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Plan

> Why complexity? Which notion of complexity?
> Krylov complexity
» A holographic dual for Krylov complexity

» Open questions and future directions
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A puzzle in the holographic dictionary

» For a while now it has been recognized that new, possibly
unknown, observables should be added to the holographic
dictionary

» In particular, certain observables in the bulk seem to continue
evolving in boundary time, long after known observables on
the boundary cease to change

Question
What could be a corresponding observable on the boundary?

Answer
Quantum complexity??? [Susskind 2014 -]
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Different notions of quantum complexity

» Circuit complexity: The minimal number of local gates g;
needed to construct an operator U starting from an initial
operator Up, up to a tolerance parameter €

» Geometric complexity: Choose a penalty metric on space of
unitaries; define complexity as shortest path to reach U from
Uo

» Krylov complexity: Defined using the system’s Hamiltonian
and initial state/operator



Can we find a precise bulk-boundary correspondence?
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Consider an operator O evolving in time under a Hamiltonian H

O(t) = e Oe M = O + it[H,0] + -~ (i ) I H O+ (1)
Krylov space: the space spanned by the operator's time evolution
K = Span{O,[H,O],[H,[H,O]],...} (2)

Define the Liouvillian super-operator: £ = [H, ]

0(1)) = 110 = 3 1

n=0

L"0) (3)

n!

K = Span {|0), £|0), £2|0),... } (4)
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> Hilbert space dimension: dim(#H) = D ~ e
> Operator space dimension: dim(#?) = D? ~ e2°

.

Upper bound on Krylov space dimension:

K<D?*-D+1~¢&*®

(5)

[Rabinovici Sdnchez-Garrido RS Sonner 2020]

The upper bound is saturated for

P A dense operator which has non-zero projection on every

Ea) (Eb

» No degeneracies in the spectrum of the Liouvillian
wap = E; — Ep except for the D-fold degeneracy of zero
frequencies wy, = E; — E; =0

eigenstate of the Liouvillian,
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Lanczos algorithm

Orthonormalize the set {|0), £|0), £2|0),... }:

Input: £ and |O)
L. Set [Oo) = |0)/]|O]]
2. | A1) = L£|Oy), compute || A;| if ||A1]| =0 STOP
otherwise define by = || A1| and |O1) = |A1)/b1
3. Forn>1:
|Af7) = ['|On—1) - bn—1|On—2)
compute || A,|| if |4y =0 STOP
otherwise define b, = || A,|| and |O,) = |A,)/bn

Output:
» The Krylov chain: {|0y),|01),]02),...,|0k-1)}
» The Lanczos sequence: {b1, by, b3, ..., bx_1}

where K is the Krylov space dimension
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Operator time evolution on the Krylov chain
» Time-evolving operator can be expanded in Krylov basis:

K-1
0(t)) = €”'100) = > én(t)|O) (6)
n=0

where ¢,(t) = (O,|O(t))
» The Liouvillian is tridiagonal in the Krylov basis

0 b
by 0 b
b, 0 b3
by 0 . @
' . bk
bx_1 0

» Define position operator over Krylov basis
K—1

A= n|On) O (8)

n=0
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Krylov complexity:
a probe of operator time evolution at all time scales

K-complexity is the expectation value of position:

K-1

C(t) = (A(t)) = D nlon(t)? (9)

n=0

[Parker Cao Avdoshkin Scaffidi Altman 2018]

» Bounded by Krylov space dimension, 0 < Ck(t) < K
» Introduced in [Parker et al 2018] to study operator growth in
the thermodynamic limit

» and as a measure of operator complexity at all time scales for
finite systems in [Barbén Rabinovici RS Sinha 2019]
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Dynamics of Krylov complexity

[Parker et al 2018] [Barbén Rabinovici RS Sinha 2019] [Rabinovici
Sanchez-Garrido RS Sonner 2020]

n bn wavefunction K-complexity | time scales
i
ngs b, ~n \ t<Slog$
4
n>S$S b, ~ \S Ll t > log$S
n~ €25 | “descent” t > e
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Numerical results: SYK, setup

» SYKj is a maximally chaotic many-body system. Consider
complex SYK, with L fermions

L
Hsyk = > Jjuciclac (10)
ikl
where {¢j, CJT} =dj and {¢;, ¢} =0= {c;f7 CJT}
» The coupling constants are taken from a Gaussian distribution
with )
- —s  3lJ
Jijga =0 Mjpal? = =3 (11)

» Operator taken to be the hopping operator
0= CZ_1CL + CICL_l (12)

shown in [Sonner Vielma 2017] to satisfy ETH
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L=8 Rabinovici Sanchez-Garrido RS Sonner 2020
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Features a non-perturbative e=2° slope
[Rabinovici Sdnchez-Garrido RS Sonner 2020]



K-complexity for SYK,; with 10 complex fermions
P y P
[Rabinovici Sdnchez-Garrido RS Sonner 2020]



