has a 1d subspace c = 93
4

preserving U(1)2 ⇥ SU(3)

4 G = E6, N27 = 9 86 U(1)⇥ SU(3) ; a = 171
8 ,

N27 = 3 ⇥SU(9) has a 1d subspace c = 93
4

preserving U(1)2 ⇥ SU(3)2

5 G = E6, N27 = 10 121 U(1)⇥ SU(2) ; a = 171
8 ,

N27 = 2 ⇥SU(10) has a 1d subspace c = 93
4

preserving SU(3)2

6 G = E6, N27 = 11 166 U(1)⇥ SU(11) ; a = 171
8 ,

N27 = 1 has a 1d subspace c = 93
4

preserving SU(3)2

7 G = E6, N27 = 12 221 SU(12) ; a = 171
8 ,

has a 1d subspace c = 93
4

preserving U(1)2 ⇥ SU(3)2

8 G = F4, N26 = 9 85 SU(9) ; a = 117
8 ,

has a 1d subspace c = 65
4

preserving SU(3)2

9 G = G2, N7 = 12 77 SU(12) ; a = 35
8 ,

has a 1d subspace c = 21
4

preserving SU(3)4

10 G = G2, N27 = 1 3 U(1)⇥ SU(3) SU(2) a = 29
8 ,

N7 = 3 has a 2d subspace c = 15
4

preserving SU(3)

Table 24.

U(1)⇥U(1) global symmetry can be preserved. On a generic point of the conformal manifold
all the global symmetry is broken.

In tables 25 and 26 we write all the purely N = 2 cases with a single SU(N) gauge
symmetry that solve (3.1) and (3.2). All cases have one adjoint chiral field coming from
the vector multiplet and we do not write it in the table. In addition, all the theories have
a 1d subspace preserving N = 2 supersymmetry, some cases have additional 1d subspaces
preserving N = 1 supersymmetry and we note it explicitly.

– 51 –
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❖ Q1: What is the S-duality structure of  conformal manifolds ?𝒩 = 1
G

=
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(N
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=
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Duality example: Strongly coupled SCFT from Weakly coupled SQFT

❖ Surprisingly many strongly coupled           SCFTs can be 
described by  Lagrangians; One can search for Lagrangians 
systematically starting from Skeletons using a variety of assumptions 

𝒟 = 4 𝒩 ≥ 1
𝒩 = 1

❖    IR dual to an  SCFT𝒟 = 4 𝒩 = 1 𝒩 = 3 Zafrir  20

ℳc
𝒩 = 3 SCFT

SCFT1

RG

𝒩 = 1 SCFT2

SCFT1

Ggauge = SU(2) × SU(2) with matter in

(2, 2) ⊕ (2, 3) ⊕ (2, 1) ⊕ (3, 1) ⊕ (1, 1)

𝒩 = 3 SCFT

ℳ = ℂ3/ℤ3 a = c =
5
4

Nishinaka, Tachikawa 16 

and W

❖ Note that  supersymmetry (conjecturally) emerges on some locus of 𝒩 = 3 ℳc

See eg Maruyoshi, Song 16; SR, Zafrir 19, 20; Zafrir 19

Garcia Etxebarria, Regalado 15

Garcia Etxebarria, Heidenreich, Lotito, Sorout 21 



An “existential” question: Fixed 𝒟

❖ Q2: For  can all SCFTs be constructed deforming a 
free fixed point?

𝒟 ≤ 4

❖ Q2a: Given an SCFT in  (the skeleton): are there 
obstructions to building a Lagrangian (supersymmetric or not 
supersymmetric)?

𝒟 ≤ 4

❖ In the pre-history (the 90s) one discovered some exotic models by 
exploring moduli spaces (eg AD) or conformal manifolds (eg AS). 
Some properties of these models were known (the skeletons).   

❖ Non-Lagrangian theories:  theories for which a Lagrangian 
construction is currently not known.

Argyres, Douglas 95; Argyres, Seiberg 07 



Obstructions for Lagrangians: fixed 𝒟

❖ `t Hooft anomaly matching: Anomalies are invariants of RG flow and thus 
if we compute them in UV constrain the physics in IR.

{GUV, 𝒜GUV
} {GIR, 𝒜GUV⊂GIR

}

Cordova, Ohmori 19; Brennan, Cordova 20; Del Zotto, Ohmori 20

❖ Generalizations with higher symmetries and anomalies

UV IR

❖ Q2b: Given the full (generalized) symmetries and anomalies of an 
SCFT which sub-structure of this can in principle be realized by free 
fields with gauge and potential interactions?  

{GUV ⊂ GIR, 𝒜GUV⊂GIR
} {GIR, 𝒜GIR

}

UV IR

See eg Gaiotto, Komargodski, Kapustin, Seiberg 17; Komargodski, Ohmori, Roumpedakis, Seifnashri 20;



 Example 𝒟 = 3

𝒩 = 1 WZ 𝒩 = 2 U(1) Nf = 2 𝒩 = 2 SU(3) Nf = 3 CS
GUV = [𝒩 = 2] × T × [SU(2) × U(1)]GUV = [𝒩 = 1] × T × [SU(3)] GUV = [𝒩 = 2] × T × [SU(3)]

GIR = [𝒩 = 2] × T × [SU(3)]
❖  No Lagrangian manifesting the full symmetry known:

❖  Is there a fundamental obstruction or we need to work harder? 

Gaiotto, Komargodski, Wu 18

Benini, Benvenuti 18
Gang, Yonekura 18

Fazzi, Lanir, Sela, SR 18 



 Example𝒟 = 4

❖  SQCD, 2 vectors, 5 spinors of both chiralities, and 
singlets:  
𝒩 = 1 Spin(6)

GUV = SU(2) × SU(5) × U(1) ⊂ SU(2) × SU(6) ⊂ E6 × U(1)

❖ Eg  MN  SCFT has by now several different descriptions 
starting from free fixed point; Eg:

𝒩 = 2 E6

Zafrir 19  

❖ The Lagrangians manifest part of the (super)symmetry, and the rest emerges  in the IR

❖  SQCD with bi-fudundamental and fundamental matter, 
and singlets:  
𝒩 = 1 SU(3) × SU(2)

GUV = U(1)2 × SU(5) × U(1) ⊂ U(1) × SO(10) × U(1) ⊂ E6 × U(1)

Garcia Etxebarria, Heidenreich, Lotito, Sorout 21  

(See also Gadde, SR, Willett  15)

GUV E6 × U(1)



Gauging emergent symmetries: fixed 𝒟

❖ Symmetries of the new fixed point can be larger than the symmetry of 
the original SCFT with the deformation

❖ If we have an SCFT constructed deforming free fixed point we can 
gauge a sub-group of the global symmetry including emergent 
symmetry  

GUV G1
IR > GUV GUV G1

IR G2
IR GUV G1

IR G2
IR

Gauge subgroup of GUV Gauge subgroup of  which
 is not a subgroup of 

G1
IR

GUV

❖ Q2c: What is the subspace of SCFTs in  that can be 
obtained by deforming free fixed points? Is it equal to the 
subspace when we allow gauging emergent symmetries?

𝒟 ≤ 4



Plan:
❖ SQFTs from String Theory

❖ SQFTs from SQFTs

❖ SQFTs from SQFTs in given  𝒟

❖ SQFTs from SQFTs across  𝒟

❖ Moduli spaces ❖ In-  dualities𝒟 ❖ Lagrangians

❖  from 𝒟 = 5 𝒟 = 6 ❖  from 𝒟 = 4 𝒟 = 6

❖ In-  dualities from Across-  dualities𝒟 𝒟 ❖  Dualities𝒟 = 6

❖  SCFTs from  SCFTs𝒟   𝒟 

❖ SQFTs from SQFTs across  𝒟

❖ Across-  dualities𝒟



Relations III: SCFTs from SCFTs  going across s𝒟

❖ For  start from an SCFT in  and place on a 
 dimensional compact surface with background fields; 

At low energy obtain an effective theory in  dimensions 

𝒟 ≤ 5 𝒟′￼> 𝒟
𝒟′￼− 𝒟

𝒟
❖ The resulting theory might be gapped, free, interacting SQFT  

❖ The resulting theory might be a (deformation of) an SCFT in
 or UV completed only in       𝒟 𝒟′￼

❖ For  this is a way to construct numerous lower 
dimensional SCFTs labeled by the compactification 
geometry (  denotes holonomies around the cycles and  
fluxes supported on the surface  for global symmetries)

𝒟 ≤ 4

𝒜 ℱ

𝒞

𝒟′￼

𝒟

𝒞 = (𝕊1, 𝒜)

𝒟′￼= 6

𝒟 = 5

𝒞 = (𝒞2, 𝒜, ℱ)

𝒟′￼= 6

𝒟 = 4

Gaiotto 09A claim to fame:



Dualities across dimensions:  and 𝒟 = 5 𝒟 = 6

❖ In some cases starting with a theory in  and placing it on a 
circle with holonomies the effective theory in  is a gauge theory   

𝒟 = 6
𝒟 = 5

❖ We can view this situation as a duality across dimensions. This is analogous 
to Seiberg ``duality’’ of UV free and IR free theories (ie outside of the 
conformal window)

(𝕊1, 𝒜)

𝒟′￼= 6 𝒟 = 5

ℒ(A, Φ)

❖ Q3: Which  gauge theories are across dimensions dual to 
compactifications of  SCFTs? 

𝒟 = 5
𝒟 = 6

❖ In some cases starting with a theory in  and placing it on a 
circle with holonomies the effective theory is a   SCFT   

𝒟 = 6
𝒟 = 5



Dualities across dimensions:  and 𝒟 = 5 𝒟 = 6

❖ Q3a: Which  gauge theories are UV completed by  SCFTs    
and which are deformations of  SCFTs?

𝒟 = 5 𝒟 = 6
𝒟 = 5

Bhardwaj 19; Bhardwaj, Jefferson, Kim, Tarazi, Vafa 19; Bhardwaj, Zafrir 20 

𝒜1 𝒜2
Eg: =  min. conf. matter(DN+3, DN+3)

G𝒟=5
gauge = SU(2)N or USp(2N ) or SU(N + 1)

See eg  Jefferson, Kim, Vafa, Zafrir 17; Bhardwaj, Jefferson, Kim, Vafa 19;

Jefferson, Katz, Kim, Vafa 18; Apruzzi, Lawrie, Lin, Schafer-Nameki, Wang  19
Apruzzi, Lawrie, Lin, Schafer-Nameki, Wang 19; Apruzzi, Schafer-Nameki, Wang  19; 
Hayashi, Kim, Lee, Taki, Yagi 15;                  

   Kim Strings 17

❖ Q3b: Can all  SCFTs be obtained by circle compactifications of 
 SCFTs?

𝒟 = 5
𝒟 = 6



Dualities across dimensions:  and 𝒟 = 4 𝒟 = 6

❖ In some cases starting with a theory in , placing it on a surface  
with fluxes, the effective theory in  is an interacting SCFT  

𝒟 = 6
𝒟 = 4

❖ Unlike in , in  we can in principle explicitly construct 
interacting SCFTs starting from free fixed points

𝒟 = 5 𝒟 = 4

❖ If such a description exists the situation is similar to Seiberg duality inside 
the conformal window: we have two different UV complete descriptions of 
the same fixed point.

❖ Q4: Does a given geometric construction of  interacting 
SCFT have an explicit construction (dual across dimensions) as a 
deformation of a free fixed point directly in ? 

𝒟 = 4

𝒟 = 4



Dualities across dimensions:  and  𝒟 = 4 (2,0) 𝒟 = 6

❖ A canonical example of across dimensions duality here is taking 
 theory on a genus  Riemann surface A1 (2,0) g

❖ This construction has a dual  description in terms of an  
SQCD with tri-fundamental matter content 

𝒟 = 4 SU(2)2g−2

❖ Another example following recent progress is taking  theory 
on a genus  Riemann surface 

A2 (2,0)
g

❖ This construction has a dual  description in terms of eg an 
 gauge theory where one gauges  subgroup 

of an emergent factors of  symmetry  

𝒟 = 4
Spin(6)2g−2 × SU(3)3g−3 SU(3)3

E6

Gadde, SR, Willett 15; Zafrir 19; Garcia Etxebarria, Heidenreich, Lotito, Sorout 21  

