The Cosmic Neutrino Background

Its distribution on the surface of the Earth and its manipulation on laboratory scales

Savas Dimopoulos

in collaboration with Asimina Arvanitaki

What is the Cosmic Neutrino Background (CvB)?

• Relic neutrinos from the pre-BBN era $\tau_{universe} \sim 0.1$ sec

• They follow a Fermi-Dirac distribution with:

• $T_{\nu} = 1.65 \times 10^{-4} \text{ eV or } 1.95 \text{ K}$

•
$$\langle p_{\nu} \rangle = 6 \times 10^{-4} \text{ eV}$$

• $n_{\nu} = 56 \text{ cm}^{-3}$ per flavor, per helicity mode

• m = 0.1 eV

• The SM expectation for the neutrino-antineutrino asymmetry is $\frac{n_{\nu} - n_{\bar{\nu}}}{n_{\nu}} = 4.4 \times 10^{-9}$

Why is the CvB important?

The Cosmic Neutrino Background (CvB) The CMB

Why is the CvB important?

• Picture of the Universe when it was less than 1 second old

• An entire sector of the Standard Model: 3 flavors and 7+ parameters

• The most abundant SM species (~ photons)

• The only non relativistic neutrinos (Dirac vs Majorana)

• The most abundant source of right-handed neutrinos

Why is the CvB hard to see?

• Ways with which the CvB can interact with matter:

• Scattering $\propto G_F^2$

 ν electron G_F neutron proton

Effects linear in G_F for the CvB

• Only non-zero effect a torque on spins (Stodolsky 1975):

•
$$\Delta E = G_F(n_\nu - n_{\bar{\nu}})\vec{v}_{\nu-rel} \cdot \vec{\sigma} \approx 10^{-47} \text{ eV}$$

vs smallest $\Delta E_{\text{measured}} \approx 10^{-25} \text{ eV}$

• Suppression due to the small $n_{\nu} - n_{\bar{\nu}}$ asymmetry

CvB forces on macroscopic matter*

•
$$\frac{U}{V} = \frac{G_F}{2\sqrt{2}} j_{\nu}^0 j_{0\text{matter}}$$
 vector interaction

•
$$U_{\nu} = \frac{G_F}{2\sqrt{2}}\rho_{\text{matter}} \times \begin{cases} (-)(3Z-A) & \text{for } \nu_e(\bar{\nu}_e) \\ (-)(Z-A) & \text{for } \nu_{\mu,\tau}(\bar{\nu}_{\mu,\tau}) \end{cases}$$

• $U_{\nu} \sim 10^{-14} \text{ eV}$ vs characteristic kinetic energy of $E_{\nu} \sim 10^{-6} \text{ eV}$

*We assume neutrinos are Dirac and simultaneous mass/weak eigenstates

No-go theorem for CvB forces on matter

Langacker et. al. (1982) Cabibbo and Maiani (1982)

Since
$$U_{\text{atom}} = \frac{G_F}{2\sqrt{2}} Q_W j_\nu^0$$
,

$$\vec{F}_{\text{atom}} = -\vec{\nabla} U_{\text{atom}} \propto \vec{\nabla} n_{\nu} = 0$$

The force on matter from a uniform neutrino density is zero

How to evade the no-go theorem: CvB refraction in the Earth

Arvanitaki, SD (2022)

Interaction energy U of neutrinos in matter determines the refractive index

 $\delta_{\nu} \equiv n - 1 = \frac{p_{\text{inside}} - p_{\text{outside}}}{p_{\text{outside}}} = -\frac{m_{\nu}}{p_{\nu}^2}U \sim 10^{-8} - 10^{-7}$

•
$$U_{\nu} = \frac{G_F}{2\sqrt{2}}\rho_{\text{matter}} \times \begin{cases} (-)(3Z - A) & \text{for } \nu_e (\bar{\nu_e}) \\ (-)(Z - A) & \text{for } \nu_{\mu,\tau} (\bar{\nu}_{\mu,\tau}) \end{cases}$$

• Interaction is repulsive (attractive) for $\nu_e(\bar{\nu}_e)$, and $\bar{\nu}_{\mu,\tau}(\nu_{\mu,\tau})$

Neutrinos vs Antineutrinos

Outside the Earth

Traffic jam of neutrinos on the surface is responsible for the excess

Refraction is reduced to neutrino waves incident on a potential well of size U

Refraction is reduced to neutrino waves incident on a potential well of size U

Translational symmetry along the boundary:

Only momentum perpendicular, $p_{\nu_{\perp}}$ to the boundary determines the dynamics

Total reflection occurs when:

$$\frac{p_{\nu_{\perp}}^{2}}{2m_{\nu}} \leq U$$

when $p_{\nu_{\perp}} \leq p_{\nu_{\perp_{c}}} \equiv \sqrt{2m_{\nu}U} = \frac{1}{3 \text{ meters}} \propto \sqrt{G_{F}}$

 The scale of the variation is set by the scale of *p*_{ν_L} = (3 meters)⁻¹ which is the evanescent wave scale

CvB distribution on the surface of the Earth

*This includes possible clustering effects for cosmic neutrinos, maximum of $\mathcal{O}(100)$ only for $m_{\nu} = 0.8 \text{ eV}$

Cosmic Neutrino Background distribution on the Earth's surface

• Neutrino-antineutrino asymmetry larger by a factor of 100,000 in a roughly 3 meter zone above and below the Earth's surface

• This effect opens up new possibilities for Cosmic Neutrino detection

The force from the Earth-induced $\nu - \bar{\nu}$ asymmetry

• The evanescent wave introduces a gradient of (3 meters)⁻¹

•
$$F_{\text{induced}} = -\nabla U \sim 10^{-31} N \frac{V_{\text{Tungsten}}}{(10 \text{ cm})^3}$$

• Force no longer zero but still pretty small

Can we get a bigger effect than the one we get for free?

A diffraction grating for the CvB

Arvanitaki, SD 2023

- Rods of width *w* and length *L* oriented along the surface of a sphere
- Takes advantage of the wave nature of neutrinos $\lambda_{\nu} \sim 2-4$ mm

A rod as a neutrino phase diffractor

Asymmetry pattern of $\delta_{\nu} > 0 - \delta_{\nu} < 0$

A rod as a neutrino phase diffractor

A rod as a neutrino phase diffractor

Asymmetry pattern of $\delta_{\nu} > 0 - \delta_{\nu} < 0$

A rod as a diffractor of the CvB

- Neutrinos are not monochromatic
- Need to average over neutrino momenta
- The effect does not go away and it is of size $k_{\nu} | \delta_{\nu} | L$

A compound neutrino diffractor

• Need to account for neutrinos coming from all directions

Place rods a distance of
$$\frac{w^2}{\lambda_{av}}$$
 from the center

Index of refraction for different materials

 $\delta_{\nu} \equiv n-1$

	ν_e	$ u_{\mu, au} $
$ \delta_{\nu} $ in Water	2×10^{-8}	$1.3 imes 10^{-8}$
$ \delta_ u $ in SiO_2 (rock)	$2.5 imes 10^{-8}$	$2.5 imes 10^{-8}$
$ \delta_{\nu} $ in Iron	$8 imes 10^{-8}$	1.1×10^{-7}
$ \delta_{\nu} $ in Lead	$5.6 imes 10^{-8}$	$1.9 imes 10^{-7}$
$ \delta_{\nu} $ in Mercury	7.1×10^{-8}	$2.2 imes 10^{-7}$
$ \delta_{\nu} $ in Gold	1.1×10^{-7}	3.2×10^{-7}
$ \delta_{\nu} $ in Tungsten	1.1×10^{-7}	$3.1 imes 10^{-7}$
$ \delta_{ u} $ in Depleted Uranium	$8.2 imes 10^{-8}$	$3.2 imes 10^{-7}$

 $\delta_{\nu} > 0$ for $\bar{\nu}_e$ and $\nu_{\mu,\tau}$

A compound diffraction grating

Set-up parameters	Grating 1	Grating 2	Grating 3
Rod Material	Depleted Uranium	Tungsten	Iron
Rod length L	2 meters	10 meters	100 meters
Rod width w	0.08 meters	0.17 meters	0.54 meters
Inter-rod gap w_1	0.03 meters	0.06 meters	0.18 meters
Grating radius R	2 meters	10 meters	72 meters

$\nu - \bar{\nu}$ asymmetry

$\nu - \bar{\nu}$ asymmetry at the center of the grating

$\nu - \bar{\nu}$ asymmetry at the center of the grating

- Size of the asymmetry is roughly $k\delta_{\nu}L$ and grows with size L till the small phase approximation breaks down
- Size of the gradient set by chosen w

• Size of structure set by
$$R \sim \frac{w^2}{\lambda_{\mu}}$$

The force due to the induced $\nu - \bar{\nu}$ asymmetry gradient

- $\vec{F} = -\vec{\nabla} U \propto \vec{\nabla} (n_{\nu} n_{\bar{\nu}})$
- Detector made out of Tungsten or Gold or ... will feel a radial force
- Place different material on a torsion balance: Force turns to torque

Force around the center of the compound diffractor

 $m_{\nu} = 0.1 \text{ eV}$

- Force on $(10 \text{ cm})^3$ Tungsten mass from ν_{μ} or ν_{τ} excess from 100 m iron structure
- Force is bigger by 5 orders of magnitude compared to that from coherent scattering and 3 orders of magnitude larger than the one from the Earth

A diffractor for Dark Matter

A diffractor for QCD Axion Dark Matter

• Relevant for the QCD axion with decay constant $10^8 - 10^{10}$ GeV

• Signal can be up to 1000 times larger than that of the CvB

Conclusions

• The presence of the Earth is enough to significantly modify the local CvB distribution

• CvB and DM can be manipulated at laboratory scales

• Sets a challenging target for new experiments of direct detection of the CvB

• But we have been there before, several times.

Evolution of atomic clock accuracy

Evolution of EDM measurements

Evolution of WIMP cross-section sensitivity

Why am I optimistic?

• Golden age of Small Scale Experiments

Why am I optimistic?

• Golden age of Small Scale Experiments

• The CNB is part of the Standard Model and ACDM cosmology

 Motivation for CNB searches is more akin to the CMB and GW detection than BSM searches

Why am I optimistic?

• Golden age of Small Scale Experiments

• The CNB is part of the Standard Model and *ACDM* cosmology.

 Motivation for CNB searches is more akin to the CMB and GW detection than BSM searches

• Unlike BSM searches, finding nothing would be as important as finding something!

A Cosmic Neutrino Background Telescope?

What did the Universe look like when it was less than 1 second old?...