K-complexity for SYK,; with 10 complex fermions
P y P
[Rabinovici Sdnchez-Garrido RS Sonner 2020]

single random realization
1.4{ — average over 5 random realizations

0.0 Rabinovici Sanchez-Garrido RS Sonner 2020

0.0 0.2 0.4 0.6 0.8 1.0




K-complexity for SYK,; with 10 complex fermions
P y P
[Rabinovici Sdnchez-Garrido RS Sonner 2020]

single random realization
1.4{ — average over 5 random realizations

0.0 Rabinovici Sanchez-Garrido RS Sonner 2020

0.0 0.2 0.4 0.6 0.8 1.0
t

140 single random realization

—— average over 5 random realizations
120
100

80

Cklt)

60
40
2 10g(s)

s

o] A

[ 5 10 15 20 25 30

Rabinovici Sénchez-Garrido RS Sonner 2020




K-complexity for SYK,; with 10 complex fermions

[Rabinovici Sdnchez-Garrido RS Sonner 2020]

Cklt)

Cklt)

1.6
14
1.2
1.0
0.8
0.6
0.4
0.2

0.0

140

120

100

80

60

40

single random realization

—— average over 5 random realizations

Rabinovici Sanchez-Garrido RS Sonner 2020

0.0 0.2 0.4 0.6 0.8 1.0
t
single random realization
—— average over 5 random realizations
log(s)
A Rabinovici Sénchez Garrdo RS Sonner 2020
[ 5 10 15 20 25 30

Ck(t)

30000

25000

20000

15000

10000

5000

Rabinovicl Sanchez-Garido RS Sonner 2020

single random realization
—— average over 5 random realizations

0

10000

20000 30000 40000 50000
t




K-complexity for SYK,; with 10 complex fermions
P y P
[Rabinovici Sdnchez-Garrido RS Sonner 2020]

Cklt)

Cklt)

1.6
14
1.2
1.0
0.8
0.6
0.4
0.2

0.0

140

120

100

80

60

40

single random realization
—— average over 5 random realizations

Rabinovici Sanchez-Garrido RS Sonner 2020

0.0 0.2 0.4 0.6 0.8 1.0

single random realization
—— average over 5 random realizations

log(s)

— / Rabinovici Sanchez-Garrido RS Sonner 2020

[ 5 10 15 20 25 30

30000

25000

20000

15000

Ck(t)

10000

5000

Rabinovicl Sanchez-Garido RS Sonner 2020

single random realization
—— average over 5 random realizations

K2
30000

25000
20000
g 15000
10000

5000

0 10000 20000 30000 40000 50000
t

Rabinovicl Sénchez-Garido RS Sonrer 2020

single random realization
—— average over 5 random realizations

0 100000 200000 300000 400000 500000
t



K-entropy
[Barbén Rabinovici RS Sinha 2019]
> K-entropy measures the amount of disorder in the
wavefunction

K-1
Sk(t) == |6n(t)]? log |¢n(t)? (13)
n=0



K-entropy
[Barbén Rabinovici RS Sinha 2019]
> K-entropy measures the amount of disorder in the
wavefunction

K-1
Sk(t) == |6n(t)]? log |¢n(t)? (13)
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» Anderson localization on the Krylov chain
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Krylov complexity for states

» Given a Hamiltonian H and an initial state |Q2), the state
evolves in time unitarily

Q@) = e =S ED ey (14)

n:
n=0

» The Lanczos algorithm provides the Krylov basis and
Lanczos coefficients
» The Hamiltonian is tridiagonal in the Krylov basis

0 b
b1 0 b
b 0 b3
H= by 0 (15)
' . bk_1
bk_1 0

» Studied in [Balasubramanian Caputa Magan Wu 2022]
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The boundary: DSSYK

[Berkooz Narayan Simon 2018][Berkooz Isachenkov Narovlansky Torrents 2018]
» Start with SYK with N fermions and p-body interactions

Hsyx = iP/? Z Jiviy...iy Vi ¥iy - - - Vi, (16)

where Jj;, i, =0 and 2. = J—( ) 1

iip...ip A
p

» Define the ratio parameter \ = 2W

» In the limit N — 0o, p — oo and A fixed, the ensemble
averaged effective Hamiltonian is

0 Vv1—gq
vVi—gq 0 V1-¢g?

H— J V1-—¢q? 0 1-¢3
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Krylov complexity for DSSYK

» In [Rabinovici Sdnchez-Garrido RS Sonner 2023] we showed that
this Hamiltonian is written in the Krylov basis for H with

initial state 1
%= 528 (17)

» The Lanczos coefficients are

J
bn:m 1—gq (18)

> Krylov complexity

C (1) = (A(t)) (19)
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The triple-scaled limit of SYK [Lin 2022]

» Start with the DSSYK Hamiltonian and define [ = An
» Perform the triple-scaling limit

e—l .
= e/ fixed (20)

A—=>0, |— o0, 2V =

> [is the renormalized length [=1-2 log (%)

» The triple-scaled Hamiltonian

2 k2 .
H= —TJ +2)\J <2 + 2e—’> (21)
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The triple-scaled limit of SYK [Lin 2022]

P In the triple-scaled limit we take A — 0 and zoom-in near the
ground state of DSSYK

p(E)

E

-E,

» The d.o.s. in the triple-scaled limit is p(E) o sinh(27v/E)

» The Liouville form of the triple-scaled Hamiltonian connects
DSSYK with the Hamiltonian of JT gravity
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» Recall that / = An and hence Ck(t) = @

> In the triple-scaled limit Cy(t) = ()

> Solvi_ng for the expectation value classically with /(0) = xg
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K-complexity in the triple-scaled limit of SYK
[Rabinovici Sdnchez-Garrido RS Sonner 2023]

» Recall that / = An and hence Ck(t) = <I(At)>

» In the triple-scaled limit Ck(t) = <I(/\t))

> Solving for the expectation value classically with /(0) = xo
and 7(0) = 0 we find that

ACk(t) =2log {cosh (\/E t) } — log <4§J> (22)



The bulk: JT gravity



The bulk: JT gravity
» The action of JT gravity

Syt = /M d*x/—g [%R +O(R+ 2)}

+2/aM dxﬁ[¢oK+¢(K— 1)} (23)



The bulk: JT gravity
» The action of JT gravity

Syt = /M d2x\/fg[q>0R +O(R+ 2)}

+2/8M dhey/7[@0K + @(K — 1)

» Boundary conditions

dt?
ds2‘ = ——2” ,
oM €

(23)

(24)



The bulk: JT gravity
» The action of JT gravity

Syt = /M d2x\/fg[q>0R +O(R+ 2)}

+2/8M dhey/7[@0K + @(K — 1)

» Boundary conditions

dt?
ds2‘ = ——2” ,
oM €

» Equations of motion

0=R+2=— AdS,
0=(V,V, —gu)®

(23)

(24)

(25)
(26)
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Wormhole (ERB) length
[Harlow Jafferis 2018]

PLP<

(a) Global coordinates (b) Schwarzschild

ds® = coordinates

_(1 + x2)d'r + 1+X ds? =

®(x, 1) = —(r® = r2)dt* + ,2 ,2

®pv/1+ x2cosT (r,t) = dpr



Wormhole (ERB) length
[Harlow Jafferis 2018]

(a) Global coordinates

ds? =

—(1 +x2)d'r +
d(x,7) =
$4pv/1+ x2cosT

l+x

(b) Schwarzschild

coordinates

ds? =

—(r? = rA)dt* +
D(r,t) = dor
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[Harlow Jafferis 2018]

(a) Global coordinates

ds?

—(1 +x2)d7' +
d(x,7) =

$4y\/1+ x2cosT

» Wormhole length

1 +x2

(b) Schwarzschild
coordinates

ds® =
—(r rs)dt + ,2 ,2
O(r, t) = ¢or

(c) The wormhole
length defined as the
geodesic distance
between two points on
the boundaries

= 2|og( ¢b) + 2log [cosh (ﬂtb>} —2log®, (27)
o
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[Harlow Jafferis 2018]

(a) Global coordinates

ds? =

—(1 +x2)d'r +
d(x,7) =
$4pv/1+ x2cosT

l+x

(b) Schwarzschild

coordinates

ds® =
—(r2 )dt + ,2 ,2
D(r,t) = dor

» Renormalized wormhole length
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Wormhole (ERB) length
[Harlow Jafferis 2018]

(a) Global coordinates (b) Schwarzschild (c) The wormhole
ds® = ' coordinates length defined as the
—(14x*)dr* + 1‘:’:‘)(2 ds® = , geodesic distance
d(x,7) = —(r? = rA)dt* + r2d:r2 between two points on
®pv/1+ x2cosT (r,t) = ppr ° the boundaries

» Renormalized wormhole length

= 2log [cosh (%tb) } — 2log ®, (27)
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Wormhole (ERB) length
[Harlow Jafferis 2018]

D

(a) Global coordinates (b) Schwarzschild (c) The wormhole
ds® = coordinates length defined as the
—(1 +x2)d7? + 1+x ds® = geodesic distance
d(x,7) = —(r* = r2)dt® + - r2 between two points on
®pv/1+ x2cosT (r,t) = dpr the boundaries

» Renormalized wormhole length

[=2log [cosh <\/2;ibtb) } — log (%) (27)
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Krylov complexity = wormhole length
[Rabinovici Sdnchez-Garrido RS Sonner 2023]

K-complexity in triple-scaled SYK

ACk (t) = 2log [cosh ( NJE t)] ~log (%) (28)

Wormhole length in JT gravity

I(t) =2log {cosh <\/;5bt> } — log (g) (29)
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Summary, open questions and future directions

Result

Krylov basis in triple-scaled SYK = Wormhole length basis
in JT gravity

Krylov complexity in triple-scaled SYK = Wormhole length
in JT gravity

Quantum corrections?
Going away from the small A limit
Saturation of K-complexity?

The Krylov basis with operators is richer, what is the precise
geometric interpretation of operator insertions in DSSYK

» Higher dimensional gravity?



