A holographic dual for Krylov complexity

or
Measuring the wormhole with Krylov complexity

Ruth Shir

University of Luxembourg
work with:
Eliezer Rabinovici, Adrián Sánchez-Garrido and Julian Sonner

Based on:

- E. Rabinovici, A. Sánchez-Garrido, RS and J. Sonner, "A bulk manifestation of Krylov complexity," arXiv:2305.04355[hep-th]
- E. Rabinovici, A. Sánchez-Garrido, RS and J. Sonner, "Krylov complexity from integrability to chaos," JHEP 07 (2022), 151
- E. Rabinovici, A. Sánchez-Garrido, RS and J. Sonner, "Krylov localization and suppression of complexity," JHEP 03 (2022), 211
- E. Rabinovici, A. Sánchez-Garrido, RS and J. Sonner, "Operator complexity: a journey to the edge of Krylov space," JHEP 06 (2021), 062
- J. L. F. Barbón, E. Rabinovici, RS and R. Sinha, "On The Evolution Of Operator Complexity Beyond Scrambling," JHEP 10 (2019), 264

Plan

- Why complexity? Which notion of complexity?
- Krylov complexity
- A holographic dual for Krylov complexity
- Open questions and future directions

A puzzle in the holographic dictionary

A puzzle in the holographic dictionary

- For a while now it has been recognized that new, possibly unknown, observables should be added to the holographic dictionary

A puzzle in the holographic dictionary

- For a while now it has been recognized that new, possibly unknown, observables should be added to the holographic dictionary
- In particular, certain observables in the bulk seem to continue evolving in boundary time, long after known observables on the boundary cease to change

A puzzle in the holographic dictionary

- For a while now it has been recognized that new, possibly unknown, observables should be added to the holographic dictionary
- In particular, certain observables in the bulk seem to continue evolving in boundary time, long after known observables on the boundary cease to change

Question
What could be a corresponding observable on the boundary?

A puzzle in the holographic dictionary

- For a while now it has been recognized that new, possibly unknown, observables should be added to the holographic dictionary
- In particular, certain observables in the bulk seem to continue evolving in boundary time, long after known observables on the boundary cease to change

Question
What could be a corresponding observable on the boundary?
Answer
Quantum complexity??? [Susskind 2014-]

General time-dependent profile of complexity

General time-dependent profile of complexity

Different notions of quantum complexity

- Circuit complexity: The minimal number of local gates g_{i} needed to construct an operator U starting from an initial operator U_{0}, up to a tolerance parameter ϵ
- Geometric complexity: Choose a penalty metric on space of unitaries; define complexity as shortest path to reach U from U_{0}
- Krylov complexity: Defined using the system's Hamiltonian and initial state/operator

Can we find a precise bulk-boundary correspondence?

Krylov space

Krylov space

Consider an operator \mathcal{O} evolving in time under a Hamiltonian H

Krylov space

Consider an operator \mathcal{O} evolving in time under a Hamiltonian H

$$
\begin{equation*}
\mathcal{O}(t)=e^{i H t} \mathcal{O} e^{-i H t}=\mathcal{O}+i t[H, \mathcal{O}]+\frac{(i t)^{2}}{2!}[H,[H, \mathcal{O}]]+\ldots \tag{1}
\end{equation*}
$$

Krylov space

Consider an operator \mathcal{O} evolving in time under a Hamiltonian H

$$
\begin{equation*}
\mathcal{O}(t)=e^{i H t} \mathcal{O} e^{-i H t}=\mathcal{O}+i t[H, \mathcal{O}]+\frac{(i t)^{2}}{2!}[H,[H, \mathcal{O}]]+\ldots \tag{1}
\end{equation*}
$$

Krylov space:

Krylov space

Consider an operator \mathcal{O} evolving in time under a Hamiltonian H

$$
\begin{equation*}
\mathcal{O}(t)=e^{i H t} \mathcal{O} e^{-i H t}=\mathcal{O}+i t[H, \mathcal{O}]+\frac{(i t)^{2}}{2!}[H,[H, \mathcal{O}]]+\ldots \tag{1}
\end{equation*}
$$

Krylov space: the space spanned by the operator's time evolution

$$
\begin{equation*}
\mathcal{K}=\operatorname{Span}\{\mathcal{O},[H, \mathcal{O}],[H,[H, \mathcal{O}]], \ldots\} \tag{2}
\end{equation*}
$$

Krylov space

Consider an operator \mathcal{O} evolving in time under a Hamiltonian H

$$
\begin{equation*}
\mathcal{O}(t)=e^{i H t} \mathcal{O} e^{-i H t}=\mathcal{O}+i t[H, \mathcal{O}]+\frac{(i t)^{2}}{2!}[H,[H, \mathcal{O}]]+\ldots \tag{1}
\end{equation*}
$$

Krylov space: the space spanned by the operator's time evolution

$$
\begin{equation*}
\mathcal{K}=\operatorname{Span}\{\mathcal{O},[H, \mathcal{O}],[H,[H, \mathcal{O}]], \ldots\} \tag{2}
\end{equation*}
$$

Define the Liouvillian super-operator: $\mathcal{L} \equiv[H, \quad]$

$$
\begin{equation*}
\left.\left.\mid \mathcal{O}(t))=e^{i \mathcal{L} t} \mid \mathcal{O}\right) \left.=\sum_{n=0}^{\infty} \frac{(i t)^{n}}{n!} \mathcal{L}^{n} \right\rvert\, \mathcal{O}\right) \tag{3}
\end{equation*}
$$

Krylov space

Consider an operator \mathcal{O} evolving in time under a Hamiltonian H

$$
\begin{equation*}
\mathcal{O}(t)=e^{i H t} \mathcal{O} e^{-i H t}=\mathcal{O}+i t[H, \mathcal{O}]+\frac{(i t)^{2}}{2!}[H,[H, \mathcal{O}]]+\ldots \tag{1}
\end{equation*}
$$

Krylov space: the space spanned by the operator's time evolution

$$
\begin{equation*}
\mathcal{K}=\operatorname{Span}\{\mathcal{O},[H, \mathcal{O}],[H,[H, \mathcal{O}]], \ldots\} \tag{2}
\end{equation*}
$$

Define the Liouvillian super-operator: $\mathcal{L} \equiv[H, \quad]$

$$
\begin{align*}
& \left.\left.\mid \mathcal{O}(t))=e^{i \mathcal{L} t} \mid \mathcal{O}\right) \left.=\sum_{n=0}^{\infty} \frac{(i t)^{n}}{n!} \mathcal{L}^{n} \right\rvert\, \mathcal{O}\right) \tag{3}\\
& \left.\left.\mathcal{K}=\operatorname{Span}\{\mid \mathcal{O}), \mathcal{L} \mid \mathcal{O}), \mathcal{L}^{2} \mid \mathcal{O}\right), \ldots\right\} \tag{4}
\end{align*}
$$

Krylov space dimension

Krylov space dimension

- Hilbert space dimension:

Krylov space dimension

- Hilbert space dimension: $\operatorname{dim}(\mathcal{H})=D \sim e^{S}$

Krylov space dimension

- Hilbert space dimension: $\operatorname{dim}(\mathcal{H})=D \sim e^{S}$
- Operator space dimension:

Krylov space dimension

- Hilbert space dimension: $\operatorname{dim}(\mathcal{H})=D \sim e^{S}$
- Operator space dimension: $\operatorname{dim}\left(\mathcal{H}^{2}\right)=D^{2} \sim e^{2 S}$

Krylov space dimension

- Hilbert space dimension: $\operatorname{dim}(\mathcal{H})=D \sim e^{S}$
- Operator space dimension: $\operatorname{dim}\left(\mathcal{H}^{2}\right)=D^{2} \sim e^{2 S}$

Upper bound on Krylov space dimension:

$$
\begin{equation*}
K \leq D^{2}-D+1 \sim e^{2 S} \tag{5}
\end{equation*}
$$

[Rabinovici Sánchez-Garrido RS Sonner 2020]

Krylov space dimension

- Hilbert space dimension: $\operatorname{dim}(\mathcal{H})=D \sim e^{S}$
- Operator space dimension: $\operatorname{dim}\left(\mathcal{H}^{2}\right)=D^{2} \sim e^{2 S}$

Upper bound on Krylov space dimension:

$$
K \leq D^{2}-D+1 \sim e^{2 S}
$$

[Rabinovici Sánchez-Garrido RS Sonner 2020]
The upper bound is saturated for

- A dense operator which has non-zero projection on every eigenstate of the Liouvillian, $\left|E_{a}\right\rangle\left\langle E_{b}\right|$

Krylov space dimension

- Hilbert space dimension: $\operatorname{dim}(\mathcal{H})=D \sim e^{S}$
- Operator space dimension: $\operatorname{dim}\left(\mathcal{H}^{2}\right)=D^{2} \sim e^{2 S}$

Upper bound on Krylov space dimension:

$$
K \leq D^{2}-D+1 \sim e^{2 S}
$$

[Rabinovici Sánchez-Garrido RS Sonner 2020]
The upper bound is saturated for

- A dense operator which has non-zero projection on every eigenstate of the Liouvillian, $\left|E_{a}\right\rangle\left\langle E_{b}\right|$
- No degeneracies in the spectrum of the Liouvillian $\omega_{a b}=E_{a}-E_{b}$ except for the D-fold degeneracy of zero frequencies $\omega_{a a}=E_{a}-E_{a}=0$

Lanczos algorithm

Lanczos algorithm

Orthonormalize the set $\left.\left.\{\mid \mathcal{O}), \mathcal{L} \mid \mathcal{O}), \mathcal{L}^{2} \mid \mathcal{O}\right), \ldots\right\}$:

Lanczos algorithm

Orthonormalize the set $\left.\left.\{\mid \mathcal{O}), \mathcal{L} \mid \mathcal{O}), \mathcal{L}^{2} \mid \mathcal{O}\right), \ldots\right\}$:
Input: \mathcal{L} and $\mid \mathcal{O})$

Lanczos algorithm

Orthonormalize the set $\left.\left.\{\mid \mathcal{O}), \mathcal{L} \mid \mathcal{O}), \mathcal{L}^{2} \mid \mathcal{O}\right), \ldots\right\}$:
Input: \mathcal{L} and $\mid \mathcal{O})$

1. Set $\left.\left.\mid \mathcal{O}_{0}\right)=\mid \mathcal{O}\right) /\|\mathcal{O}\|$

Lanczos algorithm

Orthonormalize the set $\left.\left.\{\mid \mathcal{O}), \mathcal{L} \mid \mathcal{O}), \mathcal{L}^{2} \mid \mathcal{O}\right), \ldots\right\}$:
Input: \mathcal{L} and $\mid \mathcal{O})$

1. Set $\left.\left.\mid \mathcal{O}_{0}\right)=\mid \mathcal{O}\right) /\|\mathcal{O}\|$
2. $\left.\mid \mathcal{A}_{1}\right)=\mathcal{L} \mid \mathcal{O}_{0}$), compute $\left\|\mathcal{A}_{1}\right\|$ if $\left\|\mathcal{A}_{1}\right\|=0$ STOP otherwise define $b_{1}=\left\|\mathcal{A}_{1}\right\|$ and $\left.\mid \mathcal{O}_{1}\right)=\left|\mathcal{A}_{1}\right| / b_{1}$

Lanczos algorithm

Orthonormalize the set $\left.\left.\{\mid \mathcal{O}), \mathcal{L} \mid \mathcal{O}), \mathcal{L}^{2} \mid \mathcal{O}\right), \ldots\right\}$:
Input: \mathcal{L} and $\mid \mathcal{O})$

1. Set $\left.\left.\mid \mathcal{O}_{0}\right)=\mid \mathcal{O}\right) /\|\mathcal{O}\|$
2. $\left.\left.\mid \mathcal{A}_{1}\right)=\mathcal{L} \mid \mathcal{O}_{0}\right)$, compute $\left\|\mathcal{A}_{1}\right\|$ if $\left\|\mathcal{A}_{1}\right\|=0$ STOP otherwise define $b_{1}=\left\|\mathcal{A}_{1}\right\|$ and $\left.\left|\mathcal{O}_{1}\right|=\mid \mathcal{A}_{1}\right) / b_{1}$
3. For $n>1$:

$$
\begin{aligned}
& \left.\left.\left.\mid \mathcal{A}_{n}\right)=\mathcal{L} \mid \mathcal{O}_{n-1}\right)-b_{n-1} \mid \mathcal{O}_{n-2}\right) \\
& \text { compute }\left\|\mathcal{A}_{n}\right\| \text { if }\left\|\mathcal{A}_{n}\right\|=0 \text { STOP }
\end{aligned}
$$

otherwise define $b_{n}=\left\|\mathcal{A}_{n}\right\|$ and $\left.\mid \mathcal{O}_{n}\right)=\left|\mathcal{A}_{n}\right| / b_{n}$

Lanczos algorithm

Orthonormalize the set $\left.\left.\{\mid \mathcal{O}), \mathcal{L} \mid \mathcal{O}), \mathcal{L}^{2} \mid \mathcal{O}\right), \ldots\right\}$:
Input: \mathcal{L} and $\mid \mathcal{O})$

1. Set $\left.\left.\mid \mathcal{O}_{0}\right)=\mid \mathcal{O}\right) /\|\mathcal{O}\|$
2. $\left.\left.\mid \mathcal{A}_{1}\right)=\mathcal{L} \mid \mathcal{O}_{0}\right)$, compute $\left\|\mathcal{A}_{1}\right\|$ if $\left\|\mathcal{A}_{1}\right\|=0$ STOP otherwise define $b_{1}=\left\|\mathcal{A}_{1}\right\|$ and $\left.\left|\mathcal{O}_{1}\right|=\mid \mathcal{A}_{1}\right) / b_{1}$
3. For $n>1$:

$$
\begin{aligned}
& \left.\left.\left.\mid \mathcal{A}_{n}\right)=\mathcal{L} \mid \mathcal{O}_{n-1}\right)-b_{n-1} \mid \mathcal{O}_{n-2}\right) \\
& \text { compute }\left\|\mathcal{A}_{n}\right\| \text { if }\left\|\mathcal{A}_{n}\right\|=0 \text { STOP }
\end{aligned}
$$

otherwise define $b_{n}=\left\|\mathcal{A}_{n}\right\|$ and $\left.\left.\mid \mathcal{O}_{n}\right)=\mid \mathcal{A}_{n}\right) / b_{n}$

Lanczos algorithm

Orthonormalize the set $\left.\left.\{\mid \mathcal{O}), \mathcal{L} \mid \mathcal{O}), \mathcal{L}^{2} \mid \mathcal{O}\right), \ldots\right\}$:
Input: \mathcal{L} and $\mid \mathcal{O})$

1. Set $\left.\left.\mid \mathcal{O}_{0}\right)=\mid \mathcal{O}\right) /\|\mathcal{O}\|$
2. $\left.\left.\mid \mathcal{A}_{1}\right)=\mathcal{L} \mid \mathcal{O}_{0}\right)$, compute $\left\|\mathcal{A}_{1}\right\|$ if $\left\|\mathcal{A}_{1}\right\|=0$ STOP otherwise define $b_{1}=\left\|\mathcal{A}_{1}\right\|$ and $\left.\left|\mathcal{O}_{1}\right|=\mid \mathcal{A}_{1}\right) / b_{1}$
3. For $n>1$:

$$
\begin{aligned}
& \left.\left.\left.\mid \mathcal{A}_{n}\right)=\mathcal{L} \mid \mathcal{O}_{n-1}\right)-b_{n-1} \mid \mathcal{O}_{n-2}\right) \\
& \text { compute }\left\|\mathcal{A}_{n}\right\| \text { if }\left\|\mathcal{A}_{n}\right\|=0 \text { STOP }
\end{aligned}
$$

otherwise define $b_{n}=\left\|\mathcal{A}_{n}\right\|$ and $\left.\left.\mid \mathcal{O}_{n}\right)=\mid \mathcal{A}_{n}\right) / b_{n}$
Output:

Lanczos algorithm

Orthonormalize the set $\left.\left.\{\mid \mathcal{O}), \mathcal{L} \mid \mathcal{O}), \mathcal{L}^{2} \mid \mathcal{O}\right), \ldots\right\}$:
Input: \mathcal{L} and $\mid \mathcal{O})$

1. Set $\left.\left.\mid \mathcal{O}_{0}\right)=\mid \mathcal{O}\right) /\|\mathcal{O}\|$
2. $\left.\left.\mid \mathcal{A}_{1}\right)=\mathcal{L} \mid \mathcal{O}_{0}\right)$, compute $\left\|\mathcal{A}_{1}\right\|$ if $\left\|\mathcal{A}_{1}\right\|=0$ STOP otherwise define $b_{1}=\left\|\mathcal{A}_{1}\right\|$ and $\left.\left|\mathcal{O}_{1}\right|=\mid \mathcal{A}_{1}\right) / b_{1}$
3. For $n>1$:
$\left.\left.\left.\mid \mathcal{A}_{n}\right)=\mathcal{L} \mid \mathcal{O}_{n-1}\right)-b_{n-1} \mid \mathcal{O}_{n-2}\right)$
compute $\left\|\mathcal{A}_{n}\right\|$ if $\left\|\mathcal{A}_{n}\right\|=0$ STOP
otherwise define $b_{n}=\left\|\mathcal{A}_{n}\right\|$ and $\left.\mid \mathcal{O}_{n}\right)=\left|\mathcal{A}_{n}\right| / b_{n}$
Output:

- The Krylov chain:

Lanczos algorithm

Orthonormalize the set $\left.\left.\{\mid \mathcal{O}), \mathcal{L} \mid \mathcal{O}), \mathcal{L}^{2} \mid \mathcal{O}\right), \ldots\right\}$:
Input: \mathcal{L} and $\mid \mathcal{O})$

1. Set $\left.\left.\mid \mathcal{O}_{0}\right)=\mid \mathcal{O}\right) /\|\mathcal{O}\|$
2. $\left.\left.\mid \mathcal{A}_{1}\right)=\mathcal{L} \mid \mathcal{O}_{0}\right)$, compute $\left\|\mathcal{A}_{1}\right\|$ if $\left\|\mathcal{A}_{1}\right\|=0$ STOP otherwise define $b_{1}=\left\|\mathcal{A}_{1}\right\|$ and $\left.\left|\mathcal{O}_{1}\right|=\mid \mathcal{A}_{1}\right) / b_{1}$
3. For $n>1$:
$\left.\left.\left.\mid \mathcal{A}_{n}\right)=\mathcal{L} \mid \mathcal{O}_{n-1}\right)-b_{n-1} \mid \mathcal{O}_{n-2}\right)$
compute $\left\|\mathcal{A}_{n}\right\|$ if $\left\|\mathcal{A}_{n}\right\|=0$ STOP
otherwise define $b_{n}=\left\|\mathcal{A}_{n}\right\|$ and $\left.\left.\mid \mathcal{O}_{n}\right)=\mid \mathcal{A}_{n}\right) / b_{n}$
Output:

- The Krylov chain: $\left.\left.\left\{\mid \mathcal{O}_{0}\right),\left|\mathcal{O}_{1}\right|, \mid \mathcal{O}_{2}\right), \ldots,\left|\mathcal{O}_{K-1}\right|\right\}$

Lanczos algorithm

Orthonormalize the set $\left.\left.\{\mid \mathcal{O}), \mathcal{L} \mid \mathcal{O}), \mathcal{L}^{2} \mid \mathcal{O}\right), \ldots\right\}$:
Input: \mathcal{L} and $\mid \mathcal{O})$

1. Set $\left.\left.\mid \mathcal{O}_{0}\right)=\mid \mathcal{O}\right) /\|\mathcal{O}\|$
2. $\left.\left.\mid \mathcal{A}_{1}\right)=\mathcal{L} \mid \mathcal{O}_{0}\right)$, compute $\left\|\mathcal{A}_{1}\right\|$ if $\left\|\mathcal{A}_{1}\right\|=0$ STOP otherwise define $b_{1}=\left\|\mathcal{A}_{1}\right\|$ and $\left.\left|\mathcal{O}_{1}\right|=\mid \mathcal{A}_{1}\right) / b_{1}$
3. For $n>1$:
$\left.\left.\left.\mid \mathcal{A}_{n}\right)=\mathcal{L} \mid \mathcal{O}_{n-1}\right)-b_{n-1} \mid \mathcal{O}_{n-2}\right)$
compute $\left\|\mathcal{A}_{n}\right\|$ if $\left\|\mathcal{A}_{n}\right\|=0$ STOP
otherwise define $b_{n}=\left\|\mathcal{A}_{n}\right\|$ and $\left.\left.\mid \mathcal{O}_{n}\right)=\mid \mathcal{A}_{n}\right) / b_{n}$
Output:

- The Krylov chain: $\left.\left.\left.\left.\left\{\mid \mathcal{O}_{0}\right), \mid \mathcal{O}_{1}\right), \mid \mathcal{O}_{2}\right), \ldots, \mid \mathcal{O}_{K-1}\right)\right\}$
- The Lanczos sequence:

Lanczos algorithm

Orthonormalize the set $\left.\left.\{\mid \mathcal{O}), \mathcal{L} \mid \mathcal{O}), \mathcal{L}^{2} \mid \mathcal{O}\right), \ldots\right\}$:
Input: \mathcal{L} and $\mid \mathcal{O})$

1. Set $\left.\left.\mid \mathcal{O}_{0}\right)=\mid \mathcal{O}\right) /\|\mathcal{O}\|$
2. $\left.\left.\mid \mathcal{A}_{1}\right)=\mathcal{L} \mid \mathcal{O}_{0}\right)$, compute $\left\|\mathcal{A}_{1}\right\|$ if $\left\|\mathcal{A}_{1}\right\|=0$ STOP otherwise define $b_{1}=\left\|\mathcal{A}_{1}\right\|$ and $\left.\left|\mathcal{O}_{1}\right|=\mid \mathcal{A}_{1}\right) / b_{1}$
3. For $n>1$:
$\left.\left.\left.\mid \mathcal{A}_{n}\right)=\mathcal{L} \mid \mathcal{O}_{n-1}\right)-b_{n-1} \mid \mathcal{O}_{n-2}\right)$
compute $\left\|\mathcal{A}_{n}\right\|$ if $\left\|\mathcal{A}_{n}\right\|=0$ STOP
otherwise define $b_{n}=\left\|\mathcal{A}_{n}\right\|$ and $\left.\left.\mid \mathcal{O}_{n}\right)=\mid \mathcal{A}_{n}\right) / b_{n}$
Output:

- The Krylov chain: $\left.\left.\left.\left.\left\{\mid \mathcal{O}_{0}\right), \mid \mathcal{O}_{1}\right), \mid \mathcal{O}_{2}\right), \ldots, \mid \mathcal{O}_{K-1}\right)\right\}$
- The Lanczos sequence: $\left\{b_{1}, b_{2}, b_{3}, \ldots, b_{K-1}\right\}$

Lanczos algorithm

Orthonormalize the set $\left.\left.\{\mid \mathcal{O}), \mathcal{L} \mid \mathcal{O}), \mathcal{L}^{2} \mid \mathcal{O}\right), \ldots\right\}$:
Input: \mathcal{L} and $\mid \mathcal{O})$

1. Set $\left.\left.\mid \mathcal{O}_{0}\right)=\mid \mathcal{O}\right) /\|\mathcal{O}\|$
2. $\left.\left.\mid \mathcal{A}_{1}\right)=\mathcal{L} \mid \mathcal{O}_{0}\right)$, compute $\left\|\mathcal{A}_{1}\right\|$ if $\left\|\mathcal{A}_{1}\right\|=0$ STOP otherwise define $b_{1}=\left\|\mathcal{A}_{1}\right\|$ and $\left.\left|\mathcal{O}_{1}\right|=\mid \mathcal{A}_{1}\right) / b_{1}$
3. For $n>1$:
$\left.\left.\left.\mid \mathcal{A}_{n}\right)=\mathcal{L} \mid \mathcal{O}_{n-1}\right)-b_{n-1} \mid \mathcal{O}_{n-2}\right)$
compute $\left\|\mathcal{A}_{n}\right\|$ if $\left\|\mathcal{A}_{n}\right\|=0$ STOP
otherwise define $b_{n}=\left\|\mathcal{A}_{n}\right\|$ and $\left.\left.\mid \mathcal{O}_{n}\right)=\mid \mathcal{A}_{n}\right) / b_{n}$
Output:

- The Krylov chain: $\left.\left.\left\{\mid \mathcal{O}_{0}\right),\left|\mathcal{O}_{1}\right|, \mid \mathcal{O}_{2}\right), \ldots,\left|\mathcal{O}_{K-1}\right|\right\}$
- The Lanczos sequence: $\left\{b_{1}, b_{2}, b_{3}, \ldots, b_{K-1}\right\}$
where K is the Krylov space dimension

Operator time evolution on the Krylov chain

Operator time evolution on the Krylov chain

- Time-evolving operator can be expanded in Krylov basis:

Operator time evolution on the Krylov chain

- Time-evolving operator can be expanded in Krylov basis:

$$
\begin{equation*}
\left.\left.\mid \mathcal{O}(t))=e^{i \mathcal{L} t} \mid \mathcal{O}_{0}\right)=\sum_{n=0}^{K-1} \phi_{n}(t) \mid \mathcal{O}_{n}\right) \tag{6}
\end{equation*}
$$

where $\phi_{n}(t)=\left(\mathcal{O}_{n} \mid \mathcal{O}(t)\right)$

Operator time evolution on the Krylov chain

- Time-evolving operator can be expanded in Krylov basis:

$$
\begin{equation*}
\left.\left.\mid \mathcal{O}(t))=e^{i \mathcal{L} t} \mid \mathcal{O}_{0}\right)=\sum_{n=0}^{K-1} \phi_{n}(t) \mid \mathcal{O}_{n}\right) \tag{6}
\end{equation*}
$$

where $\phi_{n}(t)=\left(\mathcal{O}_{n} \mid \mathcal{O}(t)\right)$

- The Liouvillian is tridiagonal in the Krylov basis

$$
\left(\begin{array}{cccccc}
0 & b_{1} & & & & \tag{7}\\
b_{1} & 0 & b_{2} & & & \\
& b_{2} & 0 & b_{3} & & \\
& & b_{3} & 0 & \ddots & \\
& & & \ddots & \ddots & b_{K-1} \\
& & & & b_{K-1} & 0
\end{array}\right)
$$

Operator time evolution on the Krylov chain

- Time-evolving operator can be expanded in Krylov basis:

$$
\begin{equation*}
\left.\left.\mid \mathcal{O}(t))=e^{i \mathcal{L} t} \mid \mathcal{O}_{0}\right)=\sum_{n=0}^{K-1} \phi_{n}(t) \mid \mathcal{O}_{n}\right) \tag{6}
\end{equation*}
$$

where $\phi_{n}(t)=\left(\mathcal{O}_{n} \mid \mathcal{O}(t)\right)$

- The Liouvillian is tridiagonal in the Krylov basis

$$
\left(\begin{array}{cccccc}
0 & b_{1} & & & & \tag{7}\\
b_{1} & 0 & b_{2} & & & \\
& b_{2} & 0 & b_{3} & & \\
& & b_{3} & 0 & \ddots & \\
& & & \ddots & \ddots & b_{K-1} \\
& & & & b_{K-1} & 0
\end{array}\right)
$$

- Define position operator over Krylov basis

$$
\begin{equation*}
\left.\hat{n}=\sum_{n=0}^{K-1} n \mid \mathcal{O}_{n}\right)\left(\mathcal{O}_{n} \mid\right. \tag{8}
\end{equation*}
$$

Krylov complexity:

a probe of operator time evolution at all time scales

Krylov complexity:
a probe of operator time evolution at all time scales

K-complexity is the expectation value of position:

$$
\begin{equation*}
C_{K}(t)=\langle\hat{n}(t)\rangle=\sum_{n=0}^{K-1} n\left|\phi_{n}(t)\right|^{2} \tag{9}
\end{equation*}
$$

[Parker Cao Avdoshkin Scaffidi Altman 2018]

Krylov complexity:
a probe of operator time evolution at all time scales

K-complexity is the expectation value of position:

$$
\begin{equation*}
C_{K}(t)=\langle\hat{n}(t)\rangle=\sum_{n=0}^{K-1} n\left|\phi_{n}(t)\right|^{2} \tag{9}
\end{equation*}
$$

[Parker Cao Avdoshkin Scaffidi Altman 2018]

- Bounded by Krylov space dimension, $0 \leq C_{K}(t) \leq K$

Krylov complexity:
a probe of operator time evolution at all time scales

K-complexity is the expectation value of position:

$$
\begin{equation*}
C_{K}(t)=\langle\hat{n}(t)\rangle=\sum_{n=0}^{K-1} n\left|\phi_{n}(t)\right|^{2} \tag{9}
\end{equation*}
$$

[Parker Cao Avdoshkin Scaffidi Altman 2018]

- Bounded by Krylov space dimension, $0 \leq C_{K}(t) \leq K$
- Introduced in [Parker et al 2018] to study operator growth in the thermodynamic limit

Krylov complexity:

a probe of operator time evolution at all time scales

K-complexity is the expectation value of position:

$$
\begin{equation*}
C_{K}(t)=\langle\hat{n}(t)\rangle=\sum_{n=0}^{K-1} n\left|\phi_{n}(t)\right|^{2} \tag{9}
\end{equation*}
$$

[Parker Cao Avdoshkin Scaffidi Altman 2018]

- Bounded by Krylov space dimension, $0 \leq C_{K}(t) \leq K$
- Introduced in [Parker et al 2018] to study operator growth in the thermodynamic limit
- and as a measure of operator complexity at all time scales for finite systems in [Barbón Rabinovici RS Sinha 2019]

Dynamics of Krylov complexity

[Parker et al 2018] [Barbón Rabinovici RS Sinha 2019] [Rabinovici Sánchez-Garrido RS Sonner 2020]

n	b_{n}	wavefunction	K-complexity	time scales

Dynamics of Krylov complexity

[Parker et al 2018] [Barbón Rabinovici RS Sinha 2019] [Rabinovici Sánchez-Garrido RS Sonner 2020]

n	b_{n}	wavefunction	K-complexity	time scales
$n \ll S$	$b_{n} \sim n$			$t \lesssim \log S$

Dynamics of Krylov complexity

[Parker et al 2018] [Barbón Rabinovici RS Sinha 2019] [Rabinovici
Sánchez-Garrido RS Sonner 2020]

n	b_{n}	wavefunction	K-complexity	time scales
$n \ll S$	$b_{n} \sim n$			$t \lesssim \log S$
$n>S$	$b_{n} \sim \Lambda S$			

Dynamics of Krylov complexity

[Parker et al 2018] [Barbón Rabinovici RS Sinha 2019] [Rabinovici Sánchez-Garrido RS Sonner 2020]

n	b_{n}	wavefunction	K-complexity	time scales	
$n \ll S$	$b_{n} \sim n$			$t \lesssim \log S$	
$n>S$	$b_{n} \sim \Lambda S$				$t>\log S$
$n \sim e^{2 S}$	"descent"				t

Numerical results: SYK_{4} setup

Numerical results: SYK_{4} setup

- SYK_{4} is a maximally chaotic many-body system. Consider complex SYK_{4} with L fermions

$$
\begin{equation*}
H_{S Y K}=\sum_{i, j, k, l}^{L} J_{i j, k l} c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{l} \tag{10}
\end{equation*}
$$

where $\left\{c_{i}, c_{j}^{\dagger}\right\}=\delta_{i j}$ and $\left\{c_{i}, c_{j}\right\}=0=\left\{c_{i}^{\dagger}, c_{j}^{\dagger}\right\}$

- The coupling constants are taken from a Gaussian distribution with

$$
\begin{equation*}
\overline{J_{i j, k l}}=0 \quad \overline{\mid J_{i j,\left.k\right|^{2}}}=\frac{3!J^{2}}{L^{3}} \tag{11}
\end{equation*}
$$

Numerical results: SYK_{4} setup

- SYK_{4} is a maximally chaotic many-body system. Consider complex SYK_{4} with L fermions

$$
\begin{equation*}
H_{S Y K}=\sum_{i, j, k, l}^{L} J_{i j, k l} c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{l} \tag{10}
\end{equation*}
$$

where $\left\{c_{i}, c_{j}^{\dagger}\right\}=\delta_{i j}$ and $\left\{c_{i}, c_{j}\right\}=0=\left\{c_{i}^{\dagger}, c_{j}^{\dagger}\right\}$

- The coupling constants are taken from a Gaussian distribution with

$$
\begin{equation*}
\overline{J_{i j, k l}}=0 \quad \overline{\left|J_{i j, k \mid}\right|^{2}}=\frac{3!J^{2}}{L^{3}} \tag{11}
\end{equation*}
$$

- Operator taken to be the hopping operator

$$
\begin{equation*}
\mathcal{O}=c_{L-1}^{\dagger} c_{L}+c_{L}^{\dagger} c_{L-1} \tag{12}
\end{equation*}
$$

shown in [Sonner Vielma 2017] to satisfy ETH

Non-perturbative "Descent"

Non-perturbative "Descent"

Non-perturbative "Descent"

Features a non-perturbative $e^{-2 S}$ slope
[Rabinovici Sánchez-Garrido RS Sonner 2020]

K-complexity for SYK_{4} with 10 complex fermions

[Rabinovici Sánchez-Garrido RS Sonner 2020]

K-complexity for SYK_{4} with 10 complex fermions

 [Rabinovici Sánchez-Garrido RS Sonner 2020]

K-complexity for SYK_{4} with 10 complex fermions

 [Rabinovici Sánchez-Garrido RS Sonner 2020]

K-complexity for SYK_{4} with 10 complex fermions [Rabinovici Sánchez-Garrido RS Sonner 2020]

K-complexity for SYK_{4} with 10 complex fermions [Rabinovici Sánchez-Garrido RS Sonner 2020]

K-entropy

[Barbón Rabinovici RS Sinha 2019]

- K-entropy measures the amount of disorder in the wavefunction

$$
\begin{equation*}
S_{K}(t)=-\sum_{n=0}^{K-1}\left|\phi_{n}(t)\right|^{2} \log \left|\phi_{n}(t)\right|^{2} \tag{13}
\end{equation*}
$$

K-entropy

[Barbón Rabinovici RS Sinha 2019]

- K-entropy measures the amount of disorder in the wavefunction

$$
\begin{equation*}
S_{K}(t)=-\sum_{n=0}^{K-1}\left|\phi_{n}(t)\right|^{2} \log \left|\phi_{n}(t)\right|^{2} \tag{13}
\end{equation*}
$$

[Rabinovici Sánchez-Garrido RS Sonner 2020]

Suppression of K-complexity in XXZ

- Anderson localization on the Krylov chain

Suppression of K-complexity in XXZ

- Anderson localization on the Krylov chain

Krylov space dimension $K=64771$
[Rabinovici Sánchez-Garrido RS Sonner 2021]

Krylov complexity for states

Krylov complexity for states

- Given a Hamiltonian H and an initial state $|\Omega\rangle$, the state evolves in time unitarily

$$
\begin{equation*}
|\Omega(t)\rangle=e^{-i H t}|\Omega\rangle=\sum_{n=0}^{\infty} \frac{(-i t)^{n}}{n!} H^{n}|\Omega\rangle \tag{14}
\end{equation*}
$$

Krylov complexity for states

- Given a Hamiltonian H and an initial state $|\Omega\rangle$, the state evolves in time unitarily

$$
\begin{equation*}
|\Omega(t)\rangle=e^{-i H t}|\Omega\rangle=\sum_{n=0}^{\infty} \frac{(-i t)^{n}}{n!} H^{n}|\Omega\rangle \tag{14}
\end{equation*}
$$

- The Lanczos algorithm provides the Krylov basis and Lanczos coefficients
- The Hamiltonian is tridiagonal in the Krylov basis

Krylov complexity for states

- Given a Hamiltonian H and an initial state $|\Omega\rangle$, the state evolves in time unitarily

$$
\begin{equation*}
|\Omega(t)\rangle=e^{-i H t}|\Omega\rangle=\sum_{n=0}^{\infty} \frac{(-i t)^{n}}{n!} H^{n}|\Omega\rangle \tag{14}
\end{equation*}
$$

- The Lanczos algorithm provides the Krylov basis and Lanczos coefficients
- The Hamiltonian is tridiagonal in the Krylov basis

$$
H=\left(\begin{array}{cccccc}
a_{1} & b_{1} & & & & \tag{15}\\
b_{1} & a_{2} & b_{2} & & & \\
& b_{2} & a_{3} & b_{3} & & \\
& & b_{3} & a_{4} & \ddots & \\
& & & \ddots & \ddots & b_{K-1} \\
& & & & b_{K-1} & a_{K}
\end{array}\right)
$$

Krylov complexity for states

- Given a Hamiltonian H and an initial state $|\Omega\rangle$, the state evolves in time unitarily

$$
\begin{equation*}
|\Omega(t)\rangle=e^{-i H t}|\Omega\rangle=\sum_{n=0}^{\infty} \frac{(-i t)^{n}}{n!} H^{n}|\Omega\rangle \tag{14}
\end{equation*}
$$

- The Lanczos algorithm provides the Krylov basis and Lanczos coefficients
- The Hamiltonian is tridiagonal in the Krylov basis

$$
H=\left(\begin{array}{cccccc}
0 & b_{1} & & & & \tag{15}\\
b_{1} & 0 & b_{2} & & & \\
& b_{2} & 0 & b_{3} & & \\
& & b_{3} & 0 & \ddots & \\
& & & \ddots & \ddots & b_{K-1} \\
& & & & b_{K-1} & 0
\end{array}\right)
$$

Krylov complexity for states

- Given a Hamiltonian H and an initial state $|\Omega\rangle$, the state evolves in time unitarily

$$
\begin{equation*}
|\Omega(t)\rangle=e^{-i H t}|\Omega\rangle=\sum_{n=0}^{\infty} \frac{(-i t)^{n}}{n!} H^{n}|\Omega\rangle \tag{14}
\end{equation*}
$$

- The Lanczos algorithm provides the Krylov basis and Lanczos coefficients
- The Hamiltonian is tridiagonal in the Krylov basis

$$
H=\left(\begin{array}{cccccc}
0 & b_{1} & & & & \tag{15}\\
b_{1} & 0 & b_{2} & & & \\
& b_{2} & 0 & b_{3} & & \\
& & b_{3} & 0 & \ddots & \\
& & & \ddots & \ddots & b_{K-1} \\
& & & & b_{K-1} & 0
\end{array}\right)
$$

- Studied in [Balasubramanian Caputa Magan Wu 2022]

A holographic dual for Krylov complexity

The boundary: DSSYK

[Berkooz Narayan Simon 2018][Berkooz Isachenkov Narovlansky Torrents 2018]

- Start with SYK with N fermions $\left\{\psi_{i}, \psi_{j}\right\}=2 \delta_{i j}$

The boundary: DSSYK

[Berkooz Narayan Simon 2018][Berkooz Isachenkov Narovlansky Torrents 2018]

- Start with SYK with N fermions and p-body interactions

$$
\begin{equation*}
H_{S Y K}=i^{p / 2} \sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{p} \leq N} J_{i_{1} i_{2} \ldots i_{p}} \psi_{i_{1}} \psi_{i_{2}} \ldots \psi_{i_{p}} \tag{16}
\end{equation*}
$$

where $\overline{J_{i_{1} i_{2} \ldots i_{p}}}=0$ and $\overline{J_{i_{1} i_{2} \ldots i_{p}}^{2}}=\frac{J^{2}}{\lambda}\binom{N}{p}^{-1}$

The boundary: DSSYK

[Berkooz Narayan Simon 2018][Berkooz Isachenkov Narovlansky Torrents 2018]

- Start with SYK with N fermions and p-body interactions

$$
\begin{equation*}
H_{S Y K}=i^{p / 2} \sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{p} \leq N} J_{i_{1} i_{2} \ldots i_{p}} \psi_{i_{1}} \psi_{i_{2}} \ldots \psi_{i_{p}} \tag{16}
\end{equation*}
$$

where $\overline{J_{i_{1} i_{2} \ldots i_{p}}}=0$ and $\overline{J_{i_{1} i_{2} \ldots i_{p}}^{2}}=\frac{J^{2}}{\lambda}\binom{N}{p}^{-1}$

- Define the ratio parameter $\lambda \equiv \frac{2 p^{2}}{N}$

The boundary: DSSYK

[Berkooz Narayan Simon 2018][Berkooz Isachenkov Narovlansky Torrents 2018]

- Start with SYK with N fermions and p-body interactions

$$
\begin{equation*}
H_{S Y K}=i^{p / 2} \sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{p} \leq N} J_{i_{1} i_{2} \ldots i_{p}} \psi_{i_{1}} \psi_{i_{2}} \ldots \psi_{i_{p}} \tag{16}
\end{equation*}
$$

where $\overline{J_{i_{1} i_{2} \ldots i_{p}}}=0$ and $\overline{J_{i_{1} i_{2} \ldots i_{p}}^{2}}=\frac{J^{2}}{\lambda}\binom{N}{p}^{-1}$

- Define the ratio parameter $\lambda \equiv \frac{2 p^{2}}{N}$
- In the limit $N \rightarrow \infty, p \rightarrow \infty$ and λ fixed, the ensemble averaged effective Hamiltonian is

$$
H=\frac{J}{\sqrt{\lambda(1-q)}}\left(\begin{array}{ccccc}
0 & \sqrt{1-q} & & & \\
\sqrt{1-q} & 0 & \sqrt{1-q^{2}} & & \\
& \sqrt{1-q^{2}} & 0 & \sqrt{1-q^{3}} & \\
& & \sqrt{1-q^{3}} & 0 & \ddots \\
& & & \ddots & \ddots
\end{array}\right)
$$

where $q \equiv e^{-\lambda}$

Krylov complexity for DSSYK

- In [Rabinovici Sánchez-Garrido RS Sonner 2023] we showed that this Hamiltonian is written in the Krylov basis for H with initial state

$$
\begin{equation*}
|\Omega\rangle=\frac{1}{\sqrt{\mathcal{N}}} \sum_{E}|E\rangle \tag{17}
\end{equation*}
$$

Krylov complexity for DSSYK

- In [Rabinovici Sánchez-Garrido RS Sonner 2023] we showed that this Hamiltonian is written in the Krylov basis for H with initial state

$$
\begin{equation*}
|\Omega\rangle=\frac{1}{\sqrt{\mathcal{N}}} \sum_{E}|E\rangle \tag{17}
\end{equation*}
$$

- The Lanczos coefficients are

$$
\begin{equation*}
b_{n}=\frac{J}{\sqrt{\lambda(1-q)}} \sqrt{1-q^{n}} \tag{18}
\end{equation*}
$$

Krylov complexity for DSSYK

- In [Rabinovici Sánchez-Garrido RS Sonner 2023] we showed that this Hamiltonian is written in the Krylov basis for H with initial state

$$
\begin{equation*}
|\Omega\rangle=\frac{1}{\sqrt{\mathcal{N}}} \sum_{E}|E\rangle \tag{17}
\end{equation*}
$$

- The Lanczos coefficients are

$$
\begin{equation*}
b_{n}=\frac{J}{\sqrt{\lambda(1-q)}} \sqrt{1-q^{n}} \tag{18}
\end{equation*}
$$

- Krylov complexity

$$
\begin{equation*}
C_{K}(t)=\langle\hat{n}(t)\rangle \tag{19}
\end{equation*}
$$

The triple-scaled limit of SYK [Lin 2022]

The triple-scaled limit of SYK [Lin 2022]

- Start with the DSSYK Hamiltonian and define $I=\lambda n$

The triple-scaled limit of SYK [Lin 2022]

- Start with the DSSYK Hamiltonian and define $I=\lambda n$
- Perform the triple-scaling limit

$$
\begin{equation*}
\lambda \rightarrow 0, \quad \jmath \rightarrow \infty, \quad \frac{e^{-1}}{(2 \lambda)^{2}} \equiv e^{-\tilde{l}} \text { fixed } \tag{20}
\end{equation*}
$$

The triple-scaled limit of SYK [Lin 2022]

- Start with the DSSYK Hamiltonian and define $I=\lambda n$
- Perform the triple-scaling limit

$$
\begin{equation*}
\lambda \rightarrow 0, \quad I \rightarrow \infty, \quad \frac{e^{-।}}{(2 \lambda)^{2}} \equiv e^{-\tilde{I}} \text { fixed } \tag{20}
\end{equation*}
$$

- \tilde{I} is the renormalized length $\tilde{I}=I-2 \log \left(\frac{1}{2 \lambda}\right)$

The triple-scaled limit of SYK [Lin 2022]

- Start with the DSSYK Hamiltonian and define $I=\lambda n$
- Perform the triple-scaling limit

$$
\begin{equation*}
\lambda \rightarrow 0, \quad \jmath \rightarrow \infty, \quad \frac{e^{-1}}{(2 \lambda)^{2}} \equiv e^{-\tilde{I}} \text { fixed } \tag{20}
\end{equation*}
$$

- \tilde{I} is the renormalized length $\tilde{I}=I-2 \log \left(\frac{1}{2 \lambda}\right)$
- The triple-scaled Hamiltonian

$$
\begin{equation*}
H=-\frac{2 J}{\lambda}+2 \lambda J\left(\frac{k^{2}}{2}+2 e^{-\tilde{\jmath}}\right) \tag{21}
\end{equation*}
$$

The triple-scaled limit of SYK [Lin 2022]

- In the triple-scaled limit we take $\lambda \rightarrow 0$

The triple-scaled limit of SYK [Lin 2022]

- In the triple-scaled limit we take $\lambda \rightarrow 0$

The triple-scaled limit of SYK [Lin 2022]

- In the triple-scaled limit we take $\lambda \rightarrow 0$ and zoom-in near the ground state of DSSYK $\rho(E)$

The triple-scaled limit of SYK [Lin 2022]

- In the triple-scaled limit we take $\lambda \rightarrow 0$ and zoom-in near the ground state of DSSYK $\rho(E)$

- The d.o.s. in the triple-scaled limit is $\rho(E) \propto \sinh (2 \pi \sqrt{E})$

The triple-scaled limit of SYK [Lin 2022]

- In the triple-scaled limit we take $\lambda \rightarrow 0$ and zoom-in near the ground state of DSSYK $\rho(E)$

- The d.o.s. in the triple-scaled limit is $\rho(E) \propto \sinh (2 \pi \sqrt{E})$
- The Liouville form of the triple-scaled Hamiltonian connects DSSYK with the Hamiltonian of JT gravity

K-complexity in the triple-scaled limit of SYK

 [Rabinovici Sánchez-Garrido RS Sonner 2023]- Recall that $I=\lambda n$ and hence $C_{K}(t)=\frac{\langle I(t)\rangle}{\lambda}$
- In the triple-scaled limit $C_{K}(t)=\frac{\langle\tilde{\Gamma}(t)\rangle}{\lambda}$

K-complexity in the triple-scaled limit of SYK

 [Rabinovici Sánchez-Garrido RS Sonner 2023]- Recall that $I=\lambda n$ and hence $C_{K}(t)=\frac{\langle I(t)\rangle}{\lambda}$
- In the triple-scaled limit $C_{K}(t)=\frac{\langle\tilde{I}(t)\rangle}{\lambda}$
- Solving for the expectation value classically with $\tilde{I}(0)=x_{0}$ and $\dot{\tilde{l}}(0)=0$ we find that

K-complexity in the triple-scaled limit of SYK

[Rabinovici Sánchez-Garrido RS Sonner 2023]

- Recall that $I=\lambda n$ and hence $C_{K}(t)=\frac{\langle I(t)\rangle}{\lambda}$
- In the triple-scaled limit $C_{K}(t)=\frac{\langle\tilde{\Gamma}(t)\rangle}{\lambda}$
- Solving for the expectation value classically with $\tilde{I}(0)=x_{0}$ and $\dot{I}(0)=0$ we find that

$$
\begin{equation*}
\lambda C_{K}(t)=2 \log \left[\cosh \left(2 \lambda J e^{-x_{0}} t\right)\right]+x_{0} \tag{22}
\end{equation*}
$$

K-complexity in the triple-scaled limit of SYK

[Rabinovici Sánchez-Garrido RS Sonner 2023]

- Recall that $I=\lambda n$ and hence $C_{K}(t)=\frac{\langle I(t)\rangle}{\lambda}$
- In the triple-scaled limit $C_{K}(t)=\frac{\langle\tilde{I}(t)\rangle}{\lambda}$
- Solving for the expectation value classically with $\tilde{I}(0)=x_{0}$ and $\dot{\tilde{l}}(0)=0$ we find that

$$
\begin{equation*}
\lambda C_{K}(t)=2 \log [\cosh (\sqrt{\lambda J E} t)]-\log \left(\frac{E}{4 \lambda J}\right) \tag{22}
\end{equation*}
$$

The bulk: JT gravity

The bulk: JT gravity

- The action of JT gravity

$$
\begin{align*}
S_{J T}= & \int_{\mathcal{M}} d^{2} x \sqrt{-g}\left[\Phi_{0} R+\Phi(R+2)\right] \\
& +2 \int_{\partial \mathcal{M}} d x \sqrt{\gamma}\left[\Phi_{0} K+\Phi(K-1)\right] \tag{23}
\end{align*}
$$

The bulk: JT gravity

- The action of JT gravity

$$
\begin{align*}
S_{J T}= & \int_{\mathcal{M}} d^{2} x \sqrt{-g}\left[\Phi_{0} R+\Phi(R+2)\right] \\
& +2 \int_{\partial \mathcal{M}} d x \sqrt{\gamma}\left[\Phi_{0} K+\Phi(K-1)\right] \tag{23}
\end{align*}
$$

- Boundary conditions

$$
\begin{equation*}
\left.d s^{2}\right|_{\partial \mathcal{M}}=-\frac{d t_{b}^{2}}{\epsilon^{2}},\left.\quad \Phi\right|_{\partial \mathcal{M}}=\frac{\phi_{b}}{\epsilon} \tag{24}
\end{equation*}
$$

The bulk: JT gravity

- The action of JT gravity

$$
\begin{align*}
S_{J T}= & \int_{\mathcal{M}} d^{2} x \sqrt{-g}\left[\Phi_{0} R+\Phi(R+2)\right] \\
& +2 \int_{\partial \mathcal{M}} d x \sqrt{\gamma}\left[\Phi_{0} K+\Phi(K-1)\right] \tag{23}
\end{align*}
$$

- Boundary conditions

$$
\begin{equation*}
\left.d s^{2}\right|_{\partial \mathcal{M}}=-\frac{d t_{b}^{2}}{\epsilon^{2}},\left.\quad \Phi\right|_{\partial \mathcal{M}}=\frac{\phi_{b}}{\epsilon} \tag{24}
\end{equation*}
$$

- Equations of motion

$$
\begin{align*}
& 0=R+2 \Longrightarrow \mathrm{AdS}_{2} \tag{25}\\
& 0=\left(\nabla_{\mu} \nabla_{\nu}-g_{\mu \nu}\right) \Phi \tag{26}
\end{align*}
$$

Wormhole (ERB) length

[Harlow Jafferis 2018]

Wormhole (ERB) length

[Harlow Jafferis 2018]

(a) Global coordinates

$$
d s^{2}=
$$

$$
-\left(1+x^{2}\right) d \tau^{2}+\frac{d x^{2}}{1+x^{2}}
$$

$$
\Phi(x, \tau)=
$$

$$
\Phi_{h} \sqrt{1+x^{2}} \cos \tau
$$

Wormhole (ERB) length

[Harlow Jafferis 2018]

(a) Global coordinates

$$
d s^{2}=
$$

(b) Schwarzschild

$$
-\left(1+x^{2}\right) d \tau^{2}+\frac{d x^{2}}{1+x^{2}}
$$ coordinates

$$
\Phi(x, \tau)=
$$

$$
\Phi_{h} \sqrt{1+x^{2}} \cos \tau
$$

$$
\begin{aligned}
& d s^{2}= \\
& -\left(r^{2}-r_{s}^{2}\right) d t^{2}+\frac{d r^{2}}{r^{2}-r_{s}^{2}} \\
& \Phi(r, t)=\phi_{b} r
\end{aligned}
$$

Wormhole (ERB) length

[Harlow Jafferis 2018]

(a) Global coordinates $d s^{2}=$

$$
-\left(1+x^{2}\right) d \tau^{2}+\frac{d x^{2}}{1+x^{2}}
$$

$$
\Phi(x, \tau)=
$$

$$
\Phi_{h} \sqrt{1+x^{2}} \cos \tau
$$

(b) Schwarzschild coordinates

$$
d s^{2}=
$$

$$
-\left(r^{2}-r_{s}^{2}\right) d t^{2}+\frac{d r^{2}}{r^{2}-r_{s}^{2}}
$$

$$
\Phi(r, t)=\phi_{b} r
$$

(c) The wormhole length defined as the geodesic distance between two points on the boundaries

Wormhole (ERB) length

[Harlow Jafferis 2018]

(a) Global coordinates $d s^{2}=$
$-\left(1+x^{2}\right) d \tau^{2}+\frac{d x^{2}}{1+x^{2}}$
$\Phi(x, \tau)=$
(b) Schwarzschild coordinates
$d s^{2}=$
$\Phi_{h} \sqrt{1+x^{2}} \cos \tau$

$$
\begin{aligned}
& -\left(r^{2}-r_{s}^{2}\right) d t^{2}+\frac{d r^{2}}{r^{2}-r_{s}^{2}} \\
& \Phi(r, t)=\phi_{b} r
\end{aligned}
$$

(c) The wormhole length defined as the geodesic distance between two points on the boundaries

- Wormhole length

$$
\begin{equation*}
\tilde{l}=2 \log \left(\frac{2 \phi_{b}}{\epsilon}\right)+2 \log \left[\cosh \left(\frac{\Phi_{h}}{\phi_{b}} t_{b}\right)\right]-2 \log \Phi_{h} \tag{27}
\end{equation*}
$$

Wormhole (ERB) length

[Harlow Jafferis 2018]

(a) Global coordinates $d s^{2}=$
$-\left(1+x^{2}\right) d \tau^{2}+\frac{d x^{2}}{1+x^{2}}$
$\Phi(x, \tau)=$
$\Phi_{h} \sqrt{1+x^{2}} \cos \tau$
(b) Schwarzschild coordinates

$$
\begin{aligned}
& d s^{2}= \\
& -\left(r^{2}-r_{s}^{2}\right) d t^{2}+\frac{d r^{2}}{r^{2}-r_{s}^{2}} \\
& \Phi(r, t)=\phi_{b} r
\end{aligned}
$$

(c) The wormhole length defined as the geodesic distance between two points on the boundaries

- Renormalized wormhole length

Wormhole (ERB) length

[Harlow Jafferis 2018]

(b) Schwarzschild coordinates $d s^{2}=$
$-\left(1+x^{2}\right) d \tau^{2}+\frac{d x^{2}}{1+x^{2}}$
$\Phi(x, \tau)=$
$\Phi_{h} \sqrt{1+x^{2}} \cos \tau$
(a) Global coordinates

$$
\Psi_{h v+T}
$$

$$
\begin{aligned}
& d s^{2}= \\
& -\left(r^{2}-r_{s}^{2}\right) d t^{2}+\frac{d r^{2}}{r^{2}-r_{s}^{2}} \\
& \Phi(r, t)=\phi_{b} r
\end{aligned}
$$

(c) The wormhole length defined as the geodesic distance between two points on the boundaries

- Renormalized wormhole length

$$
\begin{equation*}
\tilde{l}=2 \log \left[\cosh \left(\frac{\Phi_{h}}{\phi_{b}} t_{b}\right)\right]-2 \log \Phi_{h} \tag{27}
\end{equation*}
$$

Wormhole (ERB) length

[Harlow Jafferis 2018]

(a) Global coordinates $d s^{2}=$
$-\left(1+x^{2}\right) d \tau^{2}+\frac{d x^{2}}{1+x^{2}}$
$\Phi(x, \tau)=$
$\Phi_{h} \sqrt{1+x^{2}} \cos \tau$
(b) Schwarzschild coordinates

$$
d s^{2}=
$$

$$
-\left(r^{2}-r_{s}^{2}\right) d t^{2}+\frac{d r^{2}}{r^{2}-r_{s}^{2}}
$$

$$
\Phi(r, t)=\phi_{b} r
$$

(c) The wormhole length defined as the geodesic distance between two points on the boundaries

- Renormalized wormhole length

$$
\begin{equation*}
\tilde{l}=2 \log \left[\cosh \left(\sqrt{\frac{E}{2 \phi_{b}}} t_{b}\right)\right]-\log \left(\frac{\phi_{b} E}{2}\right) \tag{27}
\end{equation*}
$$

Krylov complexity $=$ wormhole length

[Rabinovici Sánchez-Garrido RS Sonner 2023]

K-complexity in triple-scaled SYK

$$
\begin{equation*}
\lambda C_{K}(t)=2 \log [\cosh (\sqrt{\lambda J E} t)]-\log \left(\frac{E}{4 \lambda J}\right) \tag{28}
\end{equation*}
$$

Krylov complexity $=$ wormhole length
[Rabinovici Sánchez-Garrido RS Sonner 2023]

K-complexity in triple-scaled SYK

$$
\begin{equation*}
\lambda C_{K}(t)=2 \log [\cosh (\sqrt{\lambda J E} t)]-\log \left(\frac{E}{4 \lambda J}\right) \tag{28}
\end{equation*}
$$

Wormhole length in JT gravity

$$
\begin{equation*}
\tilde{I}(t)=2 \log \left[\cosh \left(\sqrt{\frac{E}{2 \phi_{b}}} t\right)\right]-\log \left(\frac{\phi_{b} E}{2}\right) \tag{29}
\end{equation*}
$$

Summary, open questions and future directions

Result

Krylov basis in triple-scaled SYK = Wormhole length basis in JT gravity

Summary, open questions and future directions

Result

Krylov basis in triple-scaled SYK = Wormhole length basis in JT gravity

Krylov complexity in triple-scaled SYK $=$ Wormhole length in JT gravity

Summary, open questions and future directions

Result

Krylov basis in triple-scaled SYK $=$ Wormhole length basis
in JT gravity

Krylov complexity in triple-scaled SYK = Wormhole length in JT gravity

- Quantum corrections?

Summary, open questions and future directions

Result

Krylov basis in triple-scaled SYK $=$ Wormhole length basis in JT gravity

Krylov complexity in triple-scaled SYK = Wormhole length in JT gravity

- Quantum corrections?
- Going away from the small λ limit

Summary, open questions and future directions

Result

Krylov basis in triple-scaled SYK $=$ Wormhole length basis in JT gravity

Krylov complexity in triple-scaled SYK = Wormhole length in JT gravity

- Quantum corrections?
- Going away from the small λ limit
- Saturation of K-complexity?

Summary, open questions and future directions

Result

Krylov basis in triple-scaled SYK $=$ Wormhole length basis in JT gravity

Krylov complexity in triple-scaled SYK = Wormhole length in JT gravity

- Quantum corrections?
- Going away from the small λ limit
- Saturation of K-complexity?
- The Krylov basis with operators is richer, what is the precise geometric interpretation of operator insertions in DSSYK

Summary, open questions and future directions

Result

Krylov basis in triple-scaled SYK = Wormhole length basis in JT gravity

Krylov complexity in triple-scaled SYK = Wormhole length in JT gravity

- Quantum corrections?
- Going away from the small λ limit
- Saturation of K-complexity?
- The Krylov basis with operators is richer, what is the precise geometric interpretation of operator insertions in DSSYK
- Higher dimensional gravity?

