Crossing Beyond Scattering Amplitudes

Hofie Sigridar Hannesdottir
Institute for Advanced Study

with Simon Caron-Huot, Mathieu Giroux and Sebastian Mizera

Outline

1. Introduction

2. Crossing equation

3. What can be measured asymptotically?

4. Examples

REVIEW ON CROSSING SYMMETRY

Amplitudes for $A B \rightarrow C D$ and $A \bar{C} \rightarrow \bar{B} D$ are boundary values of the same analytic function

$\mathcal{M}_{A B \rightarrow C D} \underset{\begin{array}{c}\text { Analytic } \\ \text { continuation }\end{array}}{\longleftrightarrow} \mathcal{M}_{A \bar{C} \rightarrow \bar{B} D}$

Particles indistinguishable from antiparticles traveling back in time?

REVIEW ON CROSSING SYMMETRY

Amplitudes for $A B \rightarrow C D$ and $A \bar{C} \rightarrow \bar{B} D$ are boundary values of the same analytic function

Not relabeling or cyclic invariance

$$
\mathcal{M}_{A B \rightarrow C D} \underset{\begin{array}{c}
\text { Analytic } \\
\text { continuation }
\end{array}}{\longleftrightarrow} \mathcal{M}_{A \bar{C} \rightarrow \bar{B} D}
$$

Particles indistinguishable from antiparticles traveling back in time?

Crossing symmetry would allow us to use results from previous computations:

Crossing symmetry in 2 to 2 Scattering

Proven for the non-perturbative amplitude at fixed momentum transfer $t<0$ in theories with mass gap

Crossing symmetry in 2 to 2 Scattering

Proven for the non-perturbative amplitude at fixed momentum transfer $t<0$ in theories with mass gap

Crossing symmetry in 2 to 3 scattering

Same for the 5 pt amplitude, right?

Crossing symmetry in 2 to 3 scattering

Same for the 5 pt amplitude, right?

No.

Crossing symmetry in 2 To 3 Scattering

The central topic of this talk:
What is the result of analytically continuing scattering amplitudes?

Simple example at Tree level

$$
\mathcal{M}_{543 \leftarrow 21}={ }_{4}^{5}=\frac{g^{3}}{\left(s_{45}-m_{45}^{2}+i \varepsilon\right)\left(s_{13}-m_{13}^{2}\right)},
$$

We will take time
flowing to the left!

Simple example at Tree level

Rotate s_{13} in the lower half plane at fixed s_{45}

Simple example at Tree level

Rotate s_{13} in the lower half plane at fixed s_{45}

Simple example at Tree level

Rotate s_{13} in the lower half plane at fixed s_{45}

$$
\begin{aligned}
{\left[\mathcal{M}_{543 \leftarrow 21}\right]_{s_{13}} } & =\underbrace{\frac{g^{3}}{\left(s_{45}-m_{45}^{2}+i \varepsilon\right)\left(s_{13}-m_{13}^{2}-i \varepsilon\right)}}_{\mathcal{M}^{\dagger}} \\
& =\underbrace{\frac{g^{3}}{\left(s_{45}-m_{45}^{2}-i \varepsilon\right)\left(s_{13}-m_{13}^{2}-i \varepsilon\right)}}_{1}-\underbrace{2 \pi i \delta\left(s_{45}-m_{45}^{2}\right) \frac{g^{3}}{\left(s_{13}-m_{13}^{2}-i \varepsilon\right)}}_{\mathcal{M}_{3}^{2}}
\end{aligned}
$$

Takeaway point:
Analytic continuation from \mathcal{M} lands on something new

Here: Relate asymptotic observables

We will learn: Scattering amplitudes are part of a larger family of observables, related by analytic continuation

Crossing equation describes the result of analytic continuation

Previous progress on crossing

- Proposed for quantum field theory in 1954
[Gell-Mann, Goldberger, Thirring]
- Proven for non-perturbative $2 \rightarrow 2$ and $2 \rightarrow 3$ scalar amplitudes, assuming mass gap
- Proofs use mass gap, causality, unitarity, and analytic extension theorems
[Bros, Epstein, Glaser 1964, 1965; Bros 1986]
- Recent progress in Chern-Simons theories and string theory for $2 \rightarrow 2$ amplitudes

> [See e.g. Jain, Mandlik, Minwalla, Takimi, Wadia, Yokoyama 2014; Lacroix, Erbin, Sen 2018; Mehta, Minwalla, Patel, Prakash, Sharma 2022; Gabai, Sandor, Yin 2022]

- Proven in the planar limit to any multiplicity using perturbation theory
[Mizera 2021]

Challenge: understand connection between crossing and physical principles

Outline

1. Introduction

2. Crossing equation

3. What can be measured asymptotically?

4. Examples

AsYmptotic ALgEBRA IN QUANTUM FIELD THEORY

1. Algebra of asymptotic measurements in the far past and far future,

$$
\begin{aligned}
& a_{\text {in }} \\
& a_{\text {out }} \\
& \left.\left[a_{1}, a_{2}^{\dagger}\right]=\delta_{1,2} 2 p_{1}^{0}(2 \pi)^{\mathrm{D}-1} \delta^{\mathrm{D}-1}\left(\vec{p}_{2}^{\dagger}\right]=\vec{p}_{2}\right) \\
& 1,22 p_{1}^{0}(2 \pi)^{\mathrm{D}-1} \delta^{\mathrm{D}-1}\left(\vec{p}_{1}-\vec{p}_{2}\right)
\end{aligned}
$$

2. These operators act on equivalent Hilbert spaces and are related by a unitary evolution operator S :

$$
b=S^{\dagger} a S, \quad b^{\dagger}=S^{\dagger} a^{\dagger} S ; \quad S S^{\dagger}=\mathbb{1}
$$

3. There exists a time-invariant vacuum $|0\rangle$:

$$
a_{i}|0\rangle=b_{i}|0\rangle=0, \quad S|0\rangle=|0\rangle
$$

4. Stability:

$$
\left.S a_{i}^{\dagger}|0\rangle=a_{i}^{\dagger}|0\rangle\right\rangle_{20} \quad S b_{i}^{\dagger}|0\rangle=b_{i}^{\dagger}|0\rangle
$$

AsYmptotic ALgEBRA IN QUANTUM FIELD THEORY

1. Algebra of asymptotic measurements in the far past and far future,
$\left.a_{\text {out }} \quad\left[a_{1}, a_{2}^{\dagger}\right]=\delta_{1,2} 2 p_{1}^{0}(2 \pi)^{\mathrm{D}-1} \delta^{\mathrm{D}-1}\left(\vec{p}_{1}-\vec{p}_{2}^{\dagger}\right)=\delta_{1,2} 2 p_{1}^{0}(2 \pi)^{\mathrm{D}-1} \delta^{\mathrm{D}-1}\left(\vec{p}_{1}-\vec{p}_{2}\right)\right\}$

Assume Bose/Fermi statistics, flat space, Poincaré invariance
2. These operators act on equivalent Hilbert spaces and are related by a unitary evolution operator S :

$$
b=S^{\dagger} a S, \quad b^{\dagger}=S^{\dagger} a^{\dagger} S ; \quad S S^{\dagger}=\mathbb{1}
$$

3. There exists a time-invariant vacuum $|0\rangle$:

$$
a_{i}|0\rangle=b_{i}|0\rangle=0, \quad S|0\rangle=|0\rangle
$$

4. Stability:

$$
S a_{i}^{\dagger}|0\rangle=a_{i}^{\dagger}|0\rangle, \quad S b_{i}^{\dagger}|0\rangle=b_{i}^{\dagger}|0\rangle
$$

Using this algebra,

What can be measured asymptotically?

4 PT ASYMPTOTIC MEASUREMENTS

$$
\begin{aligned}
& \langle 0| b_{4} b_{3} a_{2}^{\dagger} a_{1}^{\dagger}|0\rangle={ }_{\mathrm{in}}\langle 43| S|21\rangle_{\mathrm{in}}=\begin{array}{l}
3 \nleftarrow \\
4 \\
\leftarrow
\end{array} \mathrm{H}_{2} \\
& \langle 0| a_{4} a_{3} b_{2}^{\dagger} b_{1}^{\dagger}|0\rangle={ }_{\mathrm{in}}\langle 43| S^{\dagger}|21\rangle_{\mathrm{in}}=3 \not 4 \leftarrow S^{\dagger} \leftarrow 1 \\
& \langle 0| a_{4} a_{3} a_{2}^{\dagger} a_{1}^{\dagger}|0\rangle={ }_{\text {in }}\langle 43 \mid 21\rangle_{\text {in }} \quad=0 \\
& \langle 0| b_{4} b_{3} b_{2}^{\dagger} b_{1}^{\dagger}|0\rangle={ }_{\text {in }}\langle 43 \mid 21\rangle_{\text {in }} \quad=0
\end{aligned}
$$

4 PT ASYMPTOTIC MEASUREMENTS

$$
\begin{aligned}
& b=S^{\dagger} a S, \quad b^{\dagger}=S^{\dagger} a^{\dagger} S \\
& \langle 0| b_{4} b_{3} a_{2}^{\dagger} a_{1}^{\dagger}|0\rangle={ }_{i n}\langle 43| S|21\rangle_{\text {in }}=\begin{array}{l}
3 \leftarrow S \leftarrow{ }_{4}+2
\end{array} \\
& \langle 0| a_{4} a_{3} b_{2}^{\dagger} b_{1}^{\dagger}|0\rangle={ }_{\text {in }}\langle 43| S^{\dagger}|21\rangle_{\text {in }}=\begin{array}{l}
3 \leftarrow S^{\dagger} \leftarrow 1 \\
4 \leftarrow 2
\end{array} \\
& \langle 0| a_{4} a_{3} a_{2}^{\dagger} a_{1}^{\dagger}|0\rangle={ }_{\text {in }}\langle 43 \mid 21\rangle_{\text {in }} \quad=0 \\
& \langle 0| b_{4} b_{3} b_{2}^{\dagger} b_{1}^{\dagger}|0\rangle={ }_{\text {in }}\langle 43 \mid 21\rangle_{\text {in }}=0
\end{aligned}
$$

Time flows to the left in all diagrams

5 PT ASYMPTOTIC MEASUREMENTS

$$
\begin{aligned}
& \langle 0| b_{5} b_{4} b_{3} a_{2}^{\dagger} a_{1}^{\dagger}|0\rangle={ }_{\text {in }}\langle 543| S|21\rangle_{\text {in }}={ }_{3}^{4} \begin{array}{l}
3 \\
\langle 0| a_{5} a_{4} a_{3} b_{2}^{\dagger} b_{1}^{\dagger}|0\rangle={ }_{\text {in }}\langle 543| S^{\dagger}|21\rangle_{\text {in }}= \\
3 \\
4 \\
4
\end{array} S^{\ddagger}+1
\end{aligned}
$$

(plus forward terms and Hermitian conjugates)

5 PT ASYMPTOTIC MEASUREMENTS

$$
\begin{aligned}
& \langle 0| b_{5} b_{4} b_{3} a_{2}^{\dagger} a_{1}^{\dagger}|0\rangle={ }_{\text {in }}\langle 543| S|21\rangle_{\text {in }}={ }_{5}^{3} \underset{5}{4} \underset{\leftarrow}{\leftarrow} S+2 \\
& \langle 0| a_{5} a_{4} a_{3} b_{2}^{\dagger} b_{1}^{\dagger}|0\rangle={ }_{\text {in }}\langle 543| S^{\dagger}|21\rangle_{\text {in }}={ }_{3}^{4} \begin{array}{l}
3 \\
5
\end{array} \underset{\leftarrow}{\leftarrow} S^{\dagger} \leftarrow 1 \\
& \langle 0| a_{5} a_{4} b_{3} a_{2}^{\dagger} a_{1}^{\dagger}|0\rangle={ }_{\mathrm{in}}\langle 54| b_{3}|21\rangle_{\mathrm{in}}=4 \leftarrow S^{4} \text { ك } \\
& \langle 0| a_{5} a_{4} b_{3}^{\dagger} a_{2}^{\dagger} a_{1}^{\dagger}|0\rangle={ }_{\mathrm{in}}\langle 54| b_{3}^{\dagger}|21\rangle_{\mathrm{in}}=\underset{5}{4} \underbrace{\leftarrow} S^{\dagger} X_{2}
\end{aligned}
$$

(plus forward terms and Hermitian conjugates)

5 PT ASYMPTOTIC MEASUREMENTS

$$
\begin{aligned}
&\langle 0| b_{5} b_{4} b_{3} a_{2}^{\dagger} a_{1}^{\dagger}|0\rangle={ }_{\text {in }}\langle 543| S|21\rangle_{\mathrm{in}}= \\
& 4 \\
& 3 \\
&\langle 0| a_{5} a_{4} a_{3} b_{2}^{\dagger} b_{1}^{\dagger}|0\rangle={ }_{\mathrm{in}}\langle 543| S^{\dagger}|21\rangle_{\mathrm{in}}
\end{aligned}={ }_{4}^{3} \text { 5 }
$$

(plus forward terms and Hermitian conjugates)

Example 6 PT ASYMPTOTIC MEASUREMENTS

$\langle 0| b_{6} b_{5} b_{4} a_{3}^{\dagger} a_{2}^{\dagger} a_{1}^{\dagger}|0\rangle$

Scattering amplitudes

Inclusive amplitudes

Out-of-time-ordered correlators

Example n-PT ASYMPTOTIC MEASUREMENTS

More generally:

$$
\langle 0| \underbrace{a \cdots a}_{k_{2 s}} S \underbrace{a^{\dagger} \cdots a^{\dagger}}_{k_{2 s-1}} \underbrace{a \cdots a}_{k_{2 s-2}} S^{\dagger} \cdots S^{\dagger} \underbrace{a^{\dagger} \cdots a^{\dagger}}_{k_{3}} \underbrace{a \cdots a}_{k_{2}} S \underbrace{a^{\dagger} \cdots a^{\dagger}}_{k_{1}}|0\rangle
$$

We expand in terms of connected components:

PHYSICAL INTERPRETATION OF ASYMPTOTIC OBSERVABLES

$$
{ }_{\text {in }}\langle 0| b_{n} \cdots b_{j+1} a_{j}^{\dagger} \cdots a_{1}^{\dagger}|0\rangle_{\text {in }}: \text { Scattering amplitude }
$$

${ }_{\text {in }}\langle 54| b_{3}|21\rangle_{\text {in }}$: Expectation value of electromagnetic field in a scattering experiment / Gravitational waveform detected by LIGO-Virgo-KAGRA

$$
\lim _{p_{3} \rightarrow p_{4}} \text { in }\langle 65| b_{4} b_{3}^{\dagger}|21\rangle_{\text {in }} \text { : Inclusive cross section / inclusive particle number }
$$

$$
\text { in }\langle 6| b_{5}^{\dagger} a_{4} b_{3}^{\dagger} a_{2}^{\dagger}|1\rangle_{\text {in }}: \text { Out-of-time-ordered correlator }
$$

Takeaway points:

- S-matrix only one of exponentially many asymptotic observables
- Asymptotic observables are physical; already being measured and computed

In this talk:

- Relate asymptotic observables to one another via analytic continuations

Outline

1. Introduction

2. Crossing equation

3. What can be measured asymptotically?

4. Examples

Contour of continuation

We propose an on-shell contour of analytic continuation which exchanges incoming and outgoing states with a parameter z

$$
\begin{array}{cc}
p_{b}^{\mu}(z)=\left(z p_{b}^{+}, \frac{1}{z} p_{b}^{-}, p_{b}^{\perp}\right), & p_{c}^{\mu}(z)=\left(z p_{c}^{+}, \frac{1}{z} p_{c}^{-}, p_{c}^{\perp}\right), \\
\text { for all } b \in B & \text { for all } c \in C
\end{array}
$$

Crossing Path in Practice

Mixed invariants

rotate

Crossing Equation for 2-particle crossing:

Crossing Equation for 2-particle crossing:

Minus sign from $S=\mathbb{1}+i(2 \pi)^{\mathrm{D}} \delta^{\mathrm{D}}\left(\Sigma p_{i}\right) \mathcal{M}$

Crossing Equation for 2-particle crossing:

Evidence:

- Loop-level examples and tree-level proof (part 4)
- Axiomatic quantum field theory, assuming analyticity, using microcausality

$$
\left[b, a^{\dagger}\right] \quad \text { Cross } \stackrel{\longleftrightarrow}{3} \leftrightarrow C \quad\left[b^{\dagger}, a\right]
$$

Crossing Equation for 2-particle crossing:

Use microcausality $\mathcal{G}_{A B \rightarrow C D}-\mathcal{G}_{A C \rightarrow B D}=0$:

$$
\left[b, a^{\dagger}\right] \quad \text { Cross } \overleftrightarrow{B} \leftrightarrow C \quad\left[b^{\dagger}, a\right]
$$

Crossing proposal for multi-particle crossing:

Crossing proposal for multi-particle crossing:

- Loop-level examples and tree-level proof (part 4)
- Symmetry in $A D$ \& $B C$

Proving the crossing equation involves comparing:

(I)

The analytic continuation of S via the prescribed path

Computing the corresponding observables explicitly

Continuing Around singularities

Local analyticity can be subtle: might need to continue past anomalous thresholds

Expected from axiomatic field theory

FAMILIES OF OBSERVABLES

1

2

3

O(O)CO
O(O)CO

Outline

1. Introduction

2. Crossing equation

3. What can be measured asymptotically?

4. Examples

Tree-Level example Revisited

$$
\mathcal{M}_{543 \leftarrow 21}={ }_{4}^{5}=\frac{g^{3}}{\left(s_{45}-m_{45}^{2}+i \varepsilon\right)\left(s_{13}-m_{13}^{2}\right)}
$$

(I) Analytic continuation path: s_{13} rotates, s_{45} stays fixed,

$$
\left[\mathcal{M}_{543 \leftarrow 21}\right]_{s_{13}}=\frac{g^{3}}{\left(s_{45}-m_{45}^{2}+i \varepsilon\right)\left(s_{13}-m_{13}^{2}-i \varepsilon\right)}
$$

(II) Crossing prediction: all ways of fitting

Allowed patterns:

Example disallowed patterns:

(II) Crossing prediction: all ways of fitting

Allowed patterns:

Comparing (I) and (II) verifies the crossing equation.

Perturbation theory checks

- Checked all D-dim massless basis integrals for an expansion around $\mathrm{D}=4$

- Proof at any multiplicity at tree level (highly nontrivial)

Crossing check for pentagon

$$
\begin{gathered}
{\left[\boldsymbol{I}_{0}^{(34 \rightarrow 215)}\right]_{2 \leftrightarrow 3}-\left[\boldsymbol{I}_{0}^{(24 \rightarrow 315)}\right]^{*}+\mathrm{Cut}_{s_{51}} \boldsymbol{I}_{0}^{(34 \rightarrow 215)} \stackrel{?}{=} 0} \\
{\left[\boldsymbol{I}_{0}^{(34 \rightarrow 215)}\right]_{2 \leftrightarrow 3}=\mathcal{P} \exp \left(\epsilon \int_{\gamma_{2 \leftrightarrow 3}} \mathrm{~d} \boldsymbol{\Omega}\right) \cdot \boldsymbol{I}_{0}^{(34 \rightarrow 215)}}
\end{gathered}
$$

$$
\operatorname{Cut}_{s_{51}} \boldsymbol{I}_{0}^{(34 \rightarrow 215)}=\left(\begin{array}{ccccc}
0 & 2 i \pi & 0 & -\frac{i \pi^{3}}{2} & -\frac{14}{3} i \pi \zeta_{3} \\
\mathbf{0}_{4} & \mathbf{0}_{4} & \mathbf{0}_{4} & \mathbf{0}_{4} & \mathbf{0}_{4} \\
0 & -4 i \pi & 0 & \frac{i \pi^{3}}{3} & \frac{28 i \pi \zeta_{3}}{3} \\
0 & -4 i \pi & 0 & \frac{i \pi^{3}}{3} & \frac{28 i \pi \zeta_{3}}{3} \\
0 & 0 & 0 & 0 & 0 \\
0 & 4 i \pi & 0 & -\frac{i \pi^{3}}{3} & -\frac{28}{3} i \pi \zeta_{3} \\
\mathbf{0}_{2} & \mathbf{0}_{2} & \mathbf{0}_{2} & \mathbf{0}_{2} & \mathbf{0}_{2}
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
\epsilon \\
\epsilon^{2} \\
\epsilon^{3} \\
\epsilon^{4}
\end{array}\right)
$$

Emission in black-hole scattering

Waveform in LIGO-Virgo-KAGRA obtained as an in-in expectation value

$$
\begin{aligned}
& { }_{\mathrm{in}}\langle 54| b_{3}|12\rangle_{\mathrm{in}}=\begin{array}{l}
\mathrm{BH} \\
\mathrm{BH}
\end{array} \mathrm{~S}^{\dagger} \text { X } \\
& \text { [Kosower, Maybee, O'Connell 2018] }
\end{aligned}
$$

Here, analytically continue the 5 -pt amplitude
 in one-loop computations

[See also Brandhuber, Brown, Chen, De Angelis, Gowdy, Travaglini 2023; Herderschee, Roiban, Teng 2023; Elkhidir, O'Connell, Sergola, Vazquez-Holm 2023]

Conclusions

- Exponentially many asymptotic observables, e.g. gravitational waveforms, out-of-time-ordered correlators and in-in expectation values
- New version of crossing symmetry:
S-matrix contains a host of asymptotic observables which are related by analytic continuations between different channels

Conclusions

- Exponentially many asymptotic observables, e.g. gravitational waveforms, out-of-time-ordered correlators and in-in expectation values
- New version of crossing symmetry:
S-matrix contains a host of asymptotic observables which are related by analytic continuations between different channels

Thanks!

