CROSSING BEYOND SCATTERING AMPLITUDES

Hofie Sigridar Hannesdottir

Institute for Advanced Study

with Simon Caron-Huot, Mathieu Giroux and Sebastian Mizera

OUTLINE

1. Introduction

3. Crossing equation

2. What can be measured asymptotically?

4. Examples

REVIEW ON CROSSING SYMMETRY

Amplitudes for $AB \to CD$ and $A\bar{C} \to \bar{B}D$ are boundary values of the **same analytic function**

$$\mathcal{M}_{AB \to CD} \underset{\text{continuation}}{\longleftrightarrow} \mathcal{M}_{A\bar{C} \to \bar{B}D}$$

Particles indistinguishable from antiparticles traveling back in time?

REVIEW ON CROSSING SYMMETRY

Amplitudes for $AB \to CD$ and $A\bar{C} \to \bar{B}D$ are boundary values of the same analytic function

Particles indistinguishable from antiparticles traveling back in time?

Crossing symmetry would allow us to use results from previous computations:

CROSSING SYMMETRY IN 2 TO 2 SCATTERING

Proven for the non-perturbative amplitude at fixed momentum transfer t < 0in theories with mass gap

CROSSING SYMMETRY IN 2 TO 2 SCATTERING

Proven for the non-perturbative amplitude at fixed momentum transfer t < 0in theories with mass gap

CROSSING SYMMETRY IN 2 TO 3 SCATTERING

Same for the 5 pt amplitude, right?

CROSSING SYMMETRY IN 2 TO 3 SCATTERING

Same for the 5 pt amplitude, right?

No.

CROSSING SYMMETRY IN 2 TO 3 SCATTERING

The central topic of this talk:

What is the result of analytically continuing scattering amplitudes?

$$\mathcal{M}_{543\leftarrow 21} = \frac{5}{4} \underbrace{\qquad}_{3} \underbrace{\qquad}_{1} = \frac{g^{3}}{(s_{45} - m_{45}^{2} + i\varepsilon)(s_{13} - m_{13}^{2})},$$

Rotate s_{13} in the lower half plane at fixed s_{45}

Rotate s_{13} in the lower half plane at fixed s_{45}

$$\mathcal{M}_{543\leftarrow 21} = \frac{5}{4} \underbrace{\qquad}_{3} \underbrace{\qquad}_{1} = \frac{g^{3}}{(s_{45} - m_{45}^{2} + i\varepsilon)(s_{13} - m_{13}^{2})},$$

Rotate s_{13} in the lower half plane at fixed s_{45}

$$[\mathcal{M}_{543\leftarrow21}]_{s_{13}} = \frac{g^3}{(s_{45} - m_{45}^2 + i\varepsilon)(s_{13} - m_{13}^2 - i\varepsilon)} = \underbrace{\frac{g^3}{(s_{45} - m_{45}^2 - i\varepsilon)(s_{13} - m_{13}^2 - i\varepsilon)}}_{\sum_{4}^{5} \underbrace{\frac{g^3}{(s_{13} - m_{13}^2 - i\varepsilon)}}_{\mathcal{M}^{\dagger}} - \underbrace{2\pi i\delta(s_{45} - m_{45}^2)\frac{g^3}{(s_{13} - m_{13}^2 - i\varepsilon)}}_{\sum_{4}^{5} \underbrace{\frac{g^3}{(s_{13} - m_{13}^2 - i\varepsilon)}}_{\mathcal{M}^{\dagger}} - \underbrace{2\pi i\delta(s_{45} - m_{45}^2)\frac{g^3}{(s_{13} - m_{13}^2 - i\varepsilon)}}_{\mathcal{M}^{\dagger}}$$

Takeaway point:

Analytic continuation from \mathcal{M} lands on something new

HERE: RELATE ASYMPTOTIC OBSERVABLES

We will learn: Scattering amplitudes are part of a larger family of observables, related by analytic continuation

Crossing equation describes the result of analytic continuation

PREVIOUS PROGRESS ON CROSSING

• Proposed for quantum field theory in 1954

[Gell-Mann, Goldberger, Thirring]

- \cdot Proven for non-perturbative 2+2 and 2+3 scalar amplitudes, assuming mass gap
 - Proofs use mass gap, causality, unitarity, and analytic extension theorems

[Bros, Epstein, Glaser 1964, 1965; Bros 1986]

 \cdot Recent progress in Chern-Simons theories and string theory for 2+2 amplitudes

[See e.g. Jain, Mandlik, Minwalla, Takimi, Wadia, Yokoyama 2014; Lacroix, Erbin, Sen 2018; Mehta, Minwalla, Patel, Prakash, Sharma 2022; Gabai, Sandor, Yin 2022]

• Proven in the planar limit to any multiplicity using perturbation theory

[Mizera 2021]

Challenge: understand connection between crossing and physical principles

OUTLINE

1. Introduction

3. Crossing equation

2. What can be measured asymptotically?

4. Examples

ASYMPTOTIC ALGEBRA IN QUANTUM FIELD THEORY

1. Algebra of asymptotic measurements in the far past and far future,

$$a_{\text{in}} \quad \boxed{[a_1, a_2^{\dagger}]} = \delta_{1,2} \, 2p_1^0 (2\pi)^{D-1} \delta^{D-1} (\vec{p}_1 - \vec{p}_2)$$
$$a_{\text{out}} \quad \boxed{[b_1, b_2^{\dagger}]} = \delta_{1,2} \, 2p_1^0 (2\pi)^{D-1} \delta^{D-1} (\vec{p}_1 - \vec{p}_2)$$

2. These operators act on equivalent Hilbert spaces and are related by a unitary evolution operator S:

$$b = S^{\dagger}aS, \quad b^{\dagger} = S^{\dagger}a^{\dagger}S; \qquad SS^{\dagger} = \mathbb{1}$$

3. There exists a time-invariant vacuum $|0\rangle$:

$$a_i|0\rangle = b_i|0\rangle = 0, \quad S|0\rangle = |0\rangle$$

4. Stability:

$$Sa_{i}^{\dagger}|0
angle=a_{i}^{\dagger}|0
angle_{,_{20}}$$
 $Sb_{i}^{\dagger}|0
angle=b_{i}^{\dagger}|0
angle$

ASYMPTOTIC ALGEBRA IN QUANTUM FIELD THEORY

1. Algebra of asymptotic measurements in the far past and far future,

$$\begin{array}{c} a_{\rm in} & \hline [a_1, a_2^{\dagger}] = \delta_{1,2} \, 2p_1^0 (2\pi)^{{\rm D}-1} \delta^{{\rm D}-1} (\vec{p}_1 - \vec{p}_2) \\ a_{\rm out} & \hline [b_1, b_2^{\dagger}] = \delta_{1,2} \, 2p_1^0 (2\pi)^{{\rm D}-1} \delta^{{\rm D}-1} (\vec{p}_1 - \vec{p}_2) \end{array} \right\} \begin{array}{c} \text{Assume Bose/Fermi} \\ \text{statistics, flat space,} \\ \text{Poincaré invariance} \end{array}$$

2. These operators act on equivalent Hilbert spaces and are related by a unitary evolution operator S:

$$b = S^{\dagger}aS, \quad b^{\dagger} = S^{\dagger}a^{\dagger}S; \qquad SS^{\dagger} = \mathbb{1}$$

3. There exists a time-invariant vacuum $|0\rangle$:

$$a_i|0\rangle = b_i|0\rangle = 0, \quad S|0\rangle = |0\rangle$$

4. Stability:

$$Sa_{i}^{\dagger}|0
angle=a_{i}^{\dagger}|0
angle_{2|} \qquad Sb_{i}^{\dagger}|0
angle=b_{i}^{\dagger}|0
angle$$

Using this algebra,

What can be measured asymptotically?

$$\langle 0|b_4b_3a_2^{\dagger}a_1^{\dagger}|0\rangle = {}_{\rm in}\langle 43|S|21\rangle_{\rm in} = {}^3 \underbrace{4}_4 \underbrace{S}_4 \underbrace{1}_2 \\ \langle 0|a_4a_3b_2^{\dagger}b_1^{\dagger}|0\rangle = {}_{\rm in}\langle 43|S^{\dagger}|21\rangle_{\rm in} = {}^3 \underbrace{4}_4 \underbrace{S}_4 \underbrace{S}_4 \underbrace{1}_2 \\ \langle 0|a_4a_3a_2^{\dagger}a_1^{\dagger}|0\rangle = {}_{\rm in}\langle 43|21\rangle_{\rm in} = 0 \\ \langle 0|b_4b_3b_2^{\dagger}b_1^{\dagger}|0\rangle = {}_{\rm in}\langle 43|21\rangle_{\rm in} = 0$$

