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Plan

▶ Why complexity? Which notion of complexity?

▶ Krylov complexity

▶ A holographic dual for Krylov complexity

▶ Open questions and future directions



A puzzle in the holographic dictionary

▶ For a while now it has been recognized that new, possibly
unknown, observables should be added to the holographic
dictionary

▶ In particular, certain observables in the bulk seem to continue
evolving in boundary time, long after known observables on
the boundary cease to change

Question
What could be a corresponding observable on the boundary?

Answer
Quantum complexity??? [Susskind 2014 –]
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Different notions of quantum complexity

▶ Circuit complexity: The minimal number of local gates gi
needed to construct an operator U starting from an initial
operator U0, up to a tolerance parameter ϵ

▶ Geometric complexity: Choose a penalty metric on space of
unitaries; define complexity as shortest path to reach U from
U0

▶ Krylov complexity: Defined using the system’s Hamiltonian
and initial state/operator



Can we find a precise bulk-boundary correspondence?



Krylov space

Consider an operator O evolving in time under a Hamiltonian H

O(t) = e iHtOe−iHt = O + it[H,O] +
(it)2

2!
[H, [H,O]] + . . . (1)

Krylov space: the space spanned by the operator’s time evolution

K = Span {O, [H,O], [H, [H,O]], . . . } (2)

Define the Liouvillian super-operator: L ≡ [H, ]

|O(t)) = e iLt |O) =
∞∑
n=0

(it)n

n!
Ln|O) (3)

K = Span
{
|O),L|O),L2|O), . . .

}
(4)
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Krylov space dimension

▶ Hilbert space dimension: dim(H) = D ∼ eS

▶ Operator space dimension: dim(H2) = D2 ∼ e2S

Upper bound on Krylov space dimension:

K ≤ D2 − D + 1 ∼ e2S (5)

[Rabinovici Sánchez-Garrido RS Sonner 2020]

The upper bound is saturated for

▶ A dense operator which has non-zero projection on every
eigenstate of the Liouvillian, |Ea⟩⟨Eb|

▶ No degeneracies in the spectrum of the Liouvillian
ωab = Ea − Eb except for the D-fold degeneracy of zero
frequencies ωaa = Ea − Ea = 0
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Lanczos algorithm

Orthonormalize the set
{
|O),L|O),L2|O), . . .

}
:

Input: L and |O)

1. Set |O0) = |O)/∥O∥
2. |A1) = L|O0), compute ∥A1∥ if ∥A1∥ = 0 STOP

otherwise define b1 = ∥A1∥ and |O1) = |A1)/b1

3. For n > 1:
|An) = L|On−1)− bn−1|On−2)
compute ∥An∥ if ∥An∥ = 0 STOP
otherwise define bn = ∥An∥ and |On) = |An)/bn

Output:

▶ The Krylov chain: {|O0), |O1), |O2), . . . , |OK−1)}
▶ The Lanczos sequence: {b1, b2, b3, . . . , bK−1}

where K is the Krylov space dimension
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Operator time evolution on the Krylov chain

▶ Time-evolving operator can be expanded in Krylov basis:

|O(t)) = e iLt |O0) =
K−1∑
n=0

ϕn(t)|On) (6)

where ϕn(t) = (On|O(t))
▶ The Liouvillian is tridiagonal in the Krylov basis

0 b1
b1 0 b2

b2 0 b3

b3 0
. . .

. . .
. . . bK−1

bK−1 0


(7)

▶ Define position operator over Krylov basis

n̂ =
K−1∑
n=0

n |On)(On| (8)
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Krylov complexity:
a probe of operator time evolution at all time scales

K-complexity is the expectation value of position:

CK (t) = ⟨n̂(t)⟩ =
K−1∑
n=0

n |ϕn(t)|2 (9)

[Parker Cao Avdoshkin Scaffidi Altman 2018]

▶ Bounded by Krylov space dimension, 0 ≤ CK (t) ≤ K

▶ Introduced in [Parker et al 2018] to study operator growth in
the thermodynamic limit

▶ and as a measure of operator complexity at all time scales for
finite systems in [Barbón Rabinovici RS Sinha 2019]
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Dynamics of Krylov complexity

[Parker et al 2018] [Barbón Rabinovici RS Sinha 2019] [Rabinovici

Sánchez-Garrido RS Sonner 2020]
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Numerical results: SYK4 setup

▶ SYK4 is a maximally chaotic many-body system. Consider
complex SYK4 with L fermions

HSYK =
L∑

i ,j ,k,l

Jij ,klc
†
i c

†
j ckcl (10)

where {ci , c†j } = δij and {ci , cj} = 0 = {c†i , c
†
j }

▶ The coupling constants are taken from a Gaussian distribution
with

Jij ,kl = 0 |Jij ,kl |2 =
3!J2

L3
(11)

▶ Operator taken to be the hopping operator

O = c†L−1cL + c†LcL−1 (12)

shown in [Sonner Vielma 2017] to satisfy ETH
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K-entropy
[Barbón Rabinovici RS Sinha 2019]

▶ K-entropy measures the amount of disorder in the
wavefunction

SK (t) = −
K−1∑
n=0

|ϕn(t)|2 log |ϕn(t)|2 (13)

[Rabinovici Sánchez-Garrido RS Sonner 2020]
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Suppression of K-complexity in XXZ
▶ Anderson localization on the Krylov chain
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Krylov complexity for states

▶ Given a Hamiltonian H and an initial state |Ω⟩, the state
evolves in time unitarily

|Ω(t)⟩ = e−iHt |Ω⟩ =
∞∑
n=0

(−it)n

n!
Hn|Ω⟩ (14)

▶ The Lanczos algorithm provides the Krylov basis and
Lanczos coefficients

▶ The Hamiltonian is tridiagonal in the Krylov basis

H =



0 b1
b1 0 b2

b2 0 b3

b3 0
. . .

. . .
. . . bK−1

bK−1 0


(15)

▶ Studied in [Balasubramanian Caputa Magan Wu 2022]
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A holographic dual for Krylov complexity



The boundary: DSSYK
[Berkooz Narayan Simon 2018][Berkooz Isachenkov Narovlansky Torrents 2018]

▶ Start with SYK with N fermions {ψi , ψj} = 2δij

and p-body
interactions

HSYK = ip/2
∑

1≤i1≤i2≤···≤ip≤N

Ji1i2...ip ψi1ψi2 . . . ψip (16)

where Ji1i2...ip = 0 and J2i1i2...ip =
J2

λ

(N
p

)−1

▶ Define the ratio parameter λ ≡ 2p2

N
▶ In the limit N → ∞, p → ∞ and λ fixed, the ensemble

averaged effective Hamiltonian is

H =
J√

λ(1− q)



0
√
1− q√

1− q 0
√
1− q2√

1− q2 0
√
1− q3√

1− q3 0
. . .

. . .
. . .


where q ≡ e−λ
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Krylov complexity for DSSYK

▶ In [Rabinovici Sánchez-Garrido RS Sonner 2023] we showed that
this Hamiltonian is written in the Krylov basis for H with
initial state

|Ω⟩ = 1√
N

∑
E

|E ⟩ (17)

▶ The Lanczos coefficients are

bn =
J√

λ(1− q)

√
1− qn (18)

▶ Krylov complexity
CK (t) = ⟨n̂(t)⟩ (19)
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The triple-scaled limit of SYK [Lin 2022]

▶ Start with the DSSYK Hamiltonian and define l = λn

▶ Perform the triple-scaling limit

λ→ 0 , l → ∞ ,
e−l

(2λ)2
≡ e−l̃ fixed (20)

▶ l̃ is the renormalized length l̃ = l − 2 log
(

1
2λ

)
▶ The triple-scaled Hamiltonian

H = −2J

λ
+ 2λJ

(
k2

2
+ 2e−l̃

)
(21)
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The triple-scaled limit of SYK [Lin 2022]

▶ In the triple-scaled limit we take λ→ 0

and zoom-in near the
ground state of DSSYK

-E0 E0
E

ρDSSYK (E)

-E0
E

ρ (E)

▶ The d.o.s. in the triple-scaled limit is ρ(E ) ∝ sinh(2π
√
E )

▶ The Liouville form of the triple-scaled Hamiltonian connects
DSSYK with the Hamiltonian of JT gravity
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K-complexity in the triple-scaled limit of SYK
[Rabinovici Sánchez-Garrido RS Sonner 2023]

▶ Recall that l = λn and hence CK (t) =
⟨l(t)⟩
λ

▶ In the triple-scaled limit CK (t) =
⟨l̃(t)⟩
λ

▶ Solving for the expectation value classically with l̃(0) = x0

and ˙̃l(0) = 0 we find that

λCK (t) = 2 log
[
cosh

(√
λJE t

) ]
− log

(
E

4λJ

)
(22)
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The bulk: JT gravity

▶ The action of JT gravity

SJT =

∫
M

d2x
√
−g
[
Φ0R +Φ(R + 2)

]
+ 2

∫
∂M

dx
√
γ
[
Φ0K +Φ(K − 1)

]
(23)

▶ Boundary conditions

ds2
∣∣∣
∂M

= −
dt2b
ϵ2

, Φ
∣∣∣
∂M

=
ϕb
ϵ

(24)

▶ Equations of motion

0 = R + 2 =⇒ AdS2 (25)

0 = (∇µ∇ν − gµν)Φ (26)
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Wormhole (ERB) length
[Harlow Jafferis 2018]

(a) Global coordinates
ds2 =
−(1 + x2)dτ 2 + dx2

1+x2

Φ(x , τ) =
Φh

√
1 + x2 cos τ

(b) Schwarzschild
coordinates
ds2 =
−(r 2 − r 2s )dt

2 + dr2

r2−r2s

Φ(r , t) = ϕbr

(c) The wormhole
length defined as the
geodesic distance
between two points on
the boundaries

▶ Renormalized wormhole length

l̃ = 2 log
[
cosh

(√
E

2ϕb
tb

)]
− log

(
ϕbE

2

)
(27)
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Krylov complexity = wormhole length
[Rabinovici Sánchez-Garrido RS Sonner 2023]

K-complexity in triple-scaled SYK

λCK (t) = 2 log
[
cosh

(√
λJE t

) ]
− log
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4λJ
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(28)

Wormhole length in JT gravity

l̃(t) = 2 log
[
cosh

(√
E

2ϕb
t

)]
− log

(
ϕbE

2

)
(29)



Krylov complexity = wormhole length
[Rabinovici Sánchez-Garrido RS Sonner 2023]

K-complexity in triple-scaled SYK

λCK (t) = 2 log
[
cosh

(√
λJE t

) ]
− log

(
E

4λJ

)
(28)

Wormhole length in JT gravity

l̃(t) = 2 log
[
cosh

(√
E

2ϕb
t

)]
− log

(
ϕbE

2

)
(29)



Summary, open questions and future directions

Result

Krylov basis in triple-scaled SYK = Wormhole length basis
in JT gravity

Krylov complexity in triple-scaled SYK = Wormhole length
in JT gravity

▶ Quantum corrections?

▶ Going away from the small λ limit

▶ Saturation of K-complexity?

▶ The Krylov basis with operators is richer, what is the precise
geometric interpretation of operator insertions in DSSYK

▶ Higher dimensional gravity?
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