Emanant Symmetries

Nathan Seiberg

IAS

Meng Cheng and NS, arXiv:2211.12543 NS and Shu-Heng Shao, arXiv:2307.02534 NS and Shu-Heng Shao, to appear.
NS, Sahand Seifnashri, and Shu-Heng Shao, to appear.
Thanks to Tom Banks

Global symmetry - comparing the UV and the IR

Every internal symmetry operator in the UV is mapped to an internal symmetry operator in the IR (homomorphism)

$$
G_{U V} \rightarrow G_{I R}
$$

Some UV symmetries are trivial in the IR (kernel).
New symmetries in the IR theory (cokernel).

- Emergent/accidental symmetries
- Arise when the IR theory has no relevant, $G_{U V}$-preserving, but $G_{I R}$-violating operators (e.g., $B-L$ in the Standard Model, continuous rotation in lattice models).
- The low-energy effective Lagrangian includes irrelevant operators that violate the emergent symmetries (e.g., proton decay or neutrino masses in the Standard Model).
- Emanant symmetries emanate from $U V$ space symmetries...

Global symmetry - comparing the UV and the IR

- Emanant symmetries emanate from $U V$ space symmetries, typically from UV translations. Unlike emergent symmetries:
- There can be relevant operators violating the emanant symmetries, but they are not present in the low-energy effective Lagrangian (or Hamiltonian).
- The low-energy effective Lagrangian does not include even irrelevant operators that violate the emanant symmetry.
- The emanant symmetry is exact in the low-energy theory!
- 't Hooft anomaly matching for emanant symmetries - not for emergent symmetries.
- Examples (old wine in a new bottle): a system with a $U(1)$ global symmetry with a chemical potential, various spin models, lattice fermions, ...

Majorana chain [many references]

A closed lattice with L sites and real periodic fermions χ_{ℓ} at the sites

$$
\chi_{\ell}=\chi_{\ell+L}, \quad\left\{\chi_{\ell}, \chi_{\ell^{\prime}}\right\}=2 \delta_{\ell, \ell^{\prime}}
$$

Impose invariance under lattice translation $(\ell \rightarrow \ell+1)$ and fermionparity $\left(\chi_{\ell} \rightarrow-\chi_{\ell}\right)$
Typical Hamiltonian $\quad H_{+}=\frac{i}{2} \sum_{\ell=1}^{L} \chi_{\ell+1} \chi_{\ell}$
Add a fermion-parity defect (equivalently, use H_{+}with anti-periodic boundary conditions). $H_{-}=\frac{i}{2} \sum_{\ell=1}^{L-1} \chi_{\ell+1} \chi_{\ell}-\frac{i}{2} \chi_{1} \chi_{L}$
Most of our discussion is independent of the details of $H_{ \pm}$. Four fermionic theories:

- Even $L . H_{-}$leads in the continuum to the NSNS Majorana CFT and H_{+}leads to the RR theory.
- Odd L. H_{-}leads in the continuum to the RNS theory Majorana CFT and H_{+}leads to the NSR theory.

Majorana chain - even $L=2 N$ [many references]

Typical Hamiltonians

$$
H_{ \pm}=\frac{i}{2} \sum_{\ell=1}^{L-1} \chi_{\ell+1} \chi_{\ell} \pm \frac{i}{2} \chi_{1} \chi_{L}
$$

Symmetries generated by translation $T_{ \pm}$and fermion parity $(-1)^{F}$
For H_{-}

$$
T_{-}^{L}=(-1)^{F}
$$

$$
T_{-}(-1)^{F}=(-1)^{F} T_{-}
$$

$$
T_{+}^{L}=1
$$

$$
T_{+}(-1)^{F} \Rightarrow-(-1)^{F} T_{+}
$$

[Rahmani, Zhu, Franz, Afflech, Hsieh, Hal’asz, Grover]
The minus sign reflects an anomaly between fermion-parity and lattice-translation.

In the continuum, no anomaly involving translations. How is this UV anomaly realized at low energies?

Majorana chain - even $L=2 N$ [many references]

$$
H_{ \pm}=\frac{i}{2} \sum_{\ell=1}^{L-1} \chi_{\ell+1} \chi_{\ell} \pm \frac{i}{2} \chi_{1} \chi_{L}
$$

For the specific $H_{ \pm}$, normal mode expansion:

- Right-movers and left-movers from the two ends of the spectrum
- H_{+}leads to the RR theory. H_{-}leads to the NSNS theory.
- On the lattice, only $(-1)^{F}$; no $(-1)^{F_{L}},(-1)^{F_{R}}$.
- Without a chiral symmetry, why is the fermion massless?

Majorana chain - even $L=2 N$

Consider H_{+}. On the lattice, no $(-1)^{F_{L}}$. In the IR, it emanates from T_{+}.

$$
T_{+}^{L}=1
$$

$$
\begin{aligned}
& T_{+}=(-1)^{F_{L}} e^{\frac{2 \pi i P_{+}}{L}} \\
& e^{2 \pi i P_{+}}=1
\end{aligned}
$$

- $\quad P_{+}$is the momentum of the continuum RR theory.
- On the lattice, only T_{+}is well-defined. In the continuum, $(-1)^{F_{L}}$ and P_{+}are separately meaningful exact symmetries.
- The relation $T_{+}=(-1)^{F_{L}} e^{\frac{2 \pi i P_{+}}{L}}$ is exact, without finite L corrections.
- The anomaly in the continuum RR theory [...; Delmastro, Gaiotto, Gomis; ...]

$$
(-1)^{F}(-1)^{F_{L}}=-(-1)^{F_{L}}(-1)^{F}
$$

matches the UV fermion-parity/lattice-translation anomaly.
Similarly for H_{-}, except $e^{2 \pi i P_{-}}=T_{-}^{L}=(-1)^{F}$

Majorana chain - odd $L=2 N+1$

$$
H_{ \pm}=\frac{i}{2} \sum_{\ell=1}^{L-1} \chi_{\ell+1} \chi_{\ell} \pm \frac{i}{2} \chi_{1} \chi_{L}
$$

No $(-1)^{F_{L}},(-1)^{F_{R}},(-1)^{F}$.
Only lattice translation $T_{ \pm}$, with an anomaly $T_{ \pm}^{L}=e^{\mp \frac{2 \pi i}{16}}$

- Right-movers and left-movers from the two ends of the spectrum
- H_{+}leads to the NSR theory. H_{-}leads to the RNS theory.

Majorana chain - odd $L=2 N+1$

- $\operatorname{No}(-1)^{F_{L}},(-1)^{F_{R}},(-1)^{F}$ on the lattice.
- Consider H_{+}. In the IR, $(-1)^{F_{L}}$ emanates from T_{+}

$$
\begin{gathered}
T_{+}^{L}=e^{-\frac{2 \pi i}{16}} \\
T_{+}=(-1)^{F_{L}} e^{\frac{2 \pi i P_{+}}{L}} \\
e^{2 \pi i P_{+}}=(-1)^{F_{L}} e^{-\frac{2 \pi i}{16}}
\end{gathered}
$$

$-P_{+}$is the momentum of the continuum NSR theory.

- On the lattice, only T_{+}is well-defined. In the continuum, $(-1)^{F_{L}}$ and P_{+}are separately meaningful exact symmetries.
- The relation $T_{+}=(-1)^{F_{L}} e^{\frac{2 \pi i P_{+}}{L}}$ is exact, without finite L corrections.
- For $H_{-}:+\rightarrow-, F_{L} \rightarrow F_{R}$, and we find the RNS theory.

From the Majorana chain to the Ising model - GSO on the lattice

Sum over the "spin structures" by first doubling the Hilbert space (related work in [Baake, Chaselon, Schlottmann; Grimm, Schutz; Grimm])

$$
\widetilde{\mathcal{H}}=\mathcal{H} \oplus \mathcal{H}
$$

with the Hamiltonian $\quad \widetilde{H}=\left(\begin{array}{cc}H_{-} & 0 \\ 0 & H_{+}\end{array}\right)$
(H_{+}corresponds to fermions with periodic boundary conditions. H_{-} corresponds to fermions with antiperiodic boundary conditions.)

Translation symmetry $\quad \tilde{T}=\left(\begin{array}{cc}T_{-} & 0 \\ 0 & T_{+}\end{array}\right)$
Because of the doubling of the Hilbert space, a quantum \mathbb{Z}_{2} symmetry

$$
\tilde{\eta}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

From the Majorana chain to the Ising model - even $L=2 N$

Some operators in the doubled Hilbert space $\widetilde{\mathcal{H}}$ are nonlocal. So imitating the continuum, we project:
$\tilde{\eta}(-1)^{F}=+1$ leads to the Ising model $\left.\quad \widetilde{\mathcal{H}}\right|_{\text {Ising }}=\mathcal{H}_{\text {Ising }}$ Using a Jordan-Wigner transformation in $\mathcal{H}_{\text {Ising }}$,

$$
H_{\text {Ising }}=\left.\widetilde{H}\right|_{\text {Ising }}=-\frac{1}{2} \sum_{j=1}^{N} Z_{j}-\frac{1}{2} \sum_{j=1}^{N} X_{j} X_{j+1}
$$

$\left(X_{j}, Y_{j}, Z_{j}\right.$ are Pauli matrices at the site $\left.j=1, \cdots, N\right)$
Similarly, $\tilde{\eta}(-1)^{F}=-1$ leads to the \mathbb{Z}_{2}-twisted Ising model $H_{\text {twisted Ising }}=-\frac{1}{2} \sum_{j=1}^{N} Z_{j}-\frac{1}{2} \sum_{j=1}^{N-1} X_{j} X_{j+1}+\frac{1}{2} X_{N} X_{1}$

From the Majorana chain to the Ising

$\tilde{T}=\left(\begin{array}{cc}T_{-} & 0 \\ 0 & T_{+}\end{array}\right)$model - even $L=2 N$
\widetilde{T}^{2} and $\tilde{\eta}$ act in $\left.\widetilde{\mathcal{H}}\right|_{\text {Ising }}$. Standard symmetries of the Ising model

$$
T_{\text {Ising }}=\left.\widetilde{T}^{2}\right|_{\text {Ising }}, \quad \eta=\left.\tilde{\eta}\right|_{\text {Ising }}
$$

Lattice-translation

$$
T_{\text {Ising }}^{N}=1
$$

\mathbb{Z}_{2} Ising symmetry

$$
\eta^{2}=1
$$

$\left(\begin{array}{rr}T_{-} & 0 \\ 0 & 0\end{array}\right)$ commutes with the $\tilde{\eta}(-1)^{F}=+1$ projection and hence acts in $\left.\widetilde{\mathcal{H}}\right|_{\text {Ising }}$.
$D=\left.\left(\begin{array}{cc}T_{-} & 0 \\ 0 & 0\end{array}\right)\right|_{\text {Ising }}$ is a new symmetry of the lattice Ising model.

From the Majorana chain to the Ising model - even $L=2 N$

New noninvertible symmetry of the lattice Ising model

$$
\begin{aligned}
D & =\left.\left(\begin{array}{cc}
T_{-} & 0 \\
0 & 0
\end{array}\right)\right|_{I \operatorname{sing}} \\
D^{2} & =\frac{1}{2}(1+\eta) T_{I \operatorname{sing}}
\end{aligned}
$$

Can express D in terms of the local operators X_{j}, Y_{j}, Z_{j}.

From the Majorana chain to the Ising model - even $L=2 N$

The noninvertible lattice symmetry $D=\left.\left(\begin{array}{cc}T_{-} & 0 \\ 0 & 0\end{array}\right)\right|_{\text {Ising }}$ flows to a noninvertible symmetry of the continuum theory \mathcal{D} [Oshikawa, Affleck; Petkova, Zuber; Frohlich, Fuchs, Runkel, Schweigert; Chang, Lin, Shao, Wang, Yin]

$$
\begin{gathered}
D=\frac{1}{\sqrt{2}} \mathcal{D} e^{\frac{2 \pi i P}{2 N}} \\
\mathcal{D}^{2}=1+\eta \quad, \quad \eta^{2}=1 \quad, \quad \eta \mathcal{D}=\mathcal{D} \eta=\mathcal{D} \quad, \quad e^{2 \pi i P}=1
\end{gathered}
$$

D and \mathcal{D} satisfy different algebras, $D^{2}=\frac{1}{2}(1+\eta) T_{\text {Ising }}$.
\mathcal{D} is an emanant noninvertible symmetry. It is exact in the IR effective theory. (Not violated even by irrelevant operators.)
On the lattice, only D and $T_{\text {Ising }}$. In the continuum, P and \mathcal{D}.
The relation $D=\frac{1}{\sqrt{2}} \mathcal{D} e^{\frac{2 \pi i P}{2 N}}$ is exact. No finite N corrections.

From the Majorana chain to the Ising model - odd $L=2 N+1$

In this case, no projection is needed.
A Jordan-Wigner transformation in the doubled Hilbert space $\widetilde{\mathcal{H}}$ leads to the Ising model with a D defect [Schutz; Grimm, Schutz; Grimm; Ho, Cincio, Moradi, Gaiotto, Vidal; Hauru, Evenbly, Ho, Gaiotto, Vidal; Aasen, Mong, Fendley]

$$
H=-\frac{1}{2} \sum_{j=1}^{N} Z_{j}-\frac{1}{2} \sum_{j=1}^{N} X_{j} X_{j+1}-\frac{1}{2} X_{1} Y_{N+1}
$$

It flows in the IR to the Ising CFT with a noninvertible defect \mathcal{D} [Oshikawa, Affleck; Petkova, Zuber; Frohlich, Fuchs, Runkel, Schweigert; Chang, Lin, Shao, Wang, Yin].

Summary

- UV-translation can lead to an emanant internal symmetry. Unlike an emergent/accidental symmetry, it is exact at low energies - not violated by relevant or irrelevant operators.
- Anomalies involving UV-translations are matched by anomalies in emanant symmetries.
- Four versions of the lattice Majorana chain flow to the continuum Majorana theory with four different defects, NSNS, RR, NSR, and RNS. In each case, a chiral fermion parity symmetry emanates from lattice-translation T. It is exact in the low-energy theory.
- Summing over the lattice spin structures leads to three bosonic lattice models: Ising, \mathbb{Z}_{2}-twisted Ising, and Ising with a D defect.
- D is an exact noninvertible symmetry of the lattice model.
- These lattice models flow to the three continuum Ising CFTs with defects (corresponding to $1, \epsilon, \sigma$).
- The noninvertible duality symmetry \mathcal{D} of the CFT emanates from D.

Thank you

Life on the Lattice

Nathan Seiberg, IAS

Simons Collaboration on

Global Categorical Symmetries

Simons Collaboration on

Ultra-Quantum Matter

Lattice vs. continuum QFT

QFT is enormously successful. Yet, it is not mathematically rigorous.
One approach is to regularize it by placing it on a lattice.

- Then, the problem is well defined.
- Continuum limit: introduce a lattice spacing a, take $a \rightarrow 0$ and the number of sites to infinity holding the physical lengths fixed - correlation functions at fixed positions $x>a \rightarrow 0$.
- Allows numerical calculations.

In condensed matter physics, the problem is defined on a (spatial or spacetime) lattice and the goal is to find the low-energy/long-distance limit.

- It is expected to be described by an effective continuum QFT.

From the continuum to the lattice - challenges

- Some continuum theories depend on the topology of field space, which relies on continuity. How is this captured by the lattice theory?

This issue affects

- Various terms in the action (e.g., θ-terms, Chern-Simons terms, Wess-Zumino terms, ...)
- Some global symmetries (e.g., winding symmetries, higherform symmetries, non-invertible symmetries, ...)
- Anomalies
- Some QFTs (e.g., theories with self-dual forms or fermions) do not admit a suitable continuum Lorentz invariant action, and others (e.g., the 6d $(2,0)$ theory) do not even have a continuum Lagrangian at all. Not clear how to place them on the lattice.

From the lattice to the continuum - challenges

- What is the low-energy limit?
- What are the possible phases and the transitions between them?
- Which phases are connected?
- Symmetries, anomalies
- More criteria?
- Does the continuum limit exist? Does it depend on the microscopic details?
- Do all lattice models lead at long distances to a continuum QFT?

This is particularly puzzling for various exotic models (e.g., fractons)

- UV/IR mixing - long-distance phenomena depend on shortdistance details. (Reminiscent of quantum gravity and some string theory constructions.)

No conclusions

Thank you