$$b = S^{\dagger}aS, \quad b^{\dagger} = S^{\dagger}a^{\dagger}S$$

$$\langle 0|b_{4}b_{3}a_{2}^{\dagger}a_{1}^{\dagger}|0\rangle = {}_{\mathrm{in}}\langle 43|S|21\rangle_{\mathrm{in}} = {}^{3}_{4} \underbrace{\checkmark}_{2} \underbrace{\checkmark}_{2} \\ \langle 0|a_{4}a_{3}b_{2}^{\dagger}b_{1}^{\dagger}|0\rangle = {}_{\mathrm{in}}\langle 43|S^{\dagger}|21\rangle_{\mathrm{in}} = {}^{3}_{4} \underbrace{\checkmark}_{2} \underbrace{\mathstrut}_{2} \\ \langle 0|a_{4}a_{3}a_{2}^{\dagger}a_{1}^{\dagger}|0\rangle = {}_{\mathrm{in}}\langle 43|21\rangle_{\mathrm{in}} = {}^{3}_{4} \underbrace{\backsim}_{2} \underbrace{\mathstrut}_{2} \\ \langle 0|b_{4}b_{3}b_{2}^{\dagger}b_{1}^{\dagger}|0\rangle = {}_{\mathrm{in}}\langle 43|21\rangle_{\mathrm{in}} = {}^{0}_{4} \\ \langle 0|b_{4}b_{3}b_{2}^{\dagger}b_{1}^{\dagger}|0\rangle = {}_{\mathrm{in}}\langle 43|21\rangle_{\mathrm{in}} = {}^{0}_{4}$$

Time flows to the left in all diagrams

$$\langle 0|b_5b_4b_3a_2^{\dagger}a_1^{\dagger}|0\rangle = {}_{\rm in}\langle 543|S|21\rangle_{\rm in} = \begin{cases} 3\\4\\5 \end{cases} \underbrace{45} \\ (0|a_5a_4a_3b_2^{\dagger}b_1^{\dagger}|0\rangle = {}_{\rm in}\langle 543|S^{\dagger}|21\rangle_{\rm in} = \begin{cases} 3\\4\\5 \end{cases} \underbrace{45} \\ (0|a_5a_4a_3b_2^{\dagger}b_1^{\dagger}|0\rangle = {}_{\rm in}\langle 543|S^{\dagger}|21\rangle_{\rm in} = \begin{cases} 3\\4\\5 \end{cases} \underbrace{45} \\ (0|a_5a_4a_3b_2^{\dagger}b_1^{\dagger}|0\rangle = {}_{\rm in}\langle 543|S^{\dagger}|21\rangle_{\rm in} = \begin{cases} 3\\4\\5 \end{cases} \underbrace{45} \\ (0|a_5a_4a_3b_2^{\dagger}b_1^{\dagger}|0\rangle = {}_{\rm in}\langle 543|S^{\dagger}|21\rangle_{\rm in} = \begin{cases} 3\\4\\5 \end{cases} \underbrace{45} \\ (0|a_5a_4a_3b_2^{\dagger}b_1^{\dagger}|0\rangle = {}_{\rm in}\langle 543|S^{\dagger}|21\rangle_{\rm in} = \begin{cases} 3\\4\\5 \end{cases} \underbrace{45} \\ (0|a_5a_4a_3b_2^{\dagger}b_1^{\dagger}|0\rangle = {}_{\rm in}\langle 543|S^{\dagger}|21\rangle_{\rm in} = \begin{cases} 3\\4\\5 \end{cases} \underbrace{45} \\ (0|a_5a_4a_3b_2^{\dagger}b_1^{\dagger}|0\rangle = {}_{\rm in}\langle 543|S^{\dagger}|21\rangle_{\rm in} = \begin{cases} 3\\4\\5 \end{cases} \underbrace{45} \\ (0|a_5a_4a_3b_2^{\dagger}b_1^{\dagger}|0\rangle = {}_{\rm in}\langle 543|S^{\dagger}|21\rangle_{\rm in} = \begin{cases} 3\\4\\5 \end{cases} \underbrace{45} \\ (0|a_5a_4a_3b_2^{\dagger}b_1^{\dagger}|0\rangle = {}_{\rm in}\langle 543|S^{\dagger}|21\rangle_{\rm in} = \begin{cases} 3\\4\\5 \end{cases} \underbrace{45} \\ (0|a_5a_4a_3b_2^{\dagger}b_1^{\dagger}|0\rangle = {}_{\rm in}\langle 543|S^{\dagger}|21\rangle_{\rm in} = \begin{cases} 3\\4\\5 \end{cases} \underbrace{45} \\ (0|a_5a_4a_3b_2^{\dagger}b_1^{\dagger}|0\rangle = {}_{\rm in}\langle 543|S^{\dagger}|21\rangle_{\rm in} = \begin{cases} 3\\4\\5 \end{cases} \underbrace{45} \\ (0|a_5a_4a_3b_2^{\dagger}b_1^{\dagger}|0\rangle = {}_{\rm in}\langle 543|S^{\dagger}|21\rangle_{\rm in} = \begin{cases} 3\\4\\5 \end{cases} \underbrace{45} \\ (0|a_5a_4a_3b_2^{\dagger}b_1^{\dagger}|0\rangle = {}_{\rm in}\langle 543|S^{\dagger}|21\rangle_{\rm in} = \begin{cases} 3\\4\\5 \end{array} \underbrace{45} \\ (0|a_5a_4a_3b_2^{\dagger}b_1^{\dagger}|0\rangle = {}_{\rm in}\langle 543|S^{\dagger}|21\rangle_{\rm in} = \begin{cases} 3\\4\\5 \end{array} \underbrace{45} \\ (0|a_5a_4a_3b_2^{\dagger}b_1^{\dagger}|0\rangle = {}_{\rm in}\langle 543|S^{\dagger}|21\rangle_{\rm in} = \begin{cases} 3\\4\\5 \end{array} \underbrace{45} \\ (0|a_5a_4a_3b_2^{\dagger}b_1^{\dagger}|0\rangle = {}_{\rm in}\langle 543|S^{\dagger}|21\rangle_{\rm in} = \begin{cases} 3\\4\\5 \end{array} \underbrace{45} \\ (0|a_5a_4a_3b_2^{\dagger}b_1^{\dagger}|0\rangle = {}_{\rm in}\langle 543|S^{\dagger}|21\rangle_{\rm in} = \begin{cases} 3\\4\\5 \end{array} \underbrace{45} \\ (0|a_5a_4a_3b_2^{\dagger}b_1^{\dagger}|0\rangle = {}_{\rm in}\langle 543|S^{\dagger}|21\rangle_{\rm in} = \begin{cases} 3\\4\\5 \end{array} \underbrace{45} \\ (0|a_5a_4a_3b_2^{\dagger}b_1^{\dagger}|0\rangle = {}_{\rm in}\langle 543|S^{\dagger}|21\rangle_{\rm in} = \begin{cases} 3\\4\\5 \end{array} \underbrace{45} \\ (0|a_5a_4a_3b_2^{\dagger}b_1^{\dagger}|0\rangle = {}_{\rm in}\langle 543|S^{\dagger}|21\rangle_{\rm in} = \end{cases}$$

(plus forward terms and Hermitian conjugates)

$$\langle 0|b_5b_4b_3a_2^{\dagger}a_1^{\dagger}|0\rangle = {}_{\mathrm{in}}\langle 543|S|21\rangle_{\mathrm{in}} = {}_{45}^{3} \underbrace{+}_{5}^{\bullet} \underbrace{+}_{2}^{1} \\ \langle 0|a_5a_4a_3b_2^{\dagger}b_1^{\dagger}|0\rangle = {}_{\mathrm{in}}\langle 543|S^{\dagger}|21\rangle_{\mathrm{in}} = {}_{45}^{3} \underbrace{+}_{5}^{\bullet} \underbrace{+}_{2}^{1} \\ \langle 0|a_5a_4b_3a_2^{\dagger}a_1^{\dagger}|0\rangle = {}_{\mathrm{in}}\langle 54|b_3|21\rangle_{\mathrm{in}} = {}_{45}^{\bullet} \underbrace{+}_{5}^{\bullet} \underbrace{+}_{5}^$$

(plus forward terms and Hermitian conjugates)

(plus forward terms and Hermitian conjugates)

EXAMPLE 6 PT ASYMPTOTIC MEASUREMENTS

 $Scattering \ amplitudes$

Inclusive amplitudes

Out-of-time-ordered correlators

2

EXAMPLE N-PT ASYMPTOTIC MEASUREMENTS

More generally:

We expand in terms of connected components:

PHYSICAL INTERPRETATION OF ASYMPTOTIC OBSERVABLES

 $_{\rm in}\langle 0|b_n\cdots b_{j+1}a_j^{\dagger}\cdots a_1^{\dagger}|0\rangle_{\rm in}$: Scattering amplitude

 $_{\rm in}\langle 54|b_3|21\rangle_{\rm in}$: Expectation value of electromagnetic field in a scattering experiment / Gravitational waveform detected by LIGO-Virgo-KAGRA

 $\lim_{p_3\to p_4} {}_{\rm in}\langle 65|b_4b_3^\dagger|21\rangle_{\rm in}$: Inclusive cross section / inclusive particle number

 $_{\rm in}\langle 6|b_5^{\dagger}a_4b_3^{\dagger}a_2^{\dagger}|1\rangle_{\rm in}$: Out-of-time-ordered correlator

[See e.g. Shenker, Stanford 2013; Maldacena, Shenker, Stanford 2015; Kosower, Maybee, O'Connell 2018; Caron-Huot 2022]

Takeaway points:

 \cdot S-matrix only one of exponentially many asymptotic observables

· Asymptotic observables are physical; already being measured and computed

In this talk:

• Relate asymptotic observables to one another via analytic continuations

OUTLINE

1. Introduction

3. Crossing equation

2. What can be measured asymptotically?

4. Examples

CONTOUR OF CONTINUATION

We propose an **on-shell** contour of analytic continuation which exchanges incoming and outgoing states with a parameter z

$$\begin{aligned} p_b^{\mu}(z) &= \left(zp_b^+, \, \frac{1}{z}p_b^-, \, p_b^\perp\right), \qquad p_c^{\mu}(z) = \left(zp_c^+, \, \frac{1}{z}p_c^-, \, p_c^\perp\right), \\ \text{for all } b \in B \qquad \qquad \text{for all } c \in C \end{aligned}$$

CROSSING PATH IN PRACTICE

[See also Bros 1986]

• Loop-level examples and tree-level proof (part 4)

· Axiomatic quantum field theory, assuming analyticity, using microcausality

$$[b, a^{\dagger}] \xrightarrow[]{\operatorname{Cross} B \leftrightarrow C} [b^{\dagger}, a]$$

38

[Bros, Epstein, Glaser 1964, 1965; Itzykson, Zuber 1987]

Crossing proposal for multi-particle crossing:

Crossing proposal for multi-particle crossing:

Evidence:

Loop-level examples and tree-level proof (part 4)
Symmetry in AD & BC

Proving the crossing equation involves comparing:

 $B \left\{ \begin{array}{c} \overline{2} \\ \overline{2} \\ S \end{array} \right\} C$ $D \left\{ \begin{array}{c} S \\ S \end{array} \right\} A$

(II)

The analytic continuation of S via the prescribed path

Computing the corresponding observables explicitly

CONTINUING AROUND SINGULARITIES

Local analyticity can be subtle: might need to continue past anomalous thresholds

Expected from axiomatic field theory

FAMILIES OF OBSERVABLES

OUTLINE

1. Introduction

3. Crossing equation

2. What can be measured asymptotically?

4. Examples

TREE-LEVEL EXAMPLE REVISITED

$$\mathcal{M}_{543\leftarrow21} = \frac{5}{4} \underbrace{\begin{array}{c} 2\\ \\ \\ \\ \\ \\ \\ \\ \end{array}}_{3} \underbrace{\begin{array}{c} 2\\ \\ \\ \\ \\ \\ \end{array}}_{1} = \frac{g^{3}}{(s_{45} - m_{45}^{2} + i\varepsilon)(s_{13} - m_{13}^{2})}$$

(I) Analytic continuation path: s_{13} rotates, s_{45} stays fixed,

$$\left[\mathcal{M}_{543\leftarrow21}\right]_{s_{13}} = \frac{g^3}{(s_{45} - m_{45}^2 + i\varepsilon)(s_{13} - m_{13}^2 - i\varepsilon)}$$

Allowed patterns:

$$5 + \frac{3}{4} + \frac{3}{1} = \frac{g^3}{(s_{45} - m_{45}^2 - i\varepsilon)(s_{13} - m_{13}^2 - i\varepsilon)}$$

$$5 \sum_{4}^{5} \sum_{1}^{4} \frac{1}{1} = -2\pi i \delta(s_{45} - m_{45}^2) \frac{g^3}{(s_{13} - m_{13}^2 - i\varepsilon)}$$

Example disallowed patterns:

Allowed patterns:

Comparing (I) and (II) verifies the crossing equation.

PERTURBATION THEORY CHECKS

 \cdot Checked all D-dim massless basis integrals for an expansion around D=4

• Proof at any multiplicity at tree level (highly nontrivial)

CROSSING CHECK FOR PENTAGON $\begin{array}{c} 512 \leftarrow 34\\ 215 \leftarrow 43 \end{array}$ $\begin{array}{c} 153 \leftarrow 24\\ 351 \leftarrow 42 \end{array}$ $513 \leftarrow 24$ S_{4} 報 ⇒ 羽 $\left[\boldsymbol{I}_{0}^{(34\to215)}\right]_{2(\downarrow)^{3}} - \left[\boldsymbol{I}_{0}^{(24\to315)}\right]^{*} + \operatorname{Cut}_{s_{51}}\boldsymbol{I}_{0}^{(34\to215)} \stackrel{?}{=} 0$ s_{12} S_{34} $\begin{array}{c} 531 \leftarrow 24\\ 135 \leftarrow 42 \end{array}$ s_{23} 2 $D \xrightarrow{514}_{415} \leftarrow 32$ $\left[\boldsymbol{I}_{0}^{(34\rightarrow215)}\right]_{2\leftrightarrow3} = \mathcal{P}\exp\left(\epsilon\int_{\gamma\gamma_{0}\ldots\gamma_{0}}\mathrm{d}\boldsymbol{\Omega}\right)\cdot\boldsymbol{I}_{0}^{(34\rightarrow215)}$ $153 \leftarrow 42$ $351 \leftarrow 24$ $\begin{bmatrix} I_0^{(34\rightarrow215)} \end{bmatrix}_{2\leftrightarrow3} = \begin{pmatrix} -1 & -i\pi & \frac{7\pi^2}{12} & \frac{7\zeta_3}{3} + \frac{i\pi^3}{14} & -\frac{7i\pi^4}{1440} + \frac{7i\pi\zeta_3}{1440} + \frac{7i\pi\zeta_3}{140} +$ $\left[\begin{array}{c} \epsilon \\ \epsilon^2 \\ \epsilon^3 \\ \epsilon^4 \end{array}\right]$ $\operatorname{Cut}_{s_{01}} \boldsymbol{I}_{0}^{(34 \to 215)} = \begin{pmatrix} & 2is & 0 & -\frac{i\pi^{*}}{2} & -\frac{14}{3}i\pi\zeta_{3} \\ \boldsymbol{0}_{4} & \boldsymbol{0}_{4} & \boldsymbol{0}_{4} & \boldsymbol{0}_{4} \\ 0 & -4i\pi & 0 & \frac{i\pi^{*}}{3} & \frac{28i\pi\zeta_{3}}{3} \\ 0 & -4i\pi & 0 & \frac{i\pi^{*}}{3} & \frac{28i\pi\zeta_{3}}{3} \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 4i\pi & 0 & -\frac{i\pi^{*}}{3} & -\frac{22}{3}i\pi\zeta_{3} \\ \boldsymbol{0}_{2} & \boldsymbol{0}_{2} & \boldsymbol{0}_{2} & \boldsymbol{0}_{2} \end{pmatrix} \cdot \begin{pmatrix} 1 \\ \epsilon \\ \epsilon^{2} \\ \epsilon^{3} \\ \epsilon^{4} \end{pmatrix}$

[Chicherin, Henn, Mitev 2017]

Emission in black-hole scattering

Waveform in LIGO-Virgo-KAGRA obtained as an in-in expectation value

[Kosower, Maybee, O'Connell 2018]

Here, analytically continue the 5-pt amplitude in one-loop computations $\overrightarrow{BH} \xrightarrow{BH} (S^{\dagger}) \xrightarrow{F} h$

[See also Brandhuber, Brown, Chen, De Angelis, Gowdy, Travaglini 2023; Herderschee, Roiban, Teng 2023; Elkhidir, O'Connell, Sergola, Vazquez-Holm 2023]

CONCLUSIONS

• Exponentially many **asymptotic observables**, e.g. gravitational waveforms, out-of-time-ordered correlators and in-in expectation values

 \cdot New version of crossing symmetry:

S-matrix contains a host of asymptotic observables which are related by analytic continuations between different channels

CONCLUSIONS

• Exponentially many **asymptotic observables**, e.g. gravitational waveforms, out-of-time-ordered correlators and in-in expectation values

 \cdot New version of crossing symmetry:

S-matrix contains a host of asymptotic observables which are related by analytic continuations between different channels

THANKS!