Symmetry/Topological-Order (Symm/TO) correspondence

Xiao-Gang Wen (MIT)

From string theory to condensed matter physics

2023/07, Strings 2023, PI

Kong Wen Zheng arXiv:1502.01690 $Z_n(\mathcal{D}_n)$ Ji Wen arXiv:1905.13279Ji Wen arXiv:1912.13492Kong Lan Wen Zhang Zheng arXiv:2005.14178 \mathcal{D}_n

Simons Collaboration on

Symmetry/Topological-Order (Symm/TO) correspondence

 $Z_n(C$

Three kinds of quantum phases

All quantum systems discussed here have **lattice UV completion** which defines **condensed matter systems**

- **Gapped** \rightarrow no low energy excitations All excitations has energy gap. Band insulators, FQH states General theory: topological order, moduli bundle theory, braided fusion higher category
- Gapless (finite) → finite low energy modes
 Finite low energy modes: Dirac/Weyl semimetal, superfluid, critical point at continuous phase transition
 General theory: quantum field theory, conformal field theory, ???
- Gapless (infinite) → infinite low energy modes
 Infinite low energy modes: Fermi metal, Bose metal, etc
 (Low energy effective theory is beyond quantum field theory)
 General theory: Landau Fermi liquid, ???

Topological orders in quantum Hall effect

For a long time, we thought that Landau symmetry breaking classify all phases of matter

• Quantum Hall states $R_{xy} = V_y/I_x = \frac{m}{n}\frac{2\pi\hbar}{e^2}$ von Klitzing Dorda Pepper, PRL **45** 494 (1980) Tsui Stormer Gossard, PRL **48** 1559 (1982)

- FQH states have different phases even when there is no symm. and no symm. breaking.
- FQH liquids must contain a new kind of order, named as topological order

Characterize topological order quantitatively

 How to extract universal numbers (topological invariants) from complicated many-body wavefunction $\Psi(x_1, \cdots, x_{10^{20}})$

- ¹E. Witten, Commun. Math. Phys. 121, 351 (1989); 117, 353 (1988).
- ²Y. Hosotani, Report No. IAS-HEP-89/8, 1989 (unpublished); G. V. Dunne, R. Jackiw, and C. A. Trungenberg, Report No. MIT-CTP-1711, 1989 (unpublished); S. Elitzur, G. Moore, A. Schwimmer, and N. Seiberg, Report No. IASSNS-HEP-89/20, 1989 (unpublished).
- ³V. Kalmeyer and R. Laughlin, Phys. Rev. Lett. 59, 2095 (1988); X. G. Wen and A. Zee (unpublished); P. W. Anderson (unpublished); P. Wiegmann, in Physics of Low Dimensional Systems, edited by S. Lundqvist and N. K. Nilsson (World Scientific, Singapore, 1989).
- ⁴X. G. Wen, F. Wilczek, and A. Zee, Phys. Rev. B 39, 11413 (1989); D. Khveshchenko and P. Wiegmann (unpublished). ⁵G. Baskaran and P. W. Anderson, Phys. Rev. B 37, 580 (1988).
- Put the gapped system on space with various topologies, and measure the ground state degeneracy \rightarrow topological order

Vacuum degeneracy of chiral spin states in compactified space

X. G. Wen

Institute for Theoretical Physics, University of California, Santa Barbara, California 93106 (Received 10 May 1989)

A chiral spin state is not only characterized by the T and P order parameter E_{123} $-S_1$ ($S_2 \times S_3$), it is also characterized by an integer k. In this paper we show that this integer k can be determined from the vacuum degeneracy of the chiral spin state on compactified spaces. On a Riemann surface with genus g the vacuum degeneracy of the chiral spin state is found to be $2k^g$. Among those vacuum states, some k^g states have $\langle E_{123} \rangle > 0$, while other k^g states have $\langle E_{123} \rangle < 0$. The dependence of the vacuum degeneracy on the topology of the space reflects some sort of topological ordering in the chiral spin state. In general, the topological ordering in a system is classified by topological theories.

Xiao-Gang Wen (MIT)

Symmetry/Topological-Order (Symm/TO) correspondence

Ground state degen. characterizes phase of matter

Objection: GSD on $S^2 \neq$ GSD on T^2 (coming from the motion of center mass). Ground state degeneracy is just a finite size effect. Ground state degeneracy does not reflect the thermodynamic phase of matter.

- Robust topological ground state degeneracy
- Inserting 2π flux pumps one quantum Hall ground state in magnetic field *B* to another ground state.
- k_x of the two ground states differ by $\Delta k_x \sim BL_y \rightarrow \infty |_{L_y \rightarrow \infty}$
- Impurities can only cause momentum transfer $\delta k_x \sim \sqrt{B}$, and split ground state degeneracy by $\Delta E \sim e^{-\#L_y\sqrt{B}}$ Wen Niu PRB 41, 9377 (90)
- Magnetic field $B \rightarrow$ UV-IR mixing and non-commutative geometry

	1			1	I.	
1		F			-	-
		F		_	-	-
1		F	= =	22	Ξ.	2

Even non-Abelian statistics can be realized

Let $\chi_n(z_i)$ be the many-body wave function of n filled Landau level, which describes a gapped state.

- Products of gapped IQH wave functions χ_n are also gapped \rightarrow new FQH states
- $SU(m)_n$ state $\chi_1^k \chi_n^m$ via slave-particle

 $\Psi_{SU(3)_2} = (\chi_2)^3, \ \nu = 2/3; \quad \Psi_{SU(2)_2} = \chi_1(\chi_2)^2, \ \nu = 1/2;$

- \rightarrow Effective *SU*(3)₂, *SU*(2)₂ Chern-Simons theory
- \rightarