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In this talk, I will provide a somewhat abstract answer to the
question “why is entropy better defined in the presence of gravity
than in ordinary quantum field theory?” in the sense that the
generalized entropy

Sgen =
A

4G
+ Sout

is better defined than either term on the right hand side. In the
process, we will also give an answer to the question, “In what
sense is the generalized entropy an entropy of something?”

(Based on arXiv:2206.10780, with V. Chandrasekharan, G.
Penington, and R. Longo, and arXiv.2112.12828.)



In ordinary quantum mechanics, when one considers the
entanglement between two systems A and B, one normally
assumes at the start that each system has its own Hilbert space
HA or HB . The combined system then has a tensor product
Hilbert space HA ⊗HB . A state ψAB in this combined Hilbert
space might be a simple tensor product of states ψA and ψB :

ψAB = ψA ⊗ ψB .

More generally, it might be entangled

ψAB =
k∑

i=1

√
piψ

i
A ⊗ ψi

B , , k > 1

in which case system A (or B) is in a mixed state with a nonzero
von Neumann entropy.



Thus in ordinary quantum mechanics, whether or not a state has a
nonzero entanglement and entanglement entropy is a property of
the state. That is not so for entanglement entropy between
different regions in quantum field theory.

The entanglement entropy between two regions is ultraviolet
divergent and the leading divergence does not depend on the state:
every state looks like the vacuum at short distances.



The root of the problem is that it is not true

that there are separate Hilbert spaces HA and HB for the “inside”
and “outside” regions. There is only a combined Hilbert space H
for the whole system. What the separate regions A and B have are
not Hilbert spaces HA and HB , but only algebras of observables A
and B. These algebras act on H so they can be defined to be von
Neumann algebras (a von Neumann algebra is an algebra of
bounded operators on a Hilbert space that is closed under a certain
type of limiting operation).



There are three types of von Neumann algebra:

(I) A Type I algebra is the algebra of all operators on a Hilbert space.
This is the case we assume in ordinary quantum mechanics. Pure states,
density matrices, and entropies all exist.

The other types are less familiar::

(II) A Type II algebra does not have pure states, but there is a notion of
density matrix and entropy for a system in which the algebra of
observables is of Type II.

(iii) A Type III algebra is the “worst” type – a system whose observables
form a Type III algebra does not have pure states and also does not have
density matrices or entropies.



The bad news:

In quantum field theory, the algebra of observables of a region of
spacetime

is always of Type III. So to a region, one can never associate a
pure state, or a density matrix or entropy. The Type III nature of
the algebra is the “reason” for the universal ultraviolet divergence
of the entanglement entropy.



However, it turns out that including gravity in a semiclassical way
changes the picture: at least in the case of the black hole or de
Sitter space, including gravity at a semiclassical level changes the
algebra of the region outside the horizon from Type III to Type II.
So when gravity is turned on semiclassically, the region outside the
black hole or de Sitter horizon is described by an algebra in which
the notion of entropy is well-defined, though there is no notion of a
quantum mechanical microstate. We get a Type II1 algebra for de
Sitter space, and a Type II∞ algebra for the black hole.



A Type II1 algebra is most simply described as the algebra that acts
on an infinite collection of qubits that are in an almost maximally
mixed state. Consider a system A of N qubits that is maximally
entangled with a second system B also consisting of N qubits:

Ψ =
1

2N/2

N⊗
n=1

∑
i=1,2

|i〉A,n ⊗ |i〉B,n

 .

Let a, a′ be operators that act only on the first k spins of system
A, for some k ≤ N. Define a function

F (a) = 〈Ψ|a|Ψ〉.



Since the density matrix of system A is ρ = 2−NId, we have

F (a) = Tr ρa = 2−NTr a

and hence
F (aa′) = F (a′a) = 2−NTr aa′.

Also
F (1) = 1.

And the function F (a) has a thermodynamic limit because it is
unchanged if we add more maximally entangled spins to the
system (with the given operator a not acting on the added spins).



In the limit N →∞, the function F (a) can be be defined on the
whole algebra A of (bounded) operators on system A, still obeying

F (1) = 1, F (aa′) = F (a′a).

Because of the latter property, the function F is usually called a
trace. We formally define

F (a) = Tr a

but Tr a is not the trace of a in any Hilbert space representation.
It is more like a renormalized trace in which we removed an infinite
factor 2N

∣∣
N→∞. Note that

Tr 1 = 1.



What we have just described is the original Murray-von Neumann
algebra of Type II1, which I claim is isomorphic to the natural
algebra of observables in de Sitter space.

The other important von Neumann algebras are all constructed
similarly:

To get a Type III algebra (relevant in ordinary QFT), we start with
a state that is “fully” but not maximally entangled.

To get a Type II∞ algebra (relevant to a black hole), we include
infinitely many unentangled qubits.



Algebras of Type II or Type III do not have an irreducible
representation in a Hilbert space; whenever such an algebra acts on
a Hilbert space H, it always commutes with another algebra of the
same type. For example, we constructed our Type II algebra A as
the algebra of operators on the “A” part of a bipartite system AB,
so in that construction it commutes with an identical algebra that
acts on system B.



The difference between a Type II algebra and a Type III algebra is
that a Type II algebra has a trace, and a Type III algebra does not.

Moreover, in a Type II algebra, the trace is nondegenerate in the
sense that if G (a) is any linear function of a ∈ A, we have

G (a) = Tr aa′

for some unique a′ ∈ A. In particular if A acts on a Hilbert space
H, and Ψ is a state in H, we can consider the linear function
a→ 〈Ψ|a|Ψ〉. It will be Tr ρa for some “density matrix” ρ ∈ A:

〈Ψ|a|Ψ〉 = Tr ρa.

Thus a state of a Type II algebra has a density matrix.



Once we have density matrices, we can also define entropies;

S(ρ) = −Tr ρ log ρ.

So a state of a Type II algebra has an entropy.



However, in physical terms, the entropy of a state of a Type II
algebra is a sort of renormalized entropy from which an infinite
constant has been subtracted. For example, let us go back to the
system A of N qubits maximally entangled with another such
system B. The A system has entropy N, infinite in the large N
limit. Suppose instead we disentangle k of the N qubits (where we
will keep k fixed as N →∞). The entropy is now N − k. Entropy
of a Type II1 algebra is defined by subtracting N before taking
N →∞. So the maximally mixed state has entropy 0, and the
state with k qubits disentangled has entropy −k .



More formally, we defined the trace by Tr a = 〈Ψ|a|Ψ〉, where Ψ is
the maximally mixed state, so the maximally mixed state has
density matrix ρ = 1 (this is indeed a density matrix since
Tr 1 = 1). So the von Neumann entropy of the maximally mixed
state is

S(ρ) = −Tr 1 log 1 = 0,

and it is not hard to prove that any other density matrix has
strictly negative entropy.



As I have already explained, in ordinary quantum field theory the
algebras

are Type III. But it turns out (at least for the black hole and de
Sitter space) that when we include gravity, things are different:
gravitational effects even for very weak coupling convert the Type
III algebras into Type II algebras. This can be viewed as an
abstract explanation of why entropy is better defined in the
presence of gravity. The details are somewhat different in the two
cases – though they can also be presented in parallel – and today I
will concentrate on the case of de Sitter space.



Here is the setup:

The green region is called a “static patch.” There is a Killing
vector field of “time translations” that is future directed timelike in
the static patch (it is past directed timelike at regions spacelike
separated from the static patch). Let H be the generator of time
translations.



In ordinary quantum field theory in de Sitter space (and also in the
presence of semiclassical gravity) there is a natural de Sitter state
ΨdS which can be obtained by analytic continuation from
Euclidean signature. Correlation functions in the state ΨdS have a
thermal interpretation at the de Sitter temperature TdS = 1/βdS,
where βdS = 2πrdS (rdS is the de Sitter radius). A slightly abstract
way to describe this thermal interpretation is to say that the
“modular Hamiltonian” of the state ΨdS is

Hmod = βdSH.



In ordinary quantum field theory, we would associate to the static
patch a Type III algebra of observables. Including weakly coupled
gravitational fluctuations does not qualitatively change the picture,
but what does really change the picture is that in a closed
universe, such as de Sitter space, the isometries have to be treated
as constraints. This means that we should replace A0 by AH

0 , its
invariant subalgebra. But that does not work: the invariant
subalgebra is trivial. Basically, anything that commutes with H can
be averaged over all the thermal fluctuations and replaced by its
thermal average, a c-number.



To get a reasonable algebra of observables, we include an observer
in the analysis. Of course, in principle an observer should really be
described by the theory, not injected from outside. What it really
means to include an observer is that we consider a “code
subspace” of states in which an observer is present in the static
patch, and then we consider operators that can be defined in the
low energy effective field theory in this code subspace, though they
are not well-defined on the whole Hilbert space.



As a minimal model of the observer, we consider a clock with
Hamiltonian

Hobs = q.

It is physically reasonable to assume that the observer’s energy is
bounded below by 0, so we assume q ≥ 0. Thus the effect of
including the observer is to modify the Hilbert space by

H0 → H0 ⊗ L2(R+).

(Positive half-line since q ≥ 0.) The algebra is likewise extended
from A0 to

A1 = A0 ⊗ B(L2(R+)).

The last factor is the Type I algebra of all bounded operators on
L2(R+); it is generated by q and by p = −i d

dq .



Finally the constraint becomes the total Hamiltonian of the
quantum fields plus the observer:

H → Ĥ = H + Hobs.

The “correct” algebra of observables taking account of the
presence of the observer is therefore

A = AĤ
1 ,

that is, the Ĥ-invariant part of A1.



Once an observer is present, we can “gravitationally dress” any
operator to the observer’s world-line. For any a ∈ A0, the operator

â = e ipHae−ipH

commutes with the constraint Ĥ = H + q. One more operator that
commutes with the constraint is q itself (or equivalently −H). It
follows from classic results of Connes and Takesaki from the 1970’s
that (1) there are no more operators that commute with the
constraint, and (2) the algebra A that is generated by â, a ∈ A0

along with q is of Type II.



The algebra we get this way is isomorphic to the Type II1 algebra
that I described before – acting on the infinite system of almost
maximally entangled qubits – if and only if we impose the
constraint that the observer energy is bounded below. (Otherwise,
we get an algebra of Type II∞ – appropriate for a black hole but
not for de Sitter space.)



Once we get a Type II1 algebra, there is going to be a state of
maximum entropy, with density matrix ρ = 1. It is not difficult to
identify this state:

Ψmax = ΨdS

√
βdSe

−βdSq/2.

In other words, the state of maximum entropy is the state ΨdS

that represents empty de Sitter space, tensored with a thermal
state of the observer at the de Sitter temperature TdS = 1/βdS.



We can draw a few easy conclusions, which harmonize with claims
made in the past by others (such as Banks; Susskind; Dong,
Silverstein, and Torroba). First of all, since the maximum entropy
state has ρ = 1, it has a “flat entanglement spectrum” (all
eigenvalues of the density matrix are equal) and accordingly the
Rényi entropies are constant:

Sα(ρ) =
1

1− α
log Tr ρα = 0.

Given the assertion that de Sitter space has a state of maximum
entropy, this is what one should expect: In ordinary quantum
mechanics, the maximum entropy state of a system is “maximally
mixed,” with a “flat entanglement spectrum” (the density matrix
is a multiple of the identity and all its eigenvalues are equal) and
its Rényi entropies are independent of α.



Since the density matrix is 1, all states are equally likely and the
probability to observe a given fluctuation is

p = exp(−∆S),

where ∆S is the entropy reduction if that outcome is observed.



How can this be compatible with the thermal interpretation of de
Sitter space, according to which the probability of a fluctuation
with energy E is p = e−βE? In fact, even though de Sitter space is
a maximally mixed state of maximum possible entropy, correlation
functions in this state are thermal at the usual de Sitter
temperature. Let us discuss how to see this in the context of the
Type II1 algebra. First of all, ignoring the constraint for the
moment, the time dependence of an operator a ∈ A0 is defined in
the usual way by

a(t) = e iHtae−iHt .

Then time-dependent correlations such as

〈ΨdS|a(t1)a′(t2)|ΨdS〉

have thermal properties that reflect the fact that these correlation
functions can be computed by analytic continuation from
Euclidean signature.



After imposing the constraint, we replace a with the dressed version
â = e ipHae−ipH , and again we define its time dependence by

â(t) = e iHt âe−iHt .

Then, because
HΨdS = 0,

we rather trivially find

〈Ψmax|â(t1)â′(t2)|Ψmax〉 = 〈ΨdS|a(t1)a′(t2)|ΨdS〉.

So correlators of gravitationally dressed operators after imposing
the constraints have the same thermal properties that correlators
of “bare” operators had before imposing the constraints.



Thus – as has been suggested by other authors in the past from a
different point of view – empty de Sitter space is a maximally
mixed state of maximum possible entropy, but nonetheless
correlations in this state are thermal at the de Sitter temperature.



To conclude I will just mention a few of the other topics that you
can read about in the papers:

1) A similar treatment of the black hole;

2) A proof that in the case of a semiclassical state, the entropy
−Trσ log σ of a state of the Type II algebra agrees with the usual
generalized entropy Sgen = A/4G + Sout (up to an additive
constant independent of the state);

3) A concrete formula for the trace in the Type II algebra.