Gaiotto 09

⊕

⊕



Dualities across dimensions:  and  𝒟 = 4 (1,0) 𝒟 = 6

❖ Yet another example of across dimensions duality is taking a   
SCFT, the rank one E-string theory, on a genus  Riemann surface 

(1,0)
g

❖ This construction has a dual  description in terms of an  
SQCD with bi-fundamental and fundamental matter content 

𝒟 = 4 SU(3)2g−2

=

3

3

33

3 3

9 =

rank 1 E − string on

GQFT = SU(9) → E8 ( = G𝒟=6) on ℳc dim ℳc = 3g − 3 + (g − 1) 248 = 3g − 3 + (g − 1) dim E8

SR, Zafrir 19; SR, Sabag 20

⊕



IR

UV

𝒟 = 4

𝒟′￼= 6

𝒞

ℳc

❖ Is UV completed in 𝒟 = 6

❖ Might also have a UV 
completion  in 𝒟 = 4

𝒟 = 4

RG

❖          oftentimes contains irrelevant superpotential interactions; Eg 

W = ϕ 𝒪 + ⋯

eg 𝒪 = QNFree field



Dualities across dimensions: status of  and 𝒟 = 4 𝒟 = 6

❖ Q2d: Do all   SCFTs constructed across  have an explicit 
construction as a deformation of a free fixed point directly in ? 

𝒟 = 4 𝒟
𝒟 = 4

❖ Over time more and more across dimension dualities are discovered.

 conf. matter on a torusADE
 minimal conf. matter on any surface(DN+3, DN+3)

 next to minimal conf. matter on any surface(Ak−1, Ak−1)
 and  minimal SCFTs on any surfaceSU(3) SO(8)

Kim, Vafa, SR, Zafrir 17 and 18; Bah,Hanany, Maruyoshi, SR, Tachikawa, Zafrir 16

SR, Sabag 19 and 20

SR, Zafrir 18

Rank Q E-string on a torus/sphere Pasquetti, SR, Sacchi, Zafrir 19; Hwang, SR, Sabag, Sacchi 21

and more … See eg Gaiotto, SR 15; Zafrir 18; SR, Sela, Zafrir 18; Sela, Zafrir 19

Some  compactifications: Eg (2,0) AD, T3, T4, R0,4, R2,5, MN(2n)
E6

See eg SR, Zafrir 19;
Maruyoshi, Song 16; 

Benvenuti, Giacomelli 18

(1
,0

)

See eg Distler et al



Skeletons II: Generalized symmetries

❖ (Higher form) symmetries from String Theory ❖ Higher group symmetries from String Theory

❖ Can deduce the global symmetries and anomalies from the geometric and 
string theoretic constructions: 

Del Zotto, Garcia Etxebarria, Schafer-Nameki 22;
Bhardwaj 21; and many more

See talk by G
arcia Etxebarria

See eg Cordova, Dumitrescu, Intriligator 20; 
Apruzzi, Bhardwaj, Gould, Schafer-Nameki 22;Morrison, Schafer-Nameki, Willett 20;

Albertini, Del Zotto, Garcia Etxebarria, Hosseini 20;
Bhardwaj, Schafer-Nameki 20; Gukov, Hsin, Pei 20; and many more

❖ Vigorous progress in understanding generalized notions of symmetry in a general QFT: 
higher form, higher group, non-invertible, discrete symmetries and anomalies, gauging

See talk by Ohmori

Bah, Bonetti, Minasian, Nardoni 18-19

See eg  Gaiotto, Kapustin, Seiberg, Willett 14; Tachikawa 17; Benini, Cordova, Hsin 18; 
                                              Cordova, Dumitrescu, Intriligator 18; Gaiotto, Johnson-Freyd 19; many others                                   Shao Strings 21 

❖ The way one argues for all these across dimension dualities is by computing 
the skeleton in both constructions (symmetries, anomalies, BPS spectra, etc) 
and matching them; all these dualities are conjectures; consistency

Bergman, Tachikawa, Zafrir  20



Higher  SQFTs: Holography𝒟

❖ Classification of AdS solutions

❖ Eg: Holographic duals of AD theories; Holographic RG flow; Insights into punctures
Bah 15; Bah, Passias, Tomasiello 17; Gaiotto, Maldacena 09

❖ Some of the constructions of lower  theories from higher  might come in families of growing 
central charges and satisfying all the demands to admit  a Holographic dual. The Holographic duals, 
as usual, can be used to extract some information about lower dimension SCFTs

𝒟 𝒟

Bah, Bonetti, Minasian, Nardoni 21

Eg Gauntlett, Martelli, Sparks, Waldram 04; Gaiotto, Maldacena 10; Ferrero, Gauntlett, Perez Ipina, Martelli, Sparks 20-21;
Apruzzi, Fazzi, Passias, Tomasiello 14; Gaiotto, Tomasiello 14; Bergman, Rodriguez Gomez 12; D’Hoker, Gutperle, Uhlemann 16-17

Anderson, Beem, Bobev, Rastelli 11

Eg Bah, Bonetti, Minasian, Nardoni 19; Bergman, Fazzi, Rodriguez-Gomez, Tomasiello 20; Apruzzi, van Beest,Gould, Schafer-Nameki 21; 

❖ Eg: Generalized symmetries and anomalies from Holography

Bah, Bonetti, Minasian 20;

❖ Free fields from Geometry/Holography Bah, Bonetti, Leung, Weck 21

 across dimensions dual to  SCFT compactifications
 often consist of an SCFT and decoupled free fields

𝒟 = 4 𝒟 = 6

Existence of these fields is inferred first by matching
 `t Hooft anomalies between  and 𝒟 = 4 𝒟 = 6

Can be understood from Holography/ Geometry 
without understanding in detail the  SCFT𝒟 = 4

N N

W = Q1Q2Q3Q4 + ϕ1QN
1 + ϕ2QN

2

Qi

=
probing ℤ2 on 𝒞 = T2

= N M5s



Systematics of Dualities Across Dimensions?

Step 1: 

Step 3:     Understand domain walls in  𝒟 = 5

Step 4:       Understand  VEV flows𝒟 = 6

❖ An approach integrating together various developments:

Step 0: Choose
𝕊1, 𝒜

Step 2: Understand boundary conditions in 𝒟 = 5

See eg Heckman, Jefferson, Rudelius, Vafa 16; Hassler, Heckman 17;
(Even for  a rich problem for  punct.) (2,0) 𝒩 = 1

See eg Gaiotto, Kim 15; Chan, Ganor, Krogh 00

ℱ

punctures

flux for G𝒟=6

Kim, SR, Vafa, Zafrir 17

𝒟 = 4 ℒ

See eg Heckman, Rudelius, Tomasiello 16;
Heckman, Kundu, Zhang 21;

Step 5:       Understand interplay between
                     compactification, flows, and  ℱ

𝒞
,ℱ

𝒞
′￼,ℱ

′￼

𝒞 ≠ 𝒞′￼ #P𝒞 ≥ #P𝒞′￼

𝒟
= 4 ℒ

SR, Sabag, Zafrir 19

 Cordova, Dumitrescu, Intriligator 15 

(Defects, boundaries, and domain walls in more generality)
See eg Gaiotto, Witten 08; Dimofte, Gaiotto, Paquette 17; Wang 21
See talks by Komargodski, Sever

Wang, Xie 18



In  dualities from across  dualities𝒟 𝒟

T4d[T6d; 𝒞] =

𝒞 = ⊕i 𝒞i = ⊕j 𝒞̃ j

= ⊗i T4d[T6d; 𝒞i]

Geometric operation

QFT operation (gauging, superpotential)

𝒞

𝒞1 𝒞2 𝒞̃1 𝒞̃2

= ⊗j T4d[T6d; 𝒞̃ i]

 D
ua

lit
y

𝒟
=

4

G
ai

ot
to

 0
9;

 G
ai

ot
to

, M
oo

re
, N
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ke
 0

9;
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an
y 

m
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y 
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⊕ ⊕

In   dualities follow from consistency of across  dualities𝒟 𝒟



 dualities from across dimension dualities𝒟 = 4

❖ Old dualities from Geometry:  Seiberg dualities,   
S-duality,  Intriligator-Pouliot dualities, …

𝒩 = 1 𝒩 = 2
𝒩 = 1

❖ Q5: Do all dualities in  have a geometric explanation?𝒟 ≤ 4

❖ Novel looking dualities from Geometry: Eg:

99 3 3 10 3 3 10

6 6* Some can be ``proven’’ using old dualities

* But for many dualities a ``proof’’ from fundamental ones is not known

❖ Q5a: Is there a basic set of  dualities?𝒟 ≤ 4 See talk by Pasquetti

❖ Old and New dualities with no known Geometry: Eg ADE  
dualities with two adjoints;  SQCD to quiver mentioned above

𝒩 = 1
G2Eg Kutasov, Schwimmer  95; Intriligator, Wecht 03;

 Kutasov, Lin 14; Intriligator, Nardoni 16

Nazzal, Nedelin, SR 21



  IR dualities𝒟 = 6

❖ Can start from different  SCFTs; deform them by two different 
geometries; and flow to same  SCFT     IR duality

𝒟 = 6
𝒟 = 4 → 𝒟 = 6

𝒞A 𝒞B

SCFTA SCFTB

❖ Eg:  is min.  SCFT,   is rank one E-string;  four 
punctured sphere and  is genus two surface

SCFTA SU(3) SCFTB 𝒞A
𝒞B

99 3 3 SR, Zafrir 18

SCFTA SCFTB

❖ Q6: Can we explain all such  IR dualities from string theory?𝒟 = 6

❖ Many more examples  Ohmori, Shimizu, Yonekura, Tachikawa 15;
 Baume, Kang, Lawrie 21; Kim, SR, Vafa, Zafrir  18



Summary of Classification Questions

? ??

 (??) Eg Bhardwaj, Tachikawa 13𝒟 = 4 𝒩 = 2



Plan:
❖ SQFTs from String Theory

❖ SQFTs from SQFTs

❖ SQFTs from SQFTs in given  𝒟

❖ SQFTs from SQFTs across  𝒟

❖ Moduli spaces ❖ In-  dualities𝒟 ❖ Lagrangians

❖  from 𝒟   𝒟   ❖  from 𝒟   𝒟 

❖ In-  dualities from Across-  dualities𝒟 𝒟 ❖  Dualities𝒟 

❖  SCFTs from  SCFTs𝒟 = 6 𝒟 < 6

❖ SQFTs from SQFTs across  𝒟

❖ Across-  dualities𝒟



Skeletons III: (S)Partition functions from higher  SCFTs𝒟

❖ In the case of across dimensional dualities the partition functions can be used in two ways:

❖ Given a Lagrangian numerous supersymmetric partition functions can be computed using localization

❖ These typically either are, or can be related to, various counting problems 

❖ These partition functions are usually independent of continuous parameters and RG flows

Deduce  of  from  geometry Zℳ𝒟 Tℳ𝒟′￼−𝒟

ℳ𝒟=4 × ℳ𝒟′￼−𝒟=2

on

Deduce  of Zℳ𝒟×ℳ𝒟′￼−𝒟 from across dimensions duality

Obtain Skeletons of lower  strongly coupled SCFTs;
 input into deriving across dimensions dualities

𝒟

Obtain Skeletons of higher  intrinsically strongly coupled SCFTs
from lower dimensional Lagrangians

𝒟

Alday, Gaiotto, Tachikawa  09;
many many others; Le Floch 20

❖ Eg given  dual of  compactification on  can compute partition function 
on , , which encodes non-trivial information about 

𝒟 = 4 𝒟 = 6 𝒞i
ℳ𝒟=4 = ℳα × 𝕊1 Z𝕊1×𝒞i×ℳα

❖ Q7: What can we deduce about        scanning over all  and ? 𝒞i ℳα

Eg HC Kim, S Kim 12 

See eg talk by Paquette



Skeletons III: (S)Partition functions from higher  SCFTs𝒟

❖ (S)Partition functions lead to numerous relations to Physics, Mathematics, and Mathematical Physics

❖ The (s)partition functions  are given in terms of a variety of special functionsZ

❖ Expected physical properties (such as dualities, emergence of symmetry, RG flows) imply exact properties of Z

Eg Nekrasov, Shatashvili  09; Gaiotto, Rastelli, SR 12;

❖ Given a conjectural physical statement test 
against the precise mathematical consequences

❖ From known properties of special functions 
deduce putative physical statements

Math  Physics
→

Physics  Math→

❖ Integrable models

SR 18;  Ruijsenaars 20; Nazzal, Nedelin, SR 21;
 Chen, Haghighat, Kim, Lee, Sperling 21

❖ Gravity and Holography

See talk by Benini 

Eg:

(Classification of integrable models/  SCFTs)𝒟 = 6

Eg van de Bult  Benini, Closset, Cremonesi 11→
Rains  Pasquetti, SR, Sacchi, Zafrir 19→

Eg Dolan, Osborn  08; many others

Eg Spiridonov, Vartanov 12; Gadde 20; Beem, Rastelli 19;

❖ Modularity

Beem, SR, Singh 21; Pan, Peelaers 21;

(See eg Cheng, Dabholkar, Gukov, Murthy and 
many others for lower dimensions) 

Buican, Li, Nishinaka 19                   ?→



  theories from 𝒟 = 6 𝒟 < 6

❖  SCFT compactified on a torus with  minimal 
punctures is across dimensions dual to a circular quiver 
AN−1 (2,0) 𝒟 = 6 k

❖ Conjecture (deconstruction): Take a double scaling limit if large number 
of punctures and close them. Closing punctures is obtained by giving 
VEVs to certain operators. One then obtains the full  SCFT on a 
finite size torus.

𝒟 = 6

Gaiotto 09

Arkani-Hamed, Cohen, Kaplan, Karch, Motl 03

See also Hayling, Papageorgakis, Pomoni, Rodriguez-Gomez 17 See Strings 2018 Cordova



More  theories from 𝒟 = 6 𝒟 < 6

❖ Consider a  SCFT compactified on a torus with  
``minimal’’ punctures and find its across dimensions dual

(1,0) 𝒟 = 6 k

❖ Take a double scaling limit of large number of punctures and close 
them. Does one then obtain the full  SCFT on a finite size torus?𝒟 = 6

❖ Q8: Can all  SCFTs be deconstructed in terms of  SCFTs? 𝒟 = 6 𝒟 = 4

(Ak−1, Ak−1) c . matter

(DN+3, DN+3) min c . matter

?



Bolder question

?

❖ Q8a: Can we construct all SCFTs deforming free fixed points in  
 and taking limits thereof? 𝒟 ≤ 4

❖ SCFTs encode aspects of string theory through holography so maybe this idea 
is not that crazy

❖ This entails constructing new SCFTs from descriptions which manifest 
part of global and space-time (super)symmetry



Additional comments

❖ Q9: Constructing Geometric tools to compute beyond Skeletons?

❖ What about non-supersymmetric  CFTs? Can all these be 
obtained from higher  supersymmetric ones?  

𝒟 ≤ 4
𝒟

❖ Connecting with Bootstrap — the philosophy discussed here focuses 
on relations between theories while bootstrap focuses on fixed points.

See Benetti Genolini, Honda, Kim, Tong, Vafa 20; Bertolini, Mignosa 21 

❖ Q10: Existence of non-supersymmetric  CFTs?𝒟 > 4

❖ Can all CFTs be obtained from theories with eight supercharges?

❖ Lower : Eg across dimension dualities ; ; 
lifting  mirror symmetry to ;  IR dualities ? …

𝒟 𝒟 = 6 → 𝒟 = 3 𝒟 = 5 → 𝒟 = 3
𝒟 = 3 𝒟 = 4 𝒟 = 5

Eg Dimofte, Gukov, Gaiotto 11; Cho, Gang, Kim 20 Eg Sacchi, Sela, Zafrir 21 

Morris 04; De Cessare, Di Pietro, Serone 21 

Eg Hwang, Pasquetti, Sacchi  20 

See talk by Nardoni 



Conclusions

❖ Higher  SQFTs are a very rich laboratory to test theoretical ideas     
in QFT and discover novel results and insights experimentally.

𝒟

❖ The SCFTs in all  are intimately interrelated.𝒟

❖ The higher  world, being intrinsically interacting, forces us to look 
for new ways of thinking.

𝒟



I expect the steady progress to continue …

Thank you for your attention!!

Is all          ?

⊕

Is               enough?

``I would expect steady progress in the coming years.’’
Y. Tachikawa, Strings 2014, Review on SQFTs, Conclusions:


