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OUTLINE

2. What can be measured 
asymptotically?

1. Introduction

Proof at tree-level
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Figure 2: Crossing symmetry illustrated on a 2 ! 3 processes. We cross an electron (photon)

in the scattering process e�� ! e�e�e+ from outgoing (incoming), using a path parametrized

by z. The particles that cross are colored in red. The original scattering amplitude is obtained

for z > 0, but after the analytic continuation to z < 0, we land on the inclusive observable for

measuring a photon in the background of Møller scattering, e�e� ! e�e�. The observable

is obtained as the conjugated S-matrix for the process e�e� ! �X times the S-matrix for

X ! e�e�, where X contains all possible states which must be summed and integrated over.

Note that time flows from right to left in these diagrams. {fig:introcross2}

computed as the expectation value of a graviton in the background of black-hole scattering,

which is precisely the observable in Fig. 2 for z < 0, obtained by replacing the electrons with

black holes and the photon by a graviton. The KMOC formalism has recently been used to

compute gravitational waveforms in perturbation theory by modeling the black holes as heavy

scalars [9–11]. In a recent paper [7], we showed how to e↵ectively compute such observables.

Using the crossing path in Fig. 2, we find a striking result: We can compute the gravita-

tional waveform as an analytic continuation from the scattering amplitude for a graviton and

black hole to scatter into two black holes and an anti-black hole! We therefore have a new way

of computing the gravitational waveform, as well as a host of other asymptotic observables,

as analytic continuations of scattering amplitudes.

The story goes farther beyond these four- and five-point examples. At six points, one can

write down yet other asymptotic observables, such as inclusive measurements and out-of-time

ordered correlators. Starting from a scattering amplitude our conjectured crossing equation

shows what happens when we start with the scattering amplitude AB ! CD, and cross one

incoming particle with one outgoing particle:
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The crossing-equation conjecture is based on rigorous manipulations of o↵-shell correla-
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REVIEW ON CROSSING SYMMETRY

Particles indistinguishable from antiparticles traveling back in time?

Crossing symmetry

MAB!CD = MAC̄!B̄D

Amplitudes for AB ! CD and AC̄ ! B̄D are boundary values
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Crossing symmetry would allow us to use 
results from previous computations:
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CROSSING SYMMETRY IN 2 TO 2 SCATTERING
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Proven for the non-perturbative amplitude at fixed momentum transfer t<0 
in theories with mass gap
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The central topic of this talk: 

What is the result of analytically continuing scattering amplitudes?

?
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Takeaway point: 

Analytic continuation from M lands on something new
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Crossing Equation, 2 particles
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HERE: RELATE ASYMPTOTIC OBSERVABLES

Crossing equation describes the result of analytic continuation

We will learn: Scattering amplitudes are part of a larger family of observables, 
related by analytic continuation
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Figure 2: Crossing symmetry illustrated on a 2 ! 3 processes. We cross an electron (photon)

in the scattering process e�� ! e�e�e+ from outgoing (incoming), using a path parametrized

by z. The particles that cross are colored in red. The original scattering amplitude is obtained

for z > 0, but after the analytic continuation to z < 0, we land on the inclusive observable for

measuring a photon in the background of Møller scattering, e�e� ! e�e�. The observable

is obtained as the conjugated S-matrix for the process e�e� ! �X times the S-matrix for

X ! e�e�, where X contains all possible states which must be summed and integrated over.

Note that time flows from right to left in these diagrams. {fig:introcross2}

computed as the expectation value of a graviton in the background of black-hole scattering,

which is precisely the observable in Fig. 2 for z < 0, obtained by replacing the electrons with

black holes and the photon by a graviton. The KMOC formalism has recently been used to

compute gravitational waveforms in perturbation theory by modeling the black holes as heavy

scalars [9–11]. In a recent paper [7], we showed how to e↵ectively compute such observables.

Using the crossing path in Fig. 2, we find a striking result: We can compute the gravita-

tional waveform as an analytic continuation from the scattering amplitude for a graviton and

black hole to scatter into two black holes and an anti-black hole! We therefore have a new way

of computing the gravitational waveform, as well as a host of other asymptotic observables,

as analytic continuations of scattering amplitudes.

The story goes farther beyond these four- and five-point examples. At six points, one can

write down yet other asymptotic observables, such as inclusive measurements and out-of-time

ordered correlators. Starting from a scattering amplitude our conjectured crossing equation

shows what happens when we start with the scattering amplitude AB ! CD, and cross one

incoming particle with one outgoing particle:
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The crossing-equation conjecture is based on rigorous manipulations of o↵-shell correla-
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PREVIOUS PROGRESS ON CROSSING

独Proposed for quantum field theory in 1954 

独Proven for non-perturbative 2!2 and 2!3 scalar amplitudes, assuming mass gap 
- Proofs use mass gap, causality, unitarity, and analytic extension theorems 

独Recent progress in Chern-Simons theories and string theory for 2!2 amplitudes 

独Proven in the planar limit to any multiplicity using perturbation theory 

Challenge: understand connection between crossing and physical principles

[Gell-Mann, Goldberger, Thirring]

[Bros, Epstein, Glaser 1964, 1965; Bros 1986]

[Mizera 2021]

[See e.g. Jain, Mandlik, Minwalla, Takimi, Wadia, Yokoyama 2014; Lacroix, Erbin, 
Sen 2018; Mehta, Minwalla, Patel, Prakash, Sharma 2022; Gabai, Sandor, Yin 2022]
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ordered correlators. Starting from a scattering amplitude our conjectured crossing equation

shows what happens when we start with the scattering amplitude AB ! CD, and cross one

incoming particle with one outgoing particle:
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The crossing-equation conjecture is based on rigorous manipulations of o↵-shell correla-
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Axioms

1. Algebra of asymptotic measurements in the far past and far future,
⇥
a1, a

†
2

⇤
= �1,2 2p

0
1(2⇡)

D�1�D�1(~p1 � ~p2)

⇥
b1, b

†
2

⇤
= �1,2 2p

0
1(2⇡)

D�1�D�1(~p1 � ~p2)

2. These operators act on equivalent Hilbert spaces and are related by a unitary
evolution operator S:

b = S†aS, b† = S†a†S; SS† = 1

3. There exists a time-invariant vacuum |0i:

ai|0i = bi|0i = 0, S|0i = |0i

4. Stability:
Sa†i |0i = a†i |0i, Sb†i |0i = b†i |0i,

ASYMPTOTIC ALGEBRA IN QUANTUM FIELD THEORY

ain

<latexit sha1_base64="9Z8SJfKKmqIbaLv6MhKUQorVBwU=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M7QIrkoigroruHFZwT6gDWEynbRDZ5IwMxFqyJe4caGIWz/FnX/jpM1CWw8MHM65lzn3BAlnSjvOt1XZ2Nza3qnu1vb2Dw7r9tFxT8WpJLRLYh7LQYAV5SyiXc00p4NEUiwCTvvB7Lbw+49UKhZHD3qeUE/gScRCRrA2km/XsZ+NBNZTKTIW5blvN52WswBaJ25JmlCi49tfo3FMUkEjTThWaug6ifYyLDUjnOa1UapogskMT+jQ0AgLqrxsETxHZ0YZozCW5kUaLdTfGxkWSs1FYCaLjGrVK8T/vGGqw2vPHJSkmkZk+VGYcqRjVLSAxkxSovncEEwkM1kRmWKJiTZd1UwJ7urJ66R30XIvWzf3l812o6yjCqfQgHNw4QracAcd6AKBFJ7hFd6sJ+vFerc+lqMVq9w5gT+wPn8AjymTmQ==</latexit>
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Axioms

1. Algebra of asymptotic measurements in the far past and far future,
⇥
a1, a

†
2

⇤
= �1,2 2p

0
1(2⇡)

D�1�D�1(~p1 � ~p2)

⇥
b1, b

†
2

⇤
= �1,2 2p

0
1(2⇡)

D�1�D�1(~p1 � ~p2)

2. These operators act on equivalent Hilbert spaces and are related by a unitary
evolution operator S:

b = S†aS, b† = S†a†S; SS† = 1

3. There exists a time-invariant vacuum |0i:

ai|0i = bi|0i = 0, S|0i = |0i

4. Stability:
Sa†i |0i = a†i |0i, Sb†i |0i = b†i |0i,

ASYMPTOTIC ALGEBRA IN QUANTUM FIELD THEORY

ain
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Assume Bose/Fermi 
statistics, flat space, 
Poincaré invariance

}
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What can be measured asymptotically?

Using this algebra,
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4 PT ASYMPTOTIC MEASUREMENTS4 pts

h0|b4b3a
†
2a

†
1|0i = inh43|S|21iin =

13

4 2
S

h0|a4a3b
†
2b

†
1|0i = inh43|S

†
|21iin =

13

4 2
S†

h0|a4a3a
†
2a

†
1|0i = inh43|21iin = 0

h0|b4b3b
†
2b

†
1|0i = inh43|21iin = 0
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4 PT ASYMPTOTIC MEASUREMENTS

Time flows to the left in all diagrams

Axioms
1. Algebra of asymptotic measurements in the far past and far future,

⇥
a1, a

†
2

⇤
= �1,2 2!1(2⇡)

D�1�D�1(~p1 � ~p2)

⇥
b1, b

†
2

⇤
= �1,2 2!1(2⇡)

D�1�D�1(~p1 � ~p2)

2. These operators act on equivalent Hilbert spaces and are related by a unitary

evolution operator S:

b = S†aS, b† = S†a†S; SS† = 1

3. There exists a time-invariant vacuum |0i:

ai|0i = bi|0i = 0, S|0i = 0

4. Stability:

Sa†i |0i = a†i |0i, Sb†i |0i = b†i |0i,

4 pts

h0|b4b3a
†
2a

†
1|0i = inh43|S|21iin =

13

4 2
S

h0|a4a3b
†
2b

†
1|0i = inh43|S

†
|21iin =

13

4 2
S†

h0|a4a3a
†
2a

†
1|0i = inh43|21iin = 0

h0|b4b3b
†
2b

†
1|0i = inh43|21iin = 0
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5 PT ASYMPTOTIC MEASUREMENTS

(plus forward terms and Hermitian conjugates)

5 pts

h0|b5b4b3a
†
2a

†
1|0i = inh543|S|21iin =

13
4

25
S

h0|a5a4a3b
†
2b

†
1|0i = inh543|S

†
|21iin =

133
4

25
S†

h0|a5a4b3a
†
2a

†
1|0i = inh54|b3|21iin = 4

5

1

2

3

XS† S

h0|a5a4b
†
3a

†
2a

†
1|0i = inh54|b

†
3|21iin = 4

5

1

2

3

XS† S

(plus forward terms and Hermitian conjugates)25



5 PT ASYMPTOTIC MEASUREMENTS

(plus forward terms and Hermitian conjugates)

5 pts

h0|b5b4b3a
†
2a

†
1|0i = inh543|S|21iin =

13
4

25
S

h0|a5a4a3b
†
2b

†
1|0i = inh543|S

†
|21iin =

133
4

25
S†

h0|a5a4b3a
†
2a

†
1|0i = inh54|b3|21iin = 4

5

1

2

3

XS† S

h0|a5a4b
†
3a

†
2a

†
1|0i = inh54|b

†
3|21iin = 4

5

1

2

3

XS† S

(plus forward terms and Hermitian conjugates)26



5 pts

h0|b5b4b3a
†
2a

†
1|0i = inh543|S|21iin =

13
4

25
S

h0|a5a4a3b
†
2b

†
1|0i = inh543|S

†
|21iin =

133
4

25
S†

h0|a5a4b3a
†
2a

†
1|0i = inh54|b3|21iin = 4

5

1

2

3

XS† S

h0|a5a4b
†
3a

†
2a

†
1|0i = inh54|b

†
3|21iin = 4

5

1

2

3

XS† S

(plus forward terms and Hermitian conjugates)

5 PT ASYMPTOTIC MEASUREMENTS

(plus forward terms and Hermitian conjugates)

Insert a complete set 
of states X, integrate 

inclusively over 
phase space

Axioms
1. Algebra of asymptotic measurements in the far past and far future,

⇥
a1, a

†
2

⇤
= �1,2 2!1(2⇡)

D�1�D�1(~p1 � ~p2)

⇥
b1, b

†
2

⇤
= �1,2 2!1(2⇡)

D�1�D�1(~p1 � ~p2)

2. These operators act on equivalent Hilbert spaces and are related by a unitary

evolution operator S:

b = S†aS, b† = S†a†S; SS† = 1

3. There exists a time-invariant vacuum |0i:

ai|0i = bi|0i = 0, S|0i = 0

4. Stability:

Sa†i |0i = a†i |0i, Sb†i |0i = b†i |0i,

Axioms
1. Algebra of asymptotic measurements in the far past and far future,

⇥
a1, a

†
2

⇤
= �1,2 2!1(2⇡)

D�1�D�1(~p1 � ~p2)

⇥
b1, b

†
2

⇤
= �1,2 2!1(2⇡)

D�1�D�1(~p1 � ~p2)

2. These operators act on equivalent Hilbert spaces and are related by a unitary

evolution operator S:

b = S†aS, b† = S†a†S; SS† = 1

3. There exists a time-invariant vacuum |0i:

ai|0i = bi|0i = 0, S|0i = 0

4. Stability:

Sa†i |0i = a†i |0i, Sb†i |0i = b†i |0i,27



EXAMPLE 6 PT ASYMPTOTIC MEASUREMENTS

Scattering amplitudes Out-of-time-ordered correlatorsInclusive amplitudes

Example measurements at 6 pts

h0|b6b5b4a†
3a

†
2a

†
1|0i

14
25
36

S

h0|a6a5b
†
4b3a

†
2a

†
1|0i

5

6

1

2

3

4

XS† S

h0|b6b5a†
4b3a

†
2a

†
1|0i

5

6

1

2

3

4

S S† SX Y
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Example measurements at 6 pts
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†
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†
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Example measurements at 6 pts
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EXAMPLE N-PT ASYMPTOTIC MEASUREMENTS

More generally: 

S† S
g

g g

g

Black holes

g g

Figure 3. Hawking radiation blabla {fig:HawkingRadiation0}

states. Exclusive amplitudes involving a small number of additional particles are then likely

to be exponentially small ⇠ e�S/2, from general statistical considerations. On the other hand,

inclusive amplitudes like (2.13) (which captures, among other information, the spectrum of

Hawking radiation, see fig. 3) are generally not exponentially small. Generally, we would like

to understand all the possible relations between inclusive and exclusive amplitudes. [SCH:

elaborate on extremal BH+particle+particle examples, somehow?]

2.3 General inclusive observables

It will be useful to systematically enumerate the di↵erent measurements involving n asymp-

totic operators, and to introduce a uniform notation for them.

To address this question systematically, let us first fix a given ordering of the operators

a, a†, b, b†, thus yielding 4n options for potential asymptotic measurements. We will assume

in this discussion that the momenta in each a† is di↵erent from those in a’s, and that the

momenta in each b† is di↵erent from those in b’s, so that we can ignore c-number commutators

like (??).

The first step is to eliminate all b’s and b†’s to a’s and a†’s via (2.2), so as to get a string

of just a, a†, S and S†’s. As before, we also use properties of the vacuum (2.3) and stability

(2.4) to eliminate S or S†’s that act on the vacuum, or which are just one step removed from

the vacuum. Finally, commutators allow us to move all a’s to the left of a†’s. As a result, all

measurements can be brought into the form:

h0| a · · · a| {z }
k2s

S a† · · · a†| {z }
k2s�1

a · · · a| {z }
k2s�2

S† · · ·S† a† · · · a†| {z }
k3

a · · · a| {z }
k2

S a† · · · a†| {z }
k1

|0i , (2.17) {eq:measurement-type}{eq:measurement-type}

together with their Hermitian conjugate. The particle labels are suppressed for clarity and

the numbers ki denote the length of the chains of a’s and a†’s with
P2s

i=1 ki = n. The total

of n operators a and a† are separated by s operators S and S†, which have to alternate. As

a shorthand, we will denote (2.17) as

– 7 –

Forward contributions

S = iM + iM +
iM

+

+
iM

iM
+ + perms.

(1)

We expand in terms of connected components:
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PHYSICAL INTERPRETATION OF ASYMPTOTIC OBSERVABLES

[See e.g. Shenker, Stanford 2013; Maldacena, Shenker, Stanford 
2015; Kosower, Maybee, O’Connell 2018; Caron-Huot 2022]

Frame Title

inh0|bn · · · bj+1a
†
j · · · a

†
1|0iin : Scattering amplitude

inh54|b3|21iin : Expectation value of electromagnetic field in a scattering experiment /
Gravitational waveform detected by LIGO

lim
p3!p4

inh65|b4b
†
3|21iin : Inclusive cross section / inclusive particle number

inh6|b
†
5a4b

†
3a

†
2|1iin : Out-of-time-ordered correlator

30

Frame Title

inh0|bn · · · bj+1a
†
j · · · a

†
1|0iin : Scattering amplitude

inh54|b3|21iin : Expectation value of electromagnetic field in a scattering experiment /
Gravitational waveform detected by LIGO-Virgo-KAGRA

lim
p3!p4

inh65|b4b
†
3|21iin : Inclusive cross section / inclusive particle number

inh6|b
†
5a4b

†
3a

†
2|1iin : Out-of-time-ordered correlator



Takeaway points: 

独S-matrix only one of exponentially many asymptotic observables 

独Asymptotic observables are physical; already being measured and computed

In this talk: 

独Relate asymptotic observables to one another via analytic continuations
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OUTLINE

2. What can be measured 
asymptotically?

1. Introduction

Proof at tree-level

1. Classify edges with p+I ⇠ z in red, p�I ⇠ 1 in blue, as z ! 1

pµb (z) =
�
zp+b ,

1
zp

�
b , p

?
b

�
, pµc (z) =

�
zp+c ,

1
zp

�
c , p

?
c

�

(1)

2. Get connected red and blue trees

R = B = (2)

Master integrals

1

23

4

5
s12 s45

s13

2

13

4
5

s12

s23

1

23

4

p2

p1p45

p3

s45

s12

s23

1

23

5
4

p2

p1p45

p3

s45

s34
s12

s51

s23

1

23

4

5

p2

p1p45

p3

4. Examples3. Crossing equation
Crossing Equation, 2 particles
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Crossing Equation, 2 particles
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5 pts

h0|b5b4b3a
†
2a

†
1|0i = inh543|S|12iin =

13
4

25
S

h0|a5a4a3b
†
2b

†
1|0i = inh543|S

†
|12iin =

133
4

25
S†

h0|a5a4b3a
†
2a

†
1|0i = inh54|b3|12iin = 4

5

1

2

3

XS† S

h0|a5a4b
†
3a

†
2a

†
1|0i = inh54|b

†
3|12iin = 4

5

1

2

3

XS† S

(plus forward terms and Hermitian conjugates)

Crossing Equation, 2 particles

23

S

B

A

C

D

Cross 2 $ 3
3̄2̄

S†

SS
Y X

C

A

B

D

z

e�

e�
e�

e�

�

XS S†

e�
e�

�

e�

e+

S

Figure 2: Crossing symmetry illustrated on a 2 ! 3 processes. We cross an electron (photon)

in the scattering process e�� ! e�e�e+ from outgoing (incoming), using a path parametrized

by z. The particles that cross are colored in red. The original scattering amplitude is obtained

for z > 0, but after the analytic continuation to z < 0, we land on the inclusive observable for

measuring a photon in the background of Møller scattering, e�e� ! e�e�. The observable

is obtained as the conjugated S-matrix for the process e�e� ! �X times the S-matrix for

X ! e�e�, where X contains all possible states which must be summed and integrated over.

Note that time flows from right to left in these diagrams. {fig:introcross2}

computed as the expectation value of a graviton in the background of black-hole scattering,

which is precisely the observable in Fig. 2 for z < 0, obtained by replacing the electrons with

black holes and the photon by a graviton. The KMOC formalism has recently been used to

compute gravitational waveforms in perturbation theory by modeling the black holes as heavy

scalars [9–11]. In a recent paper [7], we showed how to e↵ectively compute such observables.

Using the crossing path in Fig. 2, we find a striking result: We can compute the gravita-

tional waveform as an analytic continuation from the scattering amplitude for a graviton and

black hole to scatter into two black holes and an anti-black hole! We therefore have a new way

of computing the gravitational waveform, as well as a host of other asymptotic observables,

as analytic continuations of scattering amplitudes.

The story goes farther beyond these four- and five-point examples. At six points, one can

write down yet other asymptotic observables, such as inclusive measurements and out-of-time

ordered correlators. Starting from a scattering amplitude our conjectured crossing equation

shows what happens when we start with the scattering amplitude AB ! CD, and cross one

incoming particle with one outgoing particle:

23

S

B

A

C

D

cross 2 $ 3
32

S†

SS
Y X

C

A

B

D (1.1) {eq:crossingintro}{eq:crossingintro}

The crossing-equation conjecture is based on rigorous manipulations of o↵-shell correla-

– 6 –
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Contour of continuation
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CONTOUR OF CONTINUATION
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We propose an on-shell contour of analytic continuation which exchanges 
incoming and outgoing states with a parameter z 
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CROSSING PATH IN PRACTICE
Tree-level revisited

M345 12 =
2

3 1
4

5
=

g3

(s45 �m2
45 + i")(s13 �m2

13)
,

(I.) Analytic continuation path: s13 rotates, s45 stays fixed,

[M345 12]s
y
13

=
g3

(s45 �m2
45 + i")(s13 �m2

13 � i")

<latexit sha1_base64="6T7c7JwzLsyyZfT+am6OAWVvEfs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSQ3fSK1fcqjsDWSZeTiqQo94rf3X7MUsjrpBJakzHcxP0M6pRMMknpW5qeELZiA54x1JFI278bHbphJxYpU/CWNtSSGbq74mMRsaMo8B2RhSHZtGbiv95nRTDaz8TKkmRKzZfFKaSYEymb5O+0JyhHFtCmRb2VsKGVFOGNpySDcFbfHmZNM+q3mX1/P6iUrvJ4yjCERzDKXhwBTW4gzo0gEEIz/AKb87IeXHenY95a8HJZw7hD5zPH6EojW8=</latexit>

}

<latexit sha1_base64="6T7c7JwzLsyyZfT+am6OAWVvEfs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSQ3fSK1fcqjsDWSZeTiqQo94rf3X7MUsjrpBJakzHcxP0M6pRMMknpW5qeELZiA54x1JFI278bHbphJxYpU/CWNtSSGbq74mMRsaMo8B2RhSHZtGbiv95nRTDaz8TKkmRKzZfFKaSYEymb5O+0JyhHFtCmRb2VsKGVFOGNpySDcFbfHmZNM+q3mX1/P6iUrvJ4yjCERzDKXhwBTW4gzo0gEEIz/AKb87IeXHenY95a8HJZw7hD5zPH6EojW8=</latexit>

}
s13 rotates

s45 stays fixed
sI

sI2Z

sI2NsI2N

sI2Z (14)Mixed invariants 
rotate

Uniform invariants 
stay fixed
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Crossing Equation, 2 particles
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Crossing Equation for 2-particle crossing:

[See also Bros 1986]
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Figure 2: Crossing symmetry illustrated on a 2 ! 3 processes. We cross an electron (photon)

in the scattering process e�� ! e�e�e+ from outgoing (incoming), using a path parametrized

by z. The particles that cross are colored in red. The original scattering amplitude is obtained

for z > 0, but after the analytic continuation to z < 0, we land on the inclusive observable for

measuring a photon in the background of Møller scattering, e�e� ! e�e�. The observable

is obtained as the conjugated S-matrix for the process e�e� ! �X times the S-matrix for

X ! e�e�, where X contains all possible states which must be summed and integrated over.

Note that time flows from right to left in these diagrams. {fig:introcross2}

computed as the expectation value of a graviton in the background of black-hole scattering,

which is precisely the observable in Fig. 2 for z < 0, obtained by replacing the electrons with

black holes and the photon by a graviton. The KMOC formalism has recently been used to

compute gravitational waveforms in perturbation theory by modeling the black holes as heavy

scalars [9–11]. In a recent paper [7], we showed how to e↵ectively compute such observables.

Using the crossing path in Fig. 2, we find a striking result: We can compute the gravita-

tional waveform as an analytic continuation from the scattering amplitude for a graviton and

black hole to scatter into two black holes and an anti-black hole! We therefore have a new way

of computing the gravitational waveform, as well as a host of other asymptotic observables,

as analytic continuations of scattering amplitudes.

The story goes farther beyond these four- and five-point examples. At six points, one can

write down yet other asymptotic observables, such as inclusive measurements and out-of-time

ordered correlators. Starting from a scattering amplitude our conjectured crossing equation

shows what happens when we start with the scattering amplitude AB ! CD, and cross one

incoming particle with one outgoing particle:

23
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cross 2 $ 3
32

S†

SS
Y X
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D (1.1) {eq:crossingintro}{eq:crossingintro}

The crossing-equation conjecture is based on rigorous manipulations of o↵-shell correla-
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Figure 2: Crossing symmetry illustrated on a 2 ! 3 processes. We cross an electron (photon)

in the scattering process e�� ! e�e�e+ from outgoing (incoming), using a path parametrized

by z. The particles that cross are colored in red. The original scattering amplitude is obtained

for z > 0, but after the analytic continuation to z < 0, we land on the inclusive observable for

measuring a photon in the background of Møller scattering, e�e� ! e�e�. The observable

is obtained as the conjugated S-matrix for the process e�e� ! �X times the S-matrix for

X ! e�e�, where X contains all possible states which must be summed and integrated over.

Note that time flows from right to left in these diagrams. {fig:introcross2}

computed as the expectation value of a graviton in the background of black-hole scattering,

which is precisely the observable in Fig. 2 for z < 0, obtained by replacing the electrons with

black holes and the photon by a graviton. The KMOC formalism has recently been used to

compute gravitational waveforms in perturbation theory by modeling the black holes as heavy

scalars [9–11]. In a recent paper [7], we showed how to e↵ectively compute such observables.

Using the crossing path in Fig. 2, we find a striking result: We can compute the gravita-

tional waveform as an analytic continuation from the scattering amplitude for a graviton and

black hole to scatter into two black holes and an anti-black hole! We therefore have a new way

of computing the gravitational waveform, as well as a host of other asymptotic observables,

as analytic continuations of scattering amplitudes.

The story goes farther beyond these four- and five-point examples. At six points, one can

write down yet other asymptotic observables, such as inclusive measurements and out-of-time

ordered correlators. Starting from a scattering amplitude our conjectured crossing equation

shows what happens when we start with the scattering amplitude AB ! CD, and cross one

incoming particle with one outgoing particle:
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cross 2 $ 3
32
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D (1.1) {eq:crossingintro}{eq:crossingintro}

The crossing-equation conjecture is based on rigorous manipulations of o↵-shell correla-

– 6 –

Minus sign from S = 1 + i(2⇡)D�D(⌃pi)M
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Crossing Equation for 2-particle crossing:

Crossing Equation, 2 particles
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Figure 2: Crossing symmetry illustrated on a 2 ! 3 processes. We cross an electron (photon)

in the scattering process e�� ! e�e�e+ from outgoing (incoming), using a path parametrized

by z. The particles that cross are colored in red. The original scattering amplitude is obtained

for z > 0, but after the analytic continuation to z < 0, we land on the inclusive observable for

measuring a photon in the background of Møller scattering, e�e� ! e�e�. The observable

is obtained as the conjugated S-matrix for the process e�e� ! �X times the S-matrix for

X ! e�e�, where X contains all possible states which must be summed and integrated over.

Note that time flows from right to left in these diagrams. {fig:introcross2}

computed as the expectation value of a graviton in the background of black-hole scattering,

which is precisely the observable in Fig. 2 for z < 0, obtained by replacing the electrons with

black holes and the photon by a graviton. The KMOC formalism has recently been used to

compute gravitational waveforms in perturbation theory by modeling the black holes as heavy

scalars [9–11]. In a recent paper [7], we showed how to e↵ectively compute such observables.

Using the crossing path in Fig. 2, we find a striking result: We can compute the gravita-

tional waveform as an analytic continuation from the scattering amplitude for a graviton and

black hole to scatter into two black holes and an anti-black hole! We therefore have a new way

of computing the gravitational waveform, as well as a host of other asymptotic observables,

as analytic continuations of scattering amplitudes.

The story goes farther beyond these four- and five-point examples. At six points, one can

write down yet other asymptotic observables, such as inclusive measurements and out-of-time

ordered correlators. Starting from a scattering amplitude our conjectured crossing equation

shows what happens when we start with the scattering amplitude AB ! CD, and cross one

incoming particle with one outgoing particle:
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cross 2 $ 3
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D (1.1) {eq:crossingintro}{eq:crossingintro}

The crossing-equation conjecture is based on rigorous manipulations of o↵-shell correla-
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Crossing Equation, 2 particles

23

S

B

A
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D

Cross 2 $ 3
3̄2̄

S†

SS
Y X

C

A

B

D

[See also Bros 1986]

Evidence:  

独 Loop-level examples and tree-level proof (part 4) 
独Axiomatic quantum field theory, assuming analyticity, using microcausality      
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Crossing Equation for 2-particle crossing:
Mixed and non-mixed

For invariants sI = �p2I :

sI 2 Z: I and Ī contain at least one label from B,C and at least one from A,D.

p+I ⇠ z, p�I ⇠ 1, sI ⇠ z

sI 2 N : I or Ī contain only labels from B,C or A,D.

p±I ⇠ z±1 or p±I ⇠ 1, sI stays fixed,

[SDC BA] x

sI ,xsJ
=

XZ

X,Y,Z,W

SD ZSB Y S
†
Y Z XWSW CSX A .

[b, a†]  !
Cross B$C [b†, a]
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Figure 2: Crossing symmetry illustrated on a 2 ! 3 processes. We cross an electron (photon)

in the scattering process e�� ! e�e�e+ from outgoing (incoming), using a path parametrized

by z. The particles that cross are colored in red. The original scattering amplitude is obtained

for z > 0, but after the analytic continuation to z < 0, we land on the inclusive observable for

measuring a photon in the background of Møller scattering, e�e� ! e�e�. The observable

is obtained as the conjugated S-matrix for the process e�e� ! �X times the S-matrix for

X ! e�e�, where X contains all possible states which must be summed and integrated over.

Note that time flows from right to left in these diagrams. {fig:introcross2}

computed as the expectation value of a graviton in the background of black-hole scattering,

which is precisely the observable in Fig. 2 for z < 0, obtained by replacing the electrons with

black holes and the photon by a graviton. The KMOC formalism has recently been used to

compute gravitational waveforms in perturbation theory by modeling the black holes as heavy

scalars [9–11]. In a recent paper [7], we showed how to e↵ectively compute such observables.

Using the crossing path in Fig. 2, we find a striking result: We can compute the gravita-

tional waveform as an analytic continuation from the scattering amplitude for a graviton and

black hole to scatter into two black holes and an anti-black hole! We therefore have a new way

of computing the gravitational waveform, as well as a host of other asymptotic observables,

as analytic continuations of scattering amplitudes.

The story goes farther beyond these four- and five-point examples. At six points, one can

write down yet other asymptotic observables, such as inclusive measurements and out-of-time

ordered correlators. Starting from a scattering amplitude our conjectured crossing equation

shows what happens when we start with the scattering amplitude AB ! CD, and cross one

incoming particle with one outgoing particle:
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cross 2 $ 3
32
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D (1.1) {eq:crossingintro}{eq:crossingintro}

The crossing-equation conjecture is based on rigorous manipulations of o↵-shell correla-

– 6 –



Crossing Equation, 2 particles

23

S

B

A

C

D

Cross 2 $ 3
3̄2̄

S†

SS
Y X

C

A

B

D

GAB!CD =

Z
dDx ei(pc�pb)·x✓(x0)hD|[j(x/2), j(�x/2)]|Ai

GAC!BD =

Z
dDx e�i(pc�pb)·x✓(x0)hD|[j(x/2), j(�x/2)]|Ai

GAB!CD � GAC!BD =

Z
dDx ei(pc�pb)·xhD|[j(x/2), j(�x/2)]|Ai

Use microcausality GAB!CD � GAC!BD = 0:

[b, a†] ! [b†, a]

(Remains to show that different regions can be connected to one another)38

Crossing Equation for 2-particle crossing:

[Bros, Epstein, Glaser 1964, 1965; Itzykson, Zuber 1987]

Crossing Equation for 2-particle crossing:

GAB!CD =

Z
dDx ei(pc�pb)·x✓(x0)hD|[j(x/2), j(�x/2)]|Ai

GAC!BD =

Z
dDx e�i(pc�pb)·x✓(x0)hD|[j(x/2), j(�x/2)]|Ai

GAB!CD � GAC!BD =

Z
dDx ei(pc�pb)·xhD|[j(x/2), j(�x/2)]|Ai

Use microcausality GAB!CD � GAC!BD = 0:

[b, a†] ! [b†, a]

(Remains to show that different regions can be connected to one another)

Mixed and non-mixed

For invariants sI = �p2I :

sI 2 Z: I and Ī contain at least one label from B,C and at least one from A,D.

p+I ⇠ z, p�I ⇠ 1, sI ⇠ z

sI 2 N : I or Ī contain only labels from B,C or A,D.

p±I ⇠ z±1 or p±I ⇠ 1, sI stays fixed,

[SDC BA] x

sI ,xsJ
=

XZ

X,Y,Z,W

SD ZSB Y S
†
Y Z XWSW CSX A .

[b, a†]  !
Cross B$C [b†, a]
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Figure 2: Crossing symmetry illustrated on a 2 ! 3 processes. We cross an electron (photon)

in the scattering process e�� ! e�e�e+ from outgoing (incoming), using a path parametrized

by z. The particles that cross are colored in red. The original scattering amplitude is obtained

for z > 0, but after the analytic continuation to z < 0, we land on the inclusive observable for

measuring a photon in the background of Møller scattering, e�e� ! e�e�. The observable

is obtained as the conjugated S-matrix for the process e�e� ! �X times the S-matrix for

X ! e�e�, where X contains all possible states which must be summed and integrated over.

Note that time flows from right to left in these diagrams. {fig:introcross2}

computed as the expectation value of a graviton in the background of black-hole scattering,

which is precisely the observable in Fig. 2 for z < 0, obtained by replacing the electrons with

black holes and the photon by a graviton. The KMOC formalism has recently been used to

compute gravitational waveforms in perturbation theory by modeling the black holes as heavy

scalars [9–11]. In a recent paper [7], we showed how to e↵ectively compute such observables.

Using the crossing path in Fig. 2, we find a striking result: We can compute the gravita-

tional waveform as an analytic continuation from the scattering amplitude for a graviton and

black hole to scatter into two black holes and an anti-black hole! We therefore have a new way

of computing the gravitational waveform, as well as a host of other asymptotic observables,

as analytic continuations of scattering amplitudes.

The story goes farther beyond these four- and five-point examples. At six points, one can

write down yet other asymptotic observables, such as inclusive measurements and out-of-time

ordered correlators. Starting from a scattering amplitude our conjectured crossing equation

shows what happens when we start with the scattering amplitude AB ! CD, and cross one

incoming particle with one outgoing particle:
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D (1.1) {eq:crossingintro}{eq:crossingintro}

The crossing-equation conjecture is based on rigorous manipulations of o↵-shell correla-
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Crossing proposal for multi-particle crossing:

Crossing Equation
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Figure 2: Crossing symmetry illustrated on a 2 ! 3 processes. We cross an electron (photon)

in the scattering process e�� ! e�e�e+ from outgoing (incoming), using a path parametrized

by z. The particles that cross are colored in red. The original scattering amplitude is obtained

for z > 0, but after the analytic continuation to z < 0, we land on the inclusive observable for

measuring a photon in the background of Møller scattering, e�e� ! e�e�. The observable

is obtained as the conjugated S-matrix for the process e�e� ! �X times the S-matrix for

X ! e�e�, where X contains all possible states which must be summed and integrated over.

Note that time flows from right to left in these diagrams. {fig:introcross2}

computed as the expectation value of a graviton in the background of black-hole scattering,

which is precisely the observable in Fig. 2 for z < 0, obtained by replacing the electrons with

black holes and the photon by a graviton. The KMOC formalism has recently been used to

compute gravitational waveforms in perturbation theory by modeling the black holes as heavy

scalars [9–11]. In a recent paper [7], we showed how to e↵ectively compute such observables.

Using the crossing path in Fig. 2, we find a striking result: We can compute the gravita-

tional waveform as an analytic continuation from the scattering amplitude for a graviton and

black hole to scatter into two black holes and an anti-black hole! We therefore have a new way

of computing the gravitational waveform, as well as a host of other asymptotic observables,

as analytic continuations of scattering amplitudes.

The story goes farther beyond these four- and five-point examples. At six points, one can

write down yet other asymptotic observables, such as inclusive measurements and out-of-time

ordered correlators. Starting from a scattering amplitude our conjectured crossing equation

shows what happens when we start with the scattering amplitude AB ! CD, and cross one

incoming particle with one outgoing particle:
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The crossing-equation conjecture is based on rigorous manipulations of o↵-shell correla-

– 6 –

Mixed and non-mixed

For invariants sI = �p2I :

sI 2 Z: I and Ī contain at least one label from B,C and at least one from A,D.

p+I ⇠ z, p�I ⇠ 1, sI ⇠ z

sI 2 N : I or Ī contain only labels from B,C or A,D.

p±I ⇠ z±1 or p±I ⇠ 1, sI stays fixed,

[SDC BA] x

sI ,xsJ
=

XZ

X,Y,Z,W

SD ZSB Y S
†
Y Z XWSW CSX A .

[b, a†]  !
Cross B$C [b†, a]
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Crossing proposal for multi-particle crossing:

Crossing Equation
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Figure 2: Crossing symmetry illustrated on a 2 ! 3 processes. We cross an electron (photon)

in the scattering process e�� ! e�e�e+ from outgoing (incoming), using a path parametrized

by z. The particles that cross are colored in red. The original scattering amplitude is obtained

for z > 0, but after the analytic continuation to z < 0, we land on the inclusive observable for

measuring a photon in the background of Møller scattering, e�e� ! e�e�. The observable

is obtained as the conjugated S-matrix for the process e�e� ! �X times the S-matrix for

X ! e�e�, where X contains all possible states which must be summed and integrated over.

Note that time flows from right to left in these diagrams. {fig:introcross2}

computed as the expectation value of a graviton in the background of black-hole scattering,

which is precisely the observable in Fig. 2 for z < 0, obtained by replacing the electrons with

black holes and the photon by a graviton. The KMOC formalism has recently been used to

compute gravitational waveforms in perturbation theory by modeling the black holes as heavy

scalars [9–11]. In a recent paper [7], we showed how to e↵ectively compute such observables.

Using the crossing path in Fig. 2, we find a striking result: We can compute the gravita-

tional waveform as an analytic continuation from the scattering amplitude for a graviton and

black hole to scatter into two black holes and an anti-black hole! We therefore have a new way

of computing the gravitational waveform, as well as a host of other asymptotic observables,

as analytic continuations of scattering amplitudes.

The story goes farther beyond these four- and five-point examples. At six points, one can

write down yet other asymptotic observables, such as inclusive measurements and out-of-time

ordered correlators. Starting from a scattering amplitude our conjectured crossing equation

shows what happens when we start with the scattering amplitude AB ! CD, and cross one

incoming particle with one outgoing particle:
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D (1.1) {eq:crossingintro}{eq:crossingintro}

The crossing-equation conjecture is based on rigorous manipulations of o↵-shell correla-

– 6 –

Evidence:  
独 Loop-level examples and tree-level proof (part 4) 

独Symmetry in AD & BC

Mixed and non-mixed

For invariants sI = �p2I :

sI 2 Z: I and Ī contain at least one label from B,C and at least one from A,D.

p+I ⇠ z, p�I ⇠ 1, sI ⇠ z

sI 2 N : I or Ī contain only labels from B,C or A,D.

p±I ⇠ z±1 or p±I ⇠ 1, sI stays fixed,

[SDC BA] x

sI ,xsJ
=

XZ

X,Y,Z,W

SD ZSB Y S
†
Y Z XWSW CSX A .

[b, a†]  !
Cross B$C [b†, a]

40



Proving the crossing equation involves comparing:

(I) (II)

The analytic continuation of S 
via the prescribed path

Computing the corresponding 
observables explicitly

sI
sI2Z

sI2NsI2N

sI2Z (14)

Crossing Equation, 2 particles
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Crossing Equation, 2 particles
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Crossing Equation, 2 particles
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CONTINUING AROUND SINGULARITIES

Local analyticity can be subtle: might need to continue past 
anomalous thresholds

s1

s2

s

2

120

10

3

3

10

2

20
1

cross 2 $ 20
3

10

2

20

1
+

3

10

2

20

1

Expected from axiomatic field theory

6.1 Example triangle diagram

The example we will study in detail is the following triangle diagram for the time-ordered

amplitude 32010  21:

s1

s2

s

2

120

10

3
p1

p2

p

`� p2

` + p1

`

(6.1) {eq:Tri diagram}{eq:Tri diagram}

The dashed and solid lines represent particles with mass m1 and m2, while the wiggly line is

a massless particle representing a graviton. This diagram depends only on three Mandelstam

invariants, which we call s, s1, and s2, in addition to the two masses. For later convenience,

at the start of the analytic continuation we will consider the complex-conjugated amplitude:

M⇤
tri = �

Z
dD`

i⇡D/2

1

[(`+p1)2 + m2
1 + i"][(`�p2)2 + m2

2 + i"][`2 + i"]
, (6.2) {eq:triDef}{eq:triDef}

which amounts to reversing the signs of Feynman i" and an overall minus sign. The prediction

of the crossing equation is that exchanging the particles 2$ 20 leads to

3
10

2

20
1

cross 2$ 20 3
10

2

20

1
+

3
10

2

20

1

Here, s = �p
2 rotates from negative to positive in the upper-half plane, with all the other

invariants fixed. The reason why the rotation is clockwise is because we started with complex-

conjugated amplitude. In equations, we have

[M⇤
tri]sy

?
= Mtri +Cuts1Mtri ⌘ Exp2. (6.3) {Tri test with cut}{Tri test with cut}

The quantity on the right-hand side is the expectation value Exp2.

The goal of this section is to explain why this equation breaks down when 2 is a massive

on-shell particle with s2 = m
2
2. To illustrate this point, we will start with the o↵-shell

configuration, say s2 < m
2
2, and show that the crossing path is cut o↵ as we tune s2 ! m

2
2.

Physically, this phenomenon will have an explanation originating from the triangle anomalous

threshold, and that we cannot analytically continue around it when s2 is on shell. We also

take s1 > m
2
1 to make the problem nontrivial: if s1 was spacelike, the triangle could be viewed

as part of a 2! 2 scattering process for which crossing is already well-established.

Our interest in studying this specific configuration comes from inquiring into limitations

of crossing symmetry when crossing a massive particle in gapless theories. This question

becomes particularly important in applications to computing gravitational waveforms, in
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6.1 Example triangle diagram

The example we will study in detail is the following triangle diagram for the time-ordered

amplitude 32010  21:
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The dashed and solid lines represent particles with mass m1 and m2, while the wiggly line is

a massless particle representing a graviton. This diagram depends only on three Mandelstam

invariants, which we call s, s1, and s2, in addition to the two masses. For later convenience,

at the start of the analytic continuation we will consider the complex-conjugated amplitude:
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1 + i"][(`�p2)2 + m2

2 + i"][`2 + i"]
, (6.2) {eq:triDef}{eq:triDef}

which amounts to reversing the signs of Feynman i" and an overall minus sign. The prediction
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The space-time geometry, with time flowing to the left, of the anomalous threshold looks

as follows:

3

10

2

20

1x
x1

x2

(6.37)

It is the same as (6.33) folded along the cut and with the vertices x, x1, x2 placed according

to the above rules. This is a generalization of the Coleman–Norton picture to solutions with

positive and negative Schwinger parameters. Note that ↵3⇤ < 0 corresponds to the fact

that the energy flows through the graviton propagator in the direction opposite to the one

indicated with the arrow, as expected from the above figure.

Later, in Sec. 7.3, we illustrate the counterpart of this discussion in string scattering,

where the trajectories of strings can be plotted explicitly.

What happens here is that the graviton propagates at the speed of light from x1 to x2.

On the other hand, the massive particle travels from x to x2 at near-luminal speed. The

fact that the two meet at x2 allows the anomalous threshold to be physically allowed. Let us

now understand local analyticity near this threshold. As reviewed in A.2, this notion allows

us to determine from which side to approach the branch cuts in the kinematic space. The

relevant quantity to study is
P

j Im pj ·xj , where pj is the momentum flowing into the vertex

xj . Imposing that this quantity is positive gives an inequality on the kinematic invariants for

the correct i" approach. For example, normal thresholds always require Im s > 0, see (A.2).

We can now apply these ideas to the triangle threshold. We fix all kinematic invariants

to be real, except for s. This gives

Im (p1 · x1 + p2 · x2 + p · x) = (6.38)

6.6 Inclusive massless observables are safe

[HSH: Needs to be integrated]

One example of an asymptotic observable is the expectation value for the gravitational

waveform that is measured in the background of black-hole scattering: according to the

KMOC formalism [8], it is computed by the expression

Expk ⌘ inh2010|S†
akS|12iin = h0|a20a10 bk a

†
2a

†
1|0i, (6.39) {KMOC}{KMOC}

which is precisely the observable discussed in Eq. ??. As discussed in Sec. 2, these inclusive
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⇥ ⇥

(
p

s1 +
p

s2)2

s⇤
(m1 + m2)2

(a)
{fig:splane}

1�1

cos ✓

⇥

⇥

(b)
{fig:cosplane}

Figure 11: Two paths of analytic continuation from C to its contribution to inclusive observ-

able Exp2 are shown: (a) in the s-plane, and (b) in the cos ✓-plane once the third propagator

goes on-shell. While the blue path crosses the anomalous threshold cut, the orange path does

not.

the residue around the root ↵�, resulting in a contour that agrees with the cut contribution

Cuts1Mtri. In doing so, we have to give s2 a small imaginary part to pull the branch cut

originating from s
⇤ away from the real s axis, i.e. away from the branch cuts originating from

the normal-threshold and the second-type-singularities, as shown in Fig. 9. This construction

is not possible in the on-shell limit when s2 ! m
2
2, since the branch point at s

⇤ moves to

infinity.

4.4 Anomalous threshold obstruction

The purpose of this section is to illustrate how the functions C and Cuts1Mtri can di↵er

due to the triangle anomalous threshold at s = s⇤. To understand how it comes about,

first observe that (4.22) has a branch cut when its denominator vanishes. This is, of course,

responsible for the triangle threshold branch cut. It opens up when the value of s increases

su�ciently for �1 < cos ✓ < 1 to allow the third propagator to go on-shell, which occurs

above the anomalous threshold.

To gain a better intuition regarding this clash, it is helpful to look at the two paths of

analytic continuation (orange and blue) in the s-plane illustrated in Fig. 11a. Position of

the pole in the cos ✓-plane is shown in Fig. 11b. As explained above, the branch chosen by

Cuts1Mtri has a pole in the upper-half plane of cos ✓ (red cross in Fig. 11b). On the other

hand, the branch selected by C can be determined by setting s ! s+ i" and s2 ! s2+ i" with

s < 0 and m
2
2 > s2 > 0 in the denominator �s2 � 2`0⇤

�
p
0
2 � p

3
2 cos ✓

�
+ m

2
2. Thus, after this

substitution (taking p
0
2 ! p

0
2 and p

3
2 ! p

3
2+ i") the pole is moved to the lower half-plane (blue

cross in Fig. 11b). [HSH: We cannot make this statement, this is frame dependent!][MG:

Hmmmm... I see your point] This happens because the i" for p
0
2 supersedes that of p

3
2 for

cos ✓ < 1. This selects the branch of C at the start of the analytic continuation. Following

the orange path, the root moves to the upper half-plane without disturbing the integration
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FAMILIES OF OBSERVABLES
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OUTLINE

2. What can be measured 
asymptotically?

1. Introduction

Proof at tree-level

1. Classify edges with p+I ⇠ z in red, p�I ⇠ 1 in blue, as z ! 1

pµb (z) =
�
zp+b ,

1
zp

�
b , p

?
b

�
, pµc (z) =

�
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1
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�
c , p

?
c

�

(1)

2. Get connected red and blue trees

R = B = (2)

Master integrals
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Crossing Equation, 2 particles
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S

Figure 2: Crossing symmetry illustrated on a 2 ! 3 processes. We cross an electron (photon)

in the scattering process e�� ! e�e�e+ from outgoing (incoming), using a path parametrized

by z. The particles that cross are colored in red. The original scattering amplitude is obtained

for z > 0, but after the analytic continuation to z < 0, we land on the inclusive observable for

measuring a photon in the background of Møller scattering, e�e� ! e�e�. The observable

is obtained as the conjugated S-matrix for the process e�e� ! �X times the S-matrix for

X ! e�e�, where X contains all possible states which must be summed and integrated over.

Note that time flows from right to left in these diagrams. {fig:introcross2}

computed as the expectation value of a graviton in the background of black-hole scattering,

which is precisely the observable in Fig. 2 for z < 0, obtained by replacing the electrons with

black holes and the photon by a graviton. The KMOC formalism has recently been used to

compute gravitational waveforms in perturbation theory by modeling the black holes as heavy

scalars [9–11]. In a recent paper [7], we showed how to e↵ectively compute such observables.

Using the crossing path in Fig. 2, we find a striking result: We can compute the gravita-

tional waveform as an analytic continuation from the scattering amplitude for a graviton and

black hole to scatter into two black holes and an anti-black hole! We therefore have a new way

of computing the gravitational waveform, as well as a host of other asymptotic observables,

as analytic continuations of scattering amplitudes.

The story goes farther beyond these four- and five-point examples. At six points, one can

write down yet other asymptotic observables, such as inclusive measurements and out-of-time

ordered correlators. Starting from a scattering amplitude our conjectured crossing equation

shows what happens when we start with the scattering amplitude AB ! CD, and cross one

incoming particle with one outgoing particle:

23

S

B

A

C

D

cross 2 $ 3
32

S†

SS
Y X

C

A

B

D (1.1) {eq:crossingintro}{eq:crossingintro}

The crossing-equation conjecture is based on rigorous manipulations of o↵-shell correla-
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TREE-LEVEL EXAMPLE REVISITEDTree-level revisited
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(I.) [S126!345]s
y
13

= S⇤
13!2456 +

2⇡i
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⇣
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h
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Comparing (I.) and (II.) verifies the crossing equation.
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Comparing (I) and (II) verifies the crossing equation.
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PERTURBATION THEORY CHECKS
Master integrals
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独Checked all D-dim massless basis integrals for an expansion around D=4

Proof at tree-level

1. Classify edges with p+I ⇠ z in red, p�I ⇠ 1 in blue, as z ! 1

pµb (z) =
�
zp+b ,

1
zp

�
b , p

?
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�
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�
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1
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�
c , p

?
c

�

(1)

2. Get connected red and blue trees

R = B = (2)

独Proof at any multiplicity at tree level (highly nontrivial)
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CROSSING CHECK FOR PENTAGON

(equivalent to s23 = 0), the integrals evaluate to10[MG: make these matrices look nicer]

I(34!215)
0 =

0

BBBBBBBBBBB@

�13 �i⇡13
7⇡2

12 13

⇣
7⇣3
3 + i⇡3

4

⌘
13
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�73⇡4

1440 + 7i⇡⇣3
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⌘
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�12 02
⇡2

1212
7⇣3
3 12

47⇡4

144012
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6 �14⇣3
3 � i⇡3
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240 � 14i⇡⇣3
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6 �20⇣3
3 � i⇡3

6 �7⇡4

144 � 14i⇡⇣3
3

22 02 �⇡2

2 12 �20⇣3
3 12 �43⇡4

720 12

2 2i⇡ �⇡2

2 �20⇣3
3 � i⇡3

6 �43⇡4

720 � 14i⇡⇣3
3

0 0 0 0 0

1

CCCCCCCCCCCA

·

0

BBBBB@

1

✏

✏2

✏3

✏4

1

CCCCCA
. (5.51)

It is worth noting that the top-sector integral is always zero. This observation is consistent

with the presence of a factor of
p

� in the numerator of I11 in (5.5), and the fact that P (6�2✏)

is finite on the surface � ⇠ (z � z̄)2 = 0.

Since the master integral vector has a simple structure at X0, we opt to use it as the

starting point in subsequent calculations.

Strategy The idea behind the subsequent two sections is to make use of the di↵erential

equation (see appendix C) shared by both crossed and un-crossed amplitudes, as well as their

cuts. Specifically, we begin by verifying the crossing equation at X0, and then proceed to

extend this verification to more general points in the kinematic space including other crossing

channels. To achieve this, we simply transport our base point by solving the di↵erential

equation order-by-order in ✏.

Crossing from one phase-space point Within the di↵erential equation approach, veri-

fying the crossing equation for 2 $ 3 at the base point at X0 involves checking whether

h
I(34!215)

0

i

2$3
�
h
I(24!315)

0

i⇤
+ Cuts51I

(34!215)
0

?
= 0. (5.52) {eq:crossingAtX0}{eq:crossingAtX0}

The first term on the left of (5.52) is obtained by direct integration

h
I(34!215)

0

i

2$3
= P exp

✓
✏

Z

�2$3

d⌦

◆
· I(34!215)

0 , (5.53) {eq:rot23}{eq:rot23}

where the path �2$3 implements the crossing through large arcs in the upper-half-plane. It

is parametrized by the angle 0 6 � 6 ⇡ such that

�2$3(�) :

(
s(�) = ei� |s| ,
s1(�) = ei� |s1| .

(5.54)

10
The notation nm denotes a constant array of length m with n as its element, where n is an integer.
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(equivalent to s23 = 0), the integrals evaluate to10[MG: make these matrices look nicer]
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is finite on the surface � ⇠ (z � z̄)2 = 0.

Since the master integral vector has a simple structure at X0, we opt to use it as the

starting point in subsequent calculations.

Strategy The idea behind the subsequent two sections is to make use of the di↵erential

equation (see appendix C) shared by both crossed and un-crossed amplitudes, as well as their

cuts. Specifically, we begin by verifying the crossing equation at X0, and then proceed to

extend this verification to more general points in the kinematic space including other crossing

channels. To achieve this, we simply transport our base point by solving the di↵erential

equation order-by-order in ✏.

Crossing from one phase-space point Within the di↵erential equation approach, veri-

fying the crossing equation for 2 $ 3 at the base point at X0 involves checking whether
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The first term on the left of (5.52) is obtained by direct integration
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where the path �2$3 implements the crossing through large arcs in the upper-half-plane. It

is parametrized by the angle 0 6 � 6 ⇡ such that

�2$3(�) :

(
s(�) = ei� |s| ,
s1(�) = ei� |s1| .

(5.54)

10
The notation nm denotes a constant array of length m with n as its element, where n is an integer.
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Performing the path-ordered integration gives
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Some properties of the crossing equation are apparent even at this intermediate stage: the

diagrams associated to the masters Ii with i 2 {2, 3, 4, 5, 8, 10} do not allow any s51-cut,

which is translated here by the amplitude being real after crossing.

Similarly, we find the second term on the left of (5.52) to evaluate to
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Finally, in order to check (5.52), it is necessary to compute the s51-cut of I and evaluate the

result at X0. Using the embedding space formalism outlined earlier, we obtain
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(5.57) {eq:cuts15}{eq:cuts15}

in generic kinematics, where sij,kl = sij � skl and F(Z) := 2F1 (1,�✏; 1 � ✏; 1 � Z). The dot

“•” indicates the computation of the pentagon cut is omitted, since it is su�cient to know it

vanishes at � = 0. Plugging (5.47) into (5.57) and evaluating the finite part of the result at

X0 in limit x ! 0 gives
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Performing the path-ordered integration gives
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Some properties of the crossing equation are apparent even at this intermediate stage: the

diagrams associated to the masters Ii with i 2 {2, 3, 4, 5, 8, 10} do not allow any s51-cut,

which is translated here by the amplitude being real after crossing.

Similarly, we find the second term on the left of (5.52) to evaluate to
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Finally, in order to check (5.52), it is necessary to compute the s51-cut of I and evaluate the

result at X0. Using the embedding space formalism outlined earlier, we obtain
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(5.57) {eq:cuts15}{eq:cuts15}

in generic kinematics, where sij,kl = sij � skl and F(Z) := 2F1 (1,�✏; 1 � ✏; 1 � Z). The dot

“•” indicates the computation of the pentagon cut is omitted, since it is su�cient to know it

vanishes at � = 0. Plugging (5.47) into (5.57) and evaluating the finite part of the result at

X0 in limit x ! 0 gives
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Performing the path-ordered integration gives

h
I(34!215)

0

i

2$3
=

0

BBBBBBBBBBBBB@

�1 �i⇡ 7⇡2

12
7⇣3
3 + i⇡3

4 �73⇡4

1440 + 7i⇡⇣3
3

�14 04
⇡2

1214
7⇣3
3 14

47⇡4

144014

2 2i⇡ �5⇡2

6 �14⇣3
3 � i⇡3

6 �13⇡4

240 � 14i⇡⇣3
3

2 2i⇡ �7⇡2

6 �20⇣3
3 � i⇡3

6 �7⇡4

144 � 14i⇡⇣3
3

2 0 �⇡2

2 �20⇣3
3 �43⇡4

720

2 �2i⇡ �⇡2

2 �20⇣3
3 + i⇡3

6 �43⇡4

720 + 14i⇡⇣3
3

2 0 �⇡2

2 �20⇣3
3 �43⇡4

720

0 0 0 0 0

1

CCCCCCCCCCCCCA

·

0

BBBBB@

1

✏

✏2

✏3

✏4

1

CCCCCA
. (5.55) {eq:crA}{eq:crA}

Some properties of the crossing equation are apparent even at this intermediate stage: the

diagrams associated to the masters Ii with i 2 {2, 3, 4, 5, 8, 10} do not allow any s51-cut,

which is translated here by the amplitude being real after crossing.

Similarly, we find the second term on the left of (5.52) to evaluate to
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Finally, in order to check (5.52), it is necessary to compute the s51-cut of I and evaluate the

result at X0. Using the embedding space formalism outlined earlier, we obtain
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(5.57) {eq:cuts15}{eq:cuts15}

in generic kinematics, where sij,kl = sij � skl and F(Z) := 2F1 (1,�✏; 1 � ✏; 1 � Z). The dot

“•” indicates the computation of the pentagon cut is omitted, since it is su�cient to know it

vanishes at � = 0. Plugging (5.47) into (5.57) and evaluating the finite part of the result at

X0 in limit x ! 0 gives

Cuts51I
(34!215)
0 =

0

BBBBBBBBBB@

0 2i⇡ 0 � i⇡3

2 �14
3 i⇡⇣3

04 04 04 04 04

0 �4i⇡ 0 i⇡3

3
28i⇡⇣3

3

0 �4i⇡ 0 i⇡3

3
28i⇡⇣3

3

0 0 0 0 0

0 4i⇡ 0 � i⇡3

3 �28
3 i⇡⇣3

02 02 02 02 02

1

CCCCCCCCCCA

·

0

BBBBB@

1

✏

✏2

✏3

✏4

1

CCCCCA
. (5.58) {eq:crC}{eq:crC}

– 43 –

153 42
351 24

513 42
315 24

513 24
315 42

531 24
135 42

531 42
135 24

153 24
351 42

512 34
215 43

514 32
415 23

C

O

B
A

D

(ii)

(i)

(iii)

Figure 8: The crossing path (3.57) between the (multi-Regge) time-ordered amplitudes is

shown. The original and target channels are marked in red and blue, respectively. The three

intermediate paths in (3.57) are labeled by (i), (ii) and (iii). The central blob’s spikes denote

the 12 singular multi-Regge limits accessible within the channel with incoming particles 2

and 4. Each spike is tied to a pair of multi-Regge limits, which are mutually accessible

through a relabeling path. An incomplete selection of spikes for blobs associated with other

incoming particle pairs is also displayed. We move between disconnected blobs via two-

particle crossings.
{fig:twoMRKS}

To summarize, the 514  32 amplitude at the point D is obtained by transporting
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We have verified that this result matches the direct evaluation of the bubbles and boxes
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EMISSION IN BLACK-HOLE SCATTERING

in one-loop computations

Waveform in LIGO-Virgo-KAGRA obtained as an in-in expectation value

[See also Brandhuber, Brown, Chen, De Angelis, Gowdy, Travaglini 2023; 
Herderschee, Roiban, Teng 2023; Elkhidir, O’Connell, Sergola, Vazquez-Holm 2023]
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Here, analytically continue the 5-pt amplitude

BH

BH

BH

BH

h

XS† S

BH3BH

BH
hBH

S†

BH

BH

BH

BH

h

XS† S

BH3BH

BH
hBH

S†

<latexit sha1_base64="mUyMkni+QPy7aSc8+UJxWlBh1us=">AAAQr3icjZdfb9s2EMDdrts6Z3/c7XEv7IICCeAopP6rQbBie9mAPXTrXyD2OlqibSKy5FF0Ulfwp9nX2Ps+wrB9mt3JTizJ9FABQczj3f2OJ96JHM1TWWhK/7lz94N7H3708f1Pugeffvb5F70HX74s8oWKxYs4T3P1esQLkcpMvNBSp+L1XAk+G6Xi1ejye5x/dSVUIfPsuV7OxXDGJ5kcy5hrEL150P1zoOXlu0LoUoDeksxlrBdKnFqFXqbivETH5FomenpOrcCb69WKPAJ1kogxX6SabBWIzslah2ye7mAkJjIrEbFxvLp4u3HUX97+KGIOrBPWf7v+xYbdR4sszmczkWkix0SJ3xdSicdkMOcAOqJ9h9Ljs00kkk8Un5FUjDUpNFeacE1on/AsIVNekKmQk6km+ZiAVffRM614JfgJQi/IhUweJzxkjh3SIPR96oWh4wwh+ETxa3JRy4Bt2d4QF3bkUNZn1DkmJycwiDaDsz3Oo4BFgRNFzPbc0PXt93Ee1J0H/+M8CL0gsqPAdYIw8lh467xyZUdra8sicZ5placFSgPL8WCCWY59XOVpLfP7zI8s36v00diiLojCtr0Dbw7C8n3LcW/sUWaDzLX8oGYfgMjEd1G3xXedPvOafAYYz8gPYaLNh8V6TT6D+D0jH3VbfEiJ28IDxTXhQ9Rt4UNIn9vE2xC+a8J7qNvGQ66cJt8GjGPiR5AqB/hejR/BWh3ghzV7WKVj4vuoC3ynxvcBBja+v7V34C3Zu3xYld2AMwv3rN2E43ayTXDcO3YLjnuHteAQPDPAq03F2nx4U6zJx+3EjHzUbfMBRpt8F+KnJj5uKtriM0gebfK9WovYO9xX1rZLA9ePWODbEY2CyGvWNb6rwG7H5jvVGwtoLTaUYa2G29igRiMs9WDH3rd81PVquUEZ1vA2NWgOqfVNeNywfgtvYw028SFWnwnvoW4L72FbaPKx1DwTHwvWa/FZgEXc5EOWXBPfRV2vVpcow1p1tnUJ9riDXCMfC57W+gLKsIa3bQHNsayNeJC36E5Vwk06ejTRKXaF1uppVcKN1fuwSNuEr8q9lf2q2JvZx+Zh7/LtalfZDT7IPKziJh8kJjxuHtbC4+ZhTTz2SWbC465iLXwYYhE38LifaLCpRBzXCnM73FeYIXxPqQv9xw5tx/Na31tKTQ2bsirn2LBv10ahLp1bWRUbNXZ76DT+5ssQ3BqHa+Nou62YkcwMZLZLZkYyM5DZLtk2km0D2d4l33zhbtrivvFZdyCypHGU7L7pHULjrx6y/8fht391z+d//N19+ubBvX8HSR4v8FwZp7woLhid62EJZ0YZp+BxsCjEnMeXfCIu4GfGZ6IYltU5G869IEnIOFfwB+fSSlq3KPmsKJazEWjO4JhatOdQaJq7WOhxOCxlNl9okcVr0HiR4oEaD+1wwlUi1ukSj7qxkhAriadc8VjD0d4UQX9Dw/96Ouvjbz5621zfSPF3Mh2WIz4S6QpP6/tDasw9Z8MSM7AzUZ3ek2E5FemV0I25cpzmvCWaiHwmtFq2FFW8gAvLVfNtlOA6lXDOb0ohM3qpeXrZUp7ybAKjScuJEmkh37WEhZ5xtVRJy8X69tEU4u7blZzEG1scpBLyqpZlIuJcVbeswgL/lzKbFKB1c9vSotC3l6wu9o55DneXGA02Anw2XkS/LWmq4XMD6e9Iz+E6BN4lGsENajK+8ZrgbSoV2URPT6iFF7drCdercsCVyq8vRulC9Gs3lEM2JOXqjKwMiJHQ10Jkt5yC0Krm9+HCOd7VxJzUuQ23+KB1VS4C3lGs8sFsecXTcgYXTzlPl0eJvJKJONqxu7G9FMsCDBYiH5enMD7dZu8UwyYyG+enCdyzeRYLMlb5bH2DXPX3RX4MXwd6vDozxgpxjmWaVp2hxPQ9XEf8UIlkjwl6jqWC7lNWw1xmOlcSrs2r8pDtMao2oJ6WCFudrboreN6zG760LWjr7s/08Ml3nfVzv/N155vOUYd1gs6Tzg+dp50Xnfjg8ODHg18OnvVY71Xv195va9W7dzY2X3UaT0/+B4viiF4=</latexit>

A

<latexit sha1_base64="crqLdV3VtsJcQcBkvxe7nMwDb10="></latexit>

B

<latexit sha1_base64="iG/hEvVo7azYMEEJYgN2mgL4KxI="></latexit>

C

<latexit sha1_base64="Cr9FJ0P4BGfnYPk/j/NmLjysvwU=">AAAS4XicjZhPj+PEEsCzPB7w8hhg5x3fpWG00oyU8XS33f6zoxUILhzeAQQLSDPRyrE7SWscO9idmc1aucGBG+LKkQ/DR0DwIfgMVDl/u+08YWm1drmqf9VVXeXUjOaZqjSlvz967R+v//ONN9/6V//fb5+88+57j0+/qopFmcjnSZEV5TejuJKZyuVzrXQmv5mXMp6NMvn16O4TfP/1vSwrVeRf6uVcDmfxJFdjlcQaRC8ev/3nrVZ3ryqpawl6SzJXiV6U8sqp9DKTz2pcmDyoVE+fUScQc71akSegTlI5jheZJnsFoguy1iGbq387khOV14jYLLy6eblZaLDc3VRJDKxLNni5vmPD/pNFnhSzmcw1UWNSym8XqpRPye08BtA5HbiUXlxvPFHxpIxnJJNjTSodl5rEmtABifOUTOOKTKWaTDUpxgSs+k++0GXcCP4HrlfkRqVP0zhkLg9pEPo+FWHoukNwPi3jB3JzEAHucDHEjZ27lA0YdS/I5SU8RJuH6yOLRwGLAjeKGBde6Pn87yweHC4e/J/Fg1AEEY8Czw3CSLBwt3izFI/W1o5DkiLXZZFVKA0cV8AL5rj8oonTWuYPmB85vmj00dihHohC296FzIFbvu+43tYeZRxknuMHB/YBiLr4HupafM8dMGHyGWBEJz+EFzYfNitMPgP/RScfdS0+hMSz8EDxuvAh6lr4EMLnmXgO7ntdeIG6Nh5i5Zp8Dhi3ix9BqFzgiwN+BHt1gR8e2MMu3S6+j7rAdw/4PsDAxvf39i5kibf5sCtuwJmDZ5abcDxOvAuOZ4dbcDw7zIKD86wD3hwqZvMhU8zk43FinXzUtfkAoybfA/9pFx8PFbX4DIJHTb44aBFHH4+VNfdo4PkRC3we0SiIhFnXmKuA2775bpOxgB74hjKs1XDvG9RohKUetOx9x0ddcRAblGEN70OD5hBavwuPB9a38Bxr0MSHWH1deIG6Fl5gWzD5WGqii48FKyw+C7CITT5Eyevie6grDuoSZVir7r4uwR5PkNfJx4KnB30BZVjD+7aA5ljWnXiQW3S3KWGTjit20Sl2BWv3tClhY/c+bJJ34Ztyt6LfFLsZfWwevM3nzaniBh9kAqvY5IOkC4+Hh1l4PDzMxGOfZF14PFXMwochFrGBx/NEg00l4vNBYe4fjxVmCN9T6kH/4SF3hbC+t67X2bDFuuFiNHc9I2hCCzK+9a1JdeBErb3BifKj5uMg/K29x5sGizJ3Y+95jX3otex3fLaLjbfjb2IJojU/8G17seO70dZe7PjuNjdizW/3FbHhCycKd/YbPsi2R1us+SJq5XbH5+5Bbjd8vkvt2pztc7kuNEd0SY7+oPIoFZRCeiMWiZAbCeZR1xeZR34rwTwKWwmm9EiCKWsnmLqtBFNxJMHUbyeYhq0EM3okwYy1E8zcVoKZOJJg5rcTzMJWgjk9kmDO2gnmrp1gLswEQ6uyEmxIrvu3Mk+N6ePFe2fwU6G5yPGbsw9/7T+b//Jb/7MXj1//4zYtkgVOIkkWV9UNo3M9rGHKUEkmV/3bRSXncXIXT+QN3ObxTFbDupnMYFICSUrGRQn/YJJppIcWdTyrquVsBJozGGwq+x0Ku97dLPQ4HNYqny+0zJM1aLzIcATDMQ9molImOlvicJSUCnwlyTQu40TDMNjlwWBDw//1dDbA+3j00tzfqIxfqWxYj+KRzFY43x13yXj3JRvWGIHWi2beS4f1VGb3Uhvv6nFWxJZoIouZ1OXSUiyTBYy492Y2alg6UzAZmlKIjF7qOLuzlKdxPoGnibVIKbNKvbKElZ7F5bJMrSXW86opxMPXllwmG1t8yBTEtVzWqUyKspnLKwfWv1P5pAKt7XyuZaV3Y3kfm9G8gGk3QYONAK/NKnJgS0w1vLaQQUv6DAZoWF2hEczck/F21RTn70zmEz29pA6O+g8KBvL6Ni7L4uFmlC3k4GCmPWNDUq+uyaoDMZL6Qcp8x6kIbQr/GC6c43Qv5+SQayyLF1o35SIhR0lZ3M6W93FWzxaZVvNseZ6qe5XK85bd1vZOLiswWMhiXF/B89U+elfoNlH5uLhKFUQ+TyQZl8Vs/TeH1eCY5xfwe4JerK47fQU/xyrLms5QY/jeX3v8finTIya4cqJK6D5181ioXBelmqh8VZ+xI0bNAdTTGmGr61V/BVf/73XDr7gD7d37nJ599HFvfb3V+2/vg955j/WC3ke9T3uf9Z73kpPnJ/XJdyffnyanP5z+ePrTWvW1Rxub//SM6/TnvwBILQjc</latexit>

D

Figure 7:
fig:ABCD topologies
The one-loop topologies for the inclusive amplitude for a graviton in the back-

ground of scattering of two heavy scalars considered in this section. In the eikonal limit these

become a single topology (up to i"’s).

5.1 Setup

We use the same momentum labeling for the topologies in Fig. 7 as in Ref. [39], and shown

in Fig. 8. The diagrams in Fig. 7 correspond to the following family of integrals:

G
A

a1,a2,a3,a4,a5
= e✏�E

Z
dD`

i⇡D/2

1

[`2]a1 [(`+ p̄1 +
1

2
q1)2 +m

2

1
]a2 [(`+ q1)2]a3

⇥
1

[(`� q2)2]a4 [(`� p̄2 �
1

2
q2)2 +m

2

2
]a5

,

(5.3) {5pt family}{5pt family}

where the expression is written for the A topology as indicated by the superscript, and �i"

should be added to each square bracket (to compute the conventional time-ordered ampli-

tude). We will sometimes leave the dependence on the ai implicit in cases where they do not

matter.

Master integrals for the other topologies are defined by simple permutations of p̄1, p̄2: B

by p̄1 ! �p̄1, C is obtained by by p̄2 ! �p̄2, and D by p̄1 ! �p̄1, p̄2 ! �p̄2. The fact that

permutations act simply on p̄
µ

i
= 1

2
(pi+p

0

i
)µ makes these variables particularly convenient for

eikonal expansions, as emphasized in [39, 40]. In this notation, the total scattering amplitude

can be written as

iM =
X

i

h
ci(p̄1, p̄2)G

A

i + ci(�p̄1, p̄2)G
B

i

+ ci(p̄1,�p̄2)G
C

i + ci(�p̄1,�p̄2)G
D

i

i
,

(5.4) {amp 4 terms}{amp 4 terms}

where the sum in i runs over some basis of master integrals given by the G
A

i
, and ci are their

coe�cients.8

When computing the in-in expectation value Expk, we need to add to the scattering am-

plitude the contribution from the Cut1020 term in (5.2). In fact, out of the one-loop topologies

shown in Fig. 7, only D admits a cut in this channel. This was previously exemplified in

Sections 3.2 and 4.5. Thus, for the A, B and C topologies, there is actually no di↵erence

8
Integrals with a2 6 0 or a5 6 0 can be viewed as members of several topologies. To keep the notation

uniform, we will assume with no loss of generality that the corresponding ci’s have been chosen so that (5.4)

holds.
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独Exponentially many asymptotic observables, e.g. gravitational waveforms, 

out-of-time-ordered correlators and in-in expectation values 

独New version of crossing symmetry: 

S-matrix contains a host of asymptotic observables which are related 

by analytic continuations between different channels
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