Discussion Session: Strings, QFT, and Math

Miranda Cheng (UvA) and Sakura Schäfer-Nameki (Oxford)

Strings 2023, Perimeter Institute, July 2023
The Fields of Mathematics

- Geometry
- Topology
- Category Theory
- Algebra/NT
- Functional Analysis: Operator Algebra
- Statistics
- Logic
The Fields of Mathematics... and some of their connections to String Theory/QFT:

Many other connections (probably complete graph).
See [Frenkel]ʼs talk, and [Snowmass/A Panorama Of Physical Mathematics c. 2022: Bah, Freed, Moore, Nekrasov, Razamat, SSN]
The Fields of Mathematics... and some of their connections to String Theory/QFT:
Two connections – biased selection – that have seen a lot of progress in the past few years:

1. Geometry and QFTs: Geometric Engineering
2. Category Theory and Generalized Symmetry
1. Geometry and String Theory/QFT

String Compactifications: Geometry encoding properties of low energy effective theories:

QFT (non-compact)
QG (compact) (see swampland talks).

QFT - Geometry Connection:

1. 8 supercharges:
 geometric classification of superconformal theories (SCFTs):
 Geometries are usually fairly well understood (singular CY):

 Algebraic Geometry \Rightarrow QFT

 - 6d: F-theory on elliptic Calabi-Yau threefold (CY3) classification (modulo frozen phases)
 - 5d: M-theory on canonical CY3 singularities classification (in theory)
 - 4d: IIB on canonical CY3 singularities constructions; classification?
 - 3d: reductions from 5d and 4d, i.e. M on CY3 $\times T^2$ or IIB on CY3 $\times S^1$. Geometric realization of 3d mirror symmetry open problem in general
2. 4 supercharges:
 Geometries are far less well understood. In fact in past years, physics motivation for new geometries were made:

 QFT ⇒ Geometry

 - 4d QFTs: M-theory on G_2 holonomy some recent geometric progress of explicit constructions, using insights from physics (M/IIA reduction leads to new collapsed limits of G_2 spaces to CY3)
 Compact G_2: codimension 7 singularity still wide open problem.

 - 4d SCFTs: M-theory on G_2 holonomy new conjectured constructions of G_2 motivated from reductions of QFTs:
 5d SCFT with 4d $\mathcal{N} = 1$ domain walls
 6d SCFT reductions with fluxes and punctures on M_2
 Proof that these constructions admit torsion-free G_2 structures.
 First principle geometric criterion for conformal invariance?

Lots of progress, and dialog goes both ways: **Geometry ⇔ QFT/Strings.**
2. Category Theory and Generalized Symmetries

- Global symmetries correspond to topological sectors of QFTs [Gaiotto, Kapustin, Seiberg, Willett]

- Codim $p + 1$ topological defects D_{d-p-1} generate p-form symmetry $G^{(p)}$

- Composition/Fusion: Higher-form symmetry groups

 \[D^{(g)}_{d-p-1} \otimes D^{(h)}_{d-p-1} = D^{(gh)}_{d-p-1} \]

 More generically:

 groups replaced by algebras ("non-invertible" symmetries), or more precisely higher-categories

 \[D^{(a)}_{d-p-1} \otimes D^{(b)}_{d-p-1} = \bigoplus_c n_{ab}^c D^{(c)}_{d-p-1} \]
Such non-invertible symmetries are ubiquitous in very standard QFTs and generally give rise to:

Higher-categorical Symmetries.

In a d-dimensional QFT, there can be topological operators D_q of dimensions $q = 0, \cdots, d - 1$. Each layer has a fusion, which in general is non-invertible: fusion $(d - 1)$-category.

E.g. 3d QFT has topological surfaces D_2, lines D_1 and point operators D_0 forming a 2-category:
Fusion Higher-Categorical Symmetries

Examples:

- $n\text{Vec}^\omega_G$ for G finite group corresponds to group-like n-dimensional topological defects, or generally a higher-group: ω generalizes anomalies.

- $n\text{Rep}(G)$ generalizes the category of representations: non-invertible ($n > 1$, and $n = 1$ require G representations)

- Self-duality defects

Classification of possible symmetries translates into classification of fusion higher-categories, including higher-structures, like associators

Lots of very recent math results on fusion higher-categories [Douglas–Reutter, Kong, Johnson-Freyd, Gaiotto, Décoppet, Yu,...] on higher fusion categories, and in physics [Bhardwaj, Bottini, SSN, Tiwari, Bartsch, Bullimore, Ferrari, Wu, · · ·]
Challenge 1: Generalized Charges

What generalizes representations of a symmetry group?

How do categorical symmetries act on physical (not necessarily topological) operators?

Denote q-dim extended operators charged under a symmetry as q-charges.

- Even for invertible $G^{(p)}$ symmetries:

 q-charges of a p-form symmetry $G^{(p)}$ form $(q + 1)$-representations of $G^{(p)}$

- For non-invertible symmetries: [Bhardwaj, SSN]

 q-charges are the topological defects of the $(d + 1)$-dim Symmetry Topological Field theory (SymTFT)

Mathematically the Drinfeld center of the symmetry category: very well developed for 2-categories.

Challenges:

- Develop "representation theory" of categorical symmetries, i.e. determine q-charges, and their realization in QFTs; for $n \geq 3$-categories: computing Drinfeld centers.
Challenges 2: Physical Implications

What are new insights that can be gained from these symmetries? Anomalies? E.g. some simple applications so far classification of gapped phases preserving certain non-invertible symmetries.
Inspiration from cond-mat – see [Wen]’s talk.

Challenges 3:
Are there any interesting implications for Category Theory?
The Fields of Mathematics... and some of their connections to String Theory/QFT: