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access.

We do not have small parameters in which to do a
perturbative expansion. Our most basic notions of field
theory are of a perturbative nature.

Make use of symmetries, look at special limits/
subsectors where things simplify.

Here: study theories with a global symmetry group.
Hilbert space of the theory can be decomposed into
sectors of fixed charge Q.

Study subsectors with large charge Q.

Large charge Q becomes controlling parameter in a
perturbative expansion!
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Is the microscopic theory
accessible!?

weakly coupled

large-N limit strongly coupled

€ expansion ¥

>H5Y work @large Q
4

large Q + large N 4

large Q + € expansion large-Q EFT,

large Q + susy expansion in 1/Q

2
go beyond perturbation theory in 1/Q, calculate
non-perturbative (exponential) corrections!
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The seem to be 2 main categories for systems at large
quantum number:

Superfluid

isolated vacuum
Wilson-Fisher CFT EFT of the moduli
NRCFT (unitary space
Fermi gas) moduli space of vacua
N=2 SCFT in 3d * free boson
asymptotically safe - N=2 theories in 4d
model in 4d
Gross-Neveu model
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Example: Scalar field theories in 2<D<4 have a strongly-
coupled interacting fixed point, the Wilson-Fisher FP.
g2

\ K& et
A \ § CFT, strQneg coupled
\\ § superfluid at large Q
e\ R

| E
O(2N) vector model in D=3:

Sl =Y [ atas [9(0,6)1 (0)00) + r(6]60) + (8160

For r=R/8, this flows to the WF fixed pt in the IR, v« —+
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Simplest example: O(2) model in (2+1) dimensions
Luy = 0u¢* " d — g°(¢7 )7
Flows to Wilson-Fisher fixed point in IR.

Assume that also the IR DOF are encoded by cplx scalar

poir =aeX  Global U(l) symmetry: x — x + const.

Look at scales: put system in box (2-sphere) of scale R
Second scale given by U(I) charge Q:

,01/2 N Q1/2/R
Study the CFT at the fixed point in a sector with

UV scale
1 1/2
— <Ak ¢ 2

<y
NG

cut-off of effective theory
8




The O(2) model

Fixing the charge breaks symmetries:



The O(2) model

Fixing the charge breaks symmetries:
S0O(3,2) x O(2) = SO(3) x D x O(2) ~ SO(3) x D’

/

D" =D — u0O(2)



The O(2) model

Fixing the charge breaks symmetries:
S0O(3,2) x O(2) = SO(3) x D x O(2) ~ SO(3) x D’

/

D" =D — u0O(2)

Broken U(I) - superfluid!



The O(2) model

Fixing the charge breaks symmetries:
S0O(3,2) x O(2) = SO(3) x D x O(2) ~ SO(3) x D’

/

D' =D — p0(2)

Broken U(I) - superfluid!
Dynamics is described by a single Goldstone field X:



The O(2) model

Fixing the charge breaks symmetries:
S0O(3,2) x O(2) = SO(3) x D x O(2) ~ SO(3) x D’

/

D' =D — p0(2)

Broken U(I) - superfluid!
Dynamics is described by a single Goldstone field X:

Lro= k’3/2(au>< 8“)()3/2



The O(2) model

Fixing the charge breaks symmetries:
S0O(3,2) x O(2) = SO(3) x D x O(2) ~ SO(3) x D’

/

D' =D — p0(2)

Broken U(I) - superfluid!
Dynamics is described by a single Goldstone field X:

can get this purely by

_ 3/2 &«
Lro = k3/2(0ux90"x) / dimensional analysis



The O(2) model

Fixing the charge breaks symmetries:
S0O(3,2) x O(2) = SO(3) x D x O(2) ~ SO(3) x D’

/

D' =D — p0(2)

Broken U(I) - superfluid!
Dynamics is described by a single Goldstone field X:

can get this purely by

_ 3/2 &«
Lro = k3/2(0ux90"x) / dimensional analysis

Lowest-energy solution: homogeneous ground state



The O(2) model

Fixing the charge breaks symmetries:
S0O(3,2) x O(2) = SO(3) x D x O(2) ~ SO(3) x D’

/

D' =D — p0(2)

Broken U(I) - superfluid!
Dynamics is described by a single Goldstone field X:

can get this purely by

_ 3/2 &«
Lro = k3/2(0ux90"x) / dimensional analysis

Lowest-energy solution: homogeneous ground state

X = pt,



The O(2) model

Fixing the charge breaks symmetries:
S0O(3,2) x O(2) = SO(3) x D x O(2) ~ SO(3) x D’

/

D' =D — p0(2)

Broken U(I) - superfluid!
Dynamics is described by a single Goldstone field X:

can get this purely by

_ 3/2 &«
Lro = k3/2(0ux90"x) / dimensional analysis

Lowest-energy solution: homogeneous ground state

non-const. vev
X = pt,«



The O(2) model

Fixing the charge breaks symmetries:
S0O(3,2) x O(2) = SO(3) x D x O(2) ~ SO(3) x D’

/

D' =D — p0(2)

Broken U(I) - superfluid!
Dynamics is described by a single Goldstone field X:

can get this purely by

. 3/2 &
Lro = k3/2(0ux90"x) / dimensional analysis

Lowest-energy solution: homogeneous ground state

non-const. vev
X = ut, e

Beyond LO: use dimensional analysis, parity and scale
invariance to determine (tree-level) operators in
effective action (Lorentz scalars of scaling dimension 3,
including couplings to geometric invariants)
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L = ]{3/2,LL3 -+ kl/QR,LL + (875)2)2 — %(VSQX)Q + ...

Compute zeros of inverse propagator for fluctuations
and get dispersion relation:

1

Wi NoR e dictated by conf. invariance 1/vd

= X is indeed a “‘conformal” Goldstone

Are also the quantum effects controlled?

Yes! All effects except Casimir energy of X are suppressed
(negative p-scaling).

Effective theory at large Q:

vacuum + Goldstone + |/Q-suppressed corrections
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N

quantum correction from Casimir energy of Goldstone
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The O(2) model

Testing our prediction:

C
D(Q) = 2?\’%@3/2 + 2/ e 5QY? —0.094 + O(Q™Y?)
Independent calculation on the lattice:
14 | | | |
12 +
10 + 1 Excellent
5 8F { agreement!!
o 5|
4 r ] 01/2 — 0075(10)
2 - 1
MC da}ta ——
it —
O I I I I I
works for small—" 2 4 6 8 10
C h d rge * W h)” 7 Q D. Banerjee, Sh. Chandrasekharan, D. Orlando [hep-th/1707.00711]

Large-charge expansion works extremely well for O(2).
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inhomogeneous ground states possible.

Homogeneous case: same form of ground state,

S0O(3,2) x O(2N) = SO3) x D x U(N) — SO(3) x D' x U(N — 1)

We expect dim[U(N)/U(N-1)] = 2N-| Goldstone d.o.f.

On top of the conformal Goldstone of O(2), a new

sector with N-I| non-relativistic type Il Goldstones and
N-1 massive modes with m=2p appears.
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The O(2N) vector model

Dispersion relation: S

The non-relativistic Goldstones count double.

Nielsen and Chadha; Murayama and Watanabe

Counting type | and type |l modes, indeed,

1 +2(N —1) = 2N — 1 = dim(U(N)/U(N — 1))

Non-relativistic Goldstones contribute to the conformal
dimensions only at higher order.

The ground-state energy is again determined by a single
relativistic Goldstone!

Same formula for scaling dimensions as for O(2):

/N-dependent /universal for O(ZN)

/2 13/2 | 9 1/2 _ 0094 4+ O(O-1/2
zﬁQ F2vmer ' ‘& vegﬂiﬁed at large N for
CP(N_l) mode| delaFuente

15 L. Alvarez-Gaume, O. Loukas, D. Orlando and S. R., arXiv:1610.04495 [hep-th]

D(Q) =



The O(2N) vector model

Testing our prediction:

D(Q) = ;%QS/Q + 2\/E01/2Ql/2 —0.094 + O(Q~'/?)
New lattice data for O(4) model:

12 — - . . . . .

10 ¢

8 N

03/2 — 1068(4)
61/2 — 0083(3)

05 1 15 2 25 3 35 4 45 5
j D. Banerjee, Sh. Chandrasekharan, D. Orlando, S.R. 1902.09542

Again excellent agreement with large-Q prediction!
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The large-N limit
Standard large-N methods, expand path integral around
saddle point (no EFT!)
Start in the UV with
St =Y [ atas [ (@},00)1 (0}00) + (o]0 +

o (41607
For r=R/8, this flows to the WF fixed pt in the IR, v« —+
Instead: keep u finite - explore the RG flow.

Perform Stratonovich transform and add a chemical
potential (= introduce covariant derivative) Do = (9o+m)

5160, X] = Z / s | (Do) (D) + -+ N(ol6) — 5]

2u

Can integrate out ¢:. Because of the chemical potential, A
gets a vev m?

Adding the chemical potential gives us more structure to

work with!
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Leading order in N: in flat space
(m? —r)? A/[mg (m? —r)?
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This is exactly the NLSM for m* = 8,x8"x

This expression contains the full information about the
model. More transparent, if we extract the effective
potential. The LSM has the fOI:m/ vev of radial mode

Lisym = ®*m? — V(D)

° \
E.o.m. for radial mode: q vev of angular mode

2— o
m d(<I>2)V 0

Plugging the solution back in, we must recover

d*m? — V() = L(m)

d=P(m?2)
L is the Legendre transform of V in #2
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The large-N limit

Examine the critical case:
scaling dimension of the lowest operator of a given charge.
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diagrams needed!
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The large-N limit

Examine the critical case:
scaling dimension of the lowest operator of a given charge.

A(Q) 2/Q 3/2 4 0 1/2 - 0 —1/2 -1 0 —3/2
ON 3 (2_N> "5 (2_N> 720 (W) 181440 <2N) e
/

. . L. Alvarez-Gaume, D. Orlando, S.R. 1909.02571
same Q-scaling as in EFT

All these results are straightforwardly obtained thanks to

the interplay between large Q and large N - no Feynman
diagrams needed!

NLO in N: reproduce dispersion relations of Goldstones.
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The large-N limit

Since we have an extra control parameter at large N, we
can go further!
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The large-N limit

Since we have an extra control parameter at large N, we
can go further!

Find coefficients of the expansion (leading order in N):

1 /2 1 /N
/2= 3\ N 2= 3\ g

Comparison to lattice data:

Leading coupling ¢z Subleading coupling ¢y,
0.50 1 "'_ «-«- Large-N: (2/3)N~12 0.50 .- Large-N: (1/6) N2 '
@ Lattice MC, this work @ Lattice MC, this work .

0.45 T T Lattice MC, literature ~ 0.45 A T T Lattice MC, literature I
% . G K
G] " (o)
o 0.40 c 0.40
= 2
o o

o .

2 0.35 S 0.35 JE )
(@) ﬂ (@) ‘.‘
o c o
c o
ki 0.30 A o E 0.30 ﬁ
& . e 0.

0254 T 90254

=
0.20 - ' 0.204 °
2 4 6 8 10 2 4 6 8 10
N N

Singh, arXiv:2203.00059 [hep-lat]



Resurgence analysis

Since we can compute all the coefficients of the large-Q
expansion, we see that it is an asymptotic series which
diverges as (2L)!
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Resurgence analysis

Since we can compute all the coefficients of the large-Q
expansion, we see that it is an asymptotic series which
diverges as (2L)!

We can write the transseries and the non-perturbative

corrections go like
o—2mk\/Q/(2N)

Geometric interpretation: particles of
mass J propagating on the equator of
the 2-sphere.

CFT + resurgence: This picture must work for any N!

The optimal truncation is 0(1/Q) terms.This explains why
the comparison to the lattice calculation works so well.

A. Dondi, I. Kalogerakis, D.Orlando, S.R, arXiv: 2102.12488 [hep-th]
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General dimensions

So far: D=3. Repeat the analysis for general dimension.
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General dimensions

So far: D=3. Repeat the analysis for general dimension.
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|
|
| |
10 | |
5
0
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We see that for 4<D<6 L is unbounded from below.
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If we formally compute the conformal dimension for D=5:
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General dimensions

So far: D=3. Repeat the analysis for general dimension.

[(=D/2) p (m*—r)
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F( D/Q)

LT
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0

al F

We see that for 4<D<6 L is unt;ouiwded from below.
Instability!

If we formally compute the conformal dimension for D=5:

branch1 branch2 branch3 branch 4
f1 ei7‘[/4 e—iTt/4 e37'(1/4 e—37ti/4

43 2 Q§

A(Q) = moFs4(Q) = 2N f1—- (ﬁ)4 \/5(21\1)4 ,
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General dimensions

So far: D=3. Repeat the analysis for general dimension.

L= (2N)[ <4WD1§3§m b (m _r)]
r(-D/2)

T T T T
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10 -
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0
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|
|
_10 |
|
—15
| R R

TR TR R N B
4 5

We see that for 4<D<6 L is unbounded from below.
Instability!
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)R]

branch1 branch2 branch3 branch 4
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Interpretation as non-unitary CFT.
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General dimensions

So far: D=3. Repeat the analysis for general dimension.

[(=D/2) p (m*—r)
£:(2N)[2(47T)D/2m + ™ ]

F(—D/?)

LT
15~
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5}

0

al F

4 5

We see that for 4<D<6 L is unbounded from below.
Instability!
If we formally compute the conformal dimension for D=5:

)R]

Interpretation as non-unitary CFT. Giombi, Hyman:

23 Moser, Orlando, Reffert 2110.07617

branch1 branch2 branch3 branch 4
f1 ei7‘[/4 e—iTt/4 e37'(1/4 e—37ti/4

A(Q) = moFs4(Q) = 2N

f5 e3i7r/4 e—3i7r/4 eTti/4 e—Tti/4






Summary

Concrete examples where a strongly-coupled CFT simplifies

3} large charge. O(2N) model in 3d:in the limit of large
U(l) charge Q, we computed the
| . L
N T € conformal dimensions in a controlled
i \\§ perturbative expansion:
G \\§ - Excellent agreement with lattice
I\ \\\\\
results for O(2), O(4)
+ large Q and large N: path integral at
) g saddle pt., more control than in EFT,
KT aan calculate coefficients

can follow the flow away from
conformal point

find the full effective potential
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Further directions

Further study of supersymmetric models at large R-
Charge (higher_dim. moduli Spaces) Hellerman, Maeda, Orlando, Reffert, Watanabe;

Argyres et al.
Loukas, Orlando, Reffert, Sarkar;

Connection to holography (gravity duals) pets Fuene zoso

Giombi, Komatsu, Offertaler.

Operators with spin; connection to large-spin results

Cuomo, de la Fuente, Monin, Pirtskhalava, Rattazzi; Cuomo

Understanding dualities semi-classically at large charge

Use/check large-charge results in conformal bootstrap

Jafferis and Zhiboedov

Further lattice simulations: inhomogeneous sector,
general O(N) Chandrasekharan et al.

1 1 1 Komargodski, Mezei, Pal, Raviv-Moshe;
C FTS I n Oth e r d I m e n S I O n S (2’ 5 ’ 6) Araujo, Celikbas, Reffert, Orlando;

Moser, Orlando, Reffert
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Further directions

Chern-Simons matter theories @large charge waan

Arias-Tamargo, Rodriguez-Gomez, Russo;

4- 8 expan S i O n @ I a r’ge c h ar'ge Badel, Cuomo, Monin, Rattazzi; Watanabe;

Antipin et al.

Orlando, Reffert, Sannino;

going away from the conformal point g peiizn Reiter

Favrod, Orlando, Reffert; Kravec, Pal;

n O n - re I atiVi Sti C C FTS Orlando, Pellizzani, Reffert;

Hellerman, Swanson; Pellizzani
BO u n d a, ry C FTS a_t I a_ rge Q Cuomo, Mezei, Raviv-Moshe
Wea I( g raVit)’ CO nj c Ct ure Aharony, Palti; Antipin et al.

Study fermionic theories. Can large-charge approach
be used for QCD (e.g. large baryon number)!?

Komargodski, Mezei, Pal, Raviv-Moshe
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Thank you for your
attention!



