Emanant Symmetries

Nathan Seiberg IAS

Meng Cheng and NS, arXiv:2211.12543

NS and Shu-Heng Shao, arXiv:2307.02534

NS and Shu-Heng Shao, to appear.

NS, Sahand Seifnashri, and Shu-Heng Shao, to appear.

Thanks to Tom Banks

Global symmetry – comparing the UV and the IR

Every internal symmetry operator in the UV is mapped to an internal symmetry operator in the IR (homomorphism)

$$G_{UV} \rightarrow G_{IR}$$

Some UV symmetries are trivial in the IR (kernel).

New symmetries in the IR theory (cokernel).

- Emergent/accidental symmetries
 - Arise when the IR theory has no relevant, G_{UV} -preserving, but G_{IR} -violating operators (e.g., B-L in the Standard Model, continuous rotation in lattice models).
 - The low-energy effective Lagrangian includes irrelevant operators that violate the emergent symmetries (e.g., proton decay or neutrino masses in the Standard Model).
- Emanant symmetries emanate from *UV* space symmetries...

Global symmetry – comparing the UV and the IR

- Emanant symmetries emanate from UV space symmetries, typically from UV translations. Unlike emergent symmetries:
 - There can be relevant operators violating the emanant symmetries, but they are not present in the low-energy effective Lagrangian (or Hamiltonian).
 - The low-energy effective Lagrangian does not include even irrelevant operators that violate the emanant symmetry.
 - The emanant symmetry is exact in the low-energy theory!
 - 't Hooft anomaly matching for emanant symmetries not for emergent symmetries.
 - Examples (old wine in a new bottle): a system with a U(1) global symmetry with a chemical potential, various spin models, lattice fermions, ...

Majorana chain [many references]

A closed lattice with L sites and real periodic fermions χ_ℓ at the sites

$$\chi_{\ell} = \chi_{\ell+L}$$
 , $\{\chi_{\ell}, \chi_{\ell'}\} = 2\delta_{\ell,\ell'}$

Impose invariance under lattice translation ($\ell \to \ell + 1$) and fermion-parity ($\chi_{\ell} \to -\chi_{\ell}$)

Typical Hamiltonian
$$H_+ = \frac{i}{2} \sum_{\ell=1}^{L} \chi_{\ell+1} \chi_{\ell}$$

Add a fermion-parity defect (equivalently, use H_+ with anti-periodic boundary conditions). $H_- = \frac{i}{2} \sum_{\ell=1}^{L-1} \chi_{\ell+1} \chi_{\ell} - \frac{i}{2} \chi_1 \chi_L$

Most of our discussion is independent of the details of H_{\pm} .

Four fermionic theories:

- Even L. H_{-} leads in the continuum to the NSNS Majorana CFT and H_{+} leads to the RR theory.
- Odd L. H_- leads in the continuum to the RNS theory Majorana CFT and H_+ leads to the NSR theory.

Majorana chain – even L = 2N [many references]

Typical Hamiltonians

$$H_{\pm} = \frac{i}{2} \sum_{\ell=1}^{L-1} \chi_{\ell+1} \chi_{\ell} \pm \frac{i}{2} \chi_{1} \chi_{L}$$

Symmetries generated by translation T_+ and fermion parity $(-1)^F$

For
$$H_{-}$$

$$T_{-}^{L} = (-1)^{F}$$

$$T_{-}(-1)^{F} = (-1)^{F}T_{-}$$
 For H_{+}
$$T_{+}^{L} = 1$$

$$T_{+}(-1)^{F} = -(-1)^{F}T_{+}$$

[Rahmani, Zhu, Franz, Affleck; Hsieh, Hal'asz, Grover]

The minus sign reflects an anomaly between fermion-parity and lattice-translation.

In the continuum, no anomaly involving translations. How is this UV anomaly realized at low energies?

Majorana chain – even L = 2N [many references]

$$H_{\pm} = \frac{i}{2} \sum_{\ell=1}^{L-1} \chi_{\ell+1} \chi_{\ell} \pm \frac{i}{2} \chi_{1} \chi_{L}$$

For the specific H_{\pm} , normal mode expansion:

- Right-movers and left-movers from the two ends of the spectrum
- H_+ leads to the RR theory. H_- leads to the NSNS theory.
- On the lattice, only $(-1)^F$; no $(-1)^{F_L}$, $(-1)^{F_R}$.
- Without a chiral symmetry, why is the fermion massless?

Majorana chain – even L = 2N

Consider H_+ . On the lattice, no $(-1)^{F_L}$. In the IR, it emanates from T_+ .

$$T_{+} = (-1)^{F_{L}} e^{\frac{2\pi i P_{+}}{L}}$$
$$e^{2\pi i P_{+}} = 1$$

- P_{+} is the momentum of the continuum RR theory.
- On the lattice, only T_+ is well-defined. In the continuum, $(-1)^{F_L}$ and P_+ are separately meaningful exact symmetries.
- The relation $T_+ = (-1)^{F_L} e^{\frac{2\pi i P_+}{L}}$ is exact, without finite L corrections.
- The anomaly in the continuum RR theory [...; Delmastro, Gaiotto, Gomis; ...]

$$(-1)^F(-1)^{F_L} = -(-1)^{F_L}(-1)^F$$

matches the UV fermion-parity/lattice-translation anomaly.

Similarly for
$$H_-$$
, except $e^{2\pi i P_-} = T_-^L = (-1)^F$

Majorana chain – odd L = 2N + 1

$$H_{\pm} = \frac{i}{2} \sum_{\ell=1}^{L-1} \chi_{\ell+1} \chi_{\ell} \pm \frac{i}{2} \chi_{1} \chi_{L}$$

No
$$(-1)^{F_L}$$
, $(-1)^{F_R}$, $(-1)^F$.

Only lattice translation T_{\pm} , with an anomaly $T_{\pm}^{L}=e^{\mp\frac{2\pi i}{16}}$

- Right-movers and left-movers from the two ends of the spectrum
- H_+ leads to the NSR theory. H_- leads to the RNS theory.

Majorana chain – odd L = 2N + 1

- No $(-1)^{F_L}$, $(-1)^{F_R}$, $(-1)^F$ on the lattice.
- Consider H_+ . In the IR, $(-1)^{F_L}$ emanates from T_+

$$T_{+}^{L} = e^{-\frac{2\pi i}{16}}$$

$$T_{+} = (-1)^{F_{L}} e^{\frac{2\pi i P_{+}}{L}}$$

$$e^{2\pi i P_{+}} = (-1)^{F_{L}} e^{-\frac{2\pi i}{16}}$$

- On the lattice, only T_+ is well-defined. In the continuum, $(-1)^{F_L}$ and P_+ are separately meaningful exact symmetries.
- The relation $T_+ = (-1)^{F_L} e^{\frac{2\pi i P_+}{L}}$ is exact, without finite L corrections.
- For H_- : $+ \rightarrow -$, $F_L \rightarrow F_R$, and we find the RNS theory.

From the Majorana chain to the Ising model – GSO on the lattice

Sum over the "spin structures" by first doubling the Hilbert space (related work in [Baake, Chaselon, Schlottmann; Grimm, Schutz; Grimm])

$$\widetilde{\mathcal{H}} = \mathcal{H} \oplus \mathcal{H}$$

with the Hamiltonian
$$\widetilde{H} = \begin{pmatrix} H_{-} & 0 \\ 0 & H_{+} \end{pmatrix}$$

 $(H_{+}$ corresponds to fermions with periodic boundary conditions. H_{-} corresponds to fermions with antiperiodic boundary conditions.)

Translation symmetry $\tilde{T} = \begin{pmatrix} T_- & 0 \\ 0 & T_+ \end{pmatrix}$

$$\tilde{T} = \begin{pmatrix} T_{-} & 0 \\ 0 & T_{+} \end{pmatrix}$$

Because of the doubling of the Hilbert space, a quantum \mathbb{Z}_2 symmetry

$$\tilde{\eta} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

From the Majorana chain to the Ising model – even L=2N

Some operators in the doubled Hilbert space $\widetilde{\mathcal{H}}$ are nonlocal. So imitating the continuum, we project:

$$\widetilde{\eta}(-1)^F = +1$$
 leads to the Ising model $\widetilde{\mathcal{H}}|_{Ising} = \mathcal{H}_{Ising}$

Using a Jordan-Wigner transformation in \mathcal{H}_{Ising} ,

$$H_{Ising} = \widetilde{H} \Big|_{Ising} = -\frac{1}{2} \sum_{j=1}^{N} Z_j - \frac{1}{2} \sum_{j=1}^{N} X_j X_{j+1}$$

 $(X_i, Y_i, Z_i \text{ are Pauli matrices at the site } j = 1, \dots, N)$

Similarly, $\tilde{\eta}(-1)^F = -1$ leads to the \mathbb{Z}_2 -twisted Ising model

$$H_{twisted\ Ising} = -\frac{1}{2} \sum_{j=1}^{N} Z_j - \frac{1}{2} \sum_{j=1}^{N-1} X_j X_{j+1} + \frac{1}{2} X_N X_1$$

From the Majorana chain to the Ising

model – even
$$L = 2N$$

$$\tilde{T} = \begin{pmatrix} T_- & 0 \\ 0 & T_+ \end{pmatrix}$$
 model — even $L = 2N$ does not act in $\widetilde{\mathcal{H}}|_{Ising}$. It is not a symmetry.

 \tilde{T}^2 and $\tilde{\eta}$ act in $\tilde{\mathcal{H}}|_{Ising}$. Standard symmetries of the Ising model

$$T_{Ising} = \tilde{T}^2 \Big|_{Ising}$$
 , $\eta = \tilde{\eta} \Big|_{Ising}$

Lattice-translation

$$T_{Ising}^{N} = 1$$

 \mathbb{Z}_2 Ising symmetry

$$\eta^2 = 1$$

 $\begin{pmatrix} T_{-} & 0 \\ 0 & 0 \end{pmatrix}$ commutes with the $\tilde{\eta}(-1)^F = +1$ projection and hence acts in $\widetilde{\mathcal{H}}|_{Ising}$.

$$D = \begin{pmatrix} T_{-} & 0 \\ 0 & 0 \end{pmatrix}|_{Ising} \text{ is a new symmetry of the lattice Ising model.}$$

From the Majorana chain to the Ising model – even L=2N

New noninvertible symmetry of the lattice Ising model

$$D = \begin{pmatrix} T_{-} & 0 \\ 0 & 0 \end{pmatrix} \Big|_{Ising}$$

$$D^{2} = \frac{1}{2} (1 + \eta) T_{Ising}$$

Can express D in terms of the local operators X_j , Y_j , Z_j .

From the Majorana chain to the Ising model – even L=2N

The noninvertible lattice symmetry $D = \begin{pmatrix} T_{-} & 0 \\ 0 & 0 \end{pmatrix}|_{Ising}$ flows to a

noninvertible symmetry of the continuum theory \mathcal{D} [Oshikawa, Affleck; Petkova, Zuber; Frohlich, Fuchs, Runkel, Schweigert; Chang, Lin, Shao, Wang, Yin]

$$D=rac{1}{\sqrt{2}}\mathcal{D}e^{rac{2\pi iP}{2N}}$$
 $\mathcal{D}^2=1+\eta$, $\eta^2=1$, $\eta\mathcal{D}=\mathcal{D}\eta=\mathcal{D}$, $e^{2\pi iP}=1$

- D and D satisfy different algebras, $D^2 = \frac{1}{2}(1+\eta)T_{Ising}$.
- \mathcal{D} is an emanant noninvertible symmetry. It is exact in the IR effective theory. (Not violated even by irrelevant operators.)
- On the lattice, only D and T_{Ising} . In the continuum, P and D.

The relation
$$D = \frac{1}{\sqrt{2}} \mathcal{D} e^{\frac{2\pi i P}{2N}}$$
 is exact. No finite N corrections.

From the Majorana chain to the Ising model – odd L=2N+1

In this case, no projection is needed.

A Jordan-Wigner transformation in the doubled Hilbert space $\widehat{\mathcal{H}}$ leads to the Ising model with a D defect [Schutz; Grimm, Schutz; Grimm; Ho, Cincio, Moradi, Gaiotto, Vidal; Hauru, Evenbly, Ho, Gaiotto, Vidal; Aasen, Mong, Fendley]

$$H = -\frac{1}{2} \sum_{j=1}^{N} Z_j - \frac{1}{2} \sum_{j=1}^{N} X_j X_{j+1} - \frac{1}{2} X_1 Y_{N+1}$$

It flows in the IR to the Ising CFT with a noninvertible defect \mathcal{D} [Oshikawa, Affleck; Petkova, Zuber; Frohlich, Fuchs, Runkel, Schweigert; Chang, Lin, Shao, Wang, Yin].

Summary

- UV-translation can lead to an emanant internal symmetry. Unlike an emergent/accidental symmetry, it is exact at low energies – not violated by relevant or irrelevant operators.
- Anomalies involving UV-translations are matched by anomalies in emanant symmetries.
- Four versions of the lattice Majorana chain flow to the continuum Majorana theory with four different defects, NSNS, RR, NSR, and RNS. In each case, a chiral fermion parity symmetry emanates from lattice-translation T. It is exact in the low-energy theory.
- Summing over the lattice spin structures leads to three bosonic lattice models: Ising, \mathbb{Z}_2 -twisted Ising, and Ising with a D defect.
- D is an exact noninvertible symmetry of the lattice model.
- These lattice models flow to the three continuum Ising CFTs with defects (corresponding to $1, \epsilon, \sigma$).
- The noninvertible duality symmetry \mathcal{D} of the CFT emanates from D.

Thank you

Life on the Lattice

Nathan Seiberg, IAS

Simons Collaboration on

Global Categorical Symmetries

Simons Collaboration on

Ultra-Quantum Matter

Simons Collaboration on Confinement and QCD Strings

Lattice vs. continuum QFT

QFT is enormously successful. Yet, it is not mathematically rigorous.

One approach is to regularize it by placing it on a lattice.

- Then, the problem is well defined.
- Continuum limit: introduce a lattice spacing a, take $a \to 0$ and the number of sites to infinity holding the physical lengths fixed correlation functions at fixed positions $x \gg a \to 0$.
- Allows numerical calculations.

In condensed matter physics, the problem is defined on a (spatial or spacetime) lattice and the goal is to find the low-energy/long-distance limit.

 It is expected to be described by an effective continuum QFT.

From the continuum to the lattice – challenges

Some continuum theories depend on the topology of field space, which relies on continuity. How is this captured by the lattice theory?

This issue affects

- Various terms in the action (e.g., θ -terms, Chern-Simons terms, Wess-Zumino terms, ...)
- Some global symmetries (e.g., winding symmetries, higherform symmetries, non-invertible symmetries, ...)
- Anomalies
- Some QFTs (e.g., theories with self-dual forms or fermions) do not admit a suitable continuum Lorentz invariant action, and others (e.g., the 6d (2,0) theory) do not even have a continuum Lagrangian at all. Not clear how to place them on the lattice.

From the lattice to the continuum – challenges

- What is the low-energy limit?
 - What are the possible phases and the transitions between them?
 - Which phases are connected?
 - Symmetries, anomalies
 - More criteria?
- Does the continuum limit exist? Does it depend on the microscopic details?
- Do all lattice models lead at long distances to a continuum QFT?
 This is particularly puzzling for various exotic models (e.g., fractons)
 - UV/IR mixing long-distance phenomena depend on shortdistance details. (Reminiscent of quantum gravity and some string theory constructions.)

No conclusions

Thank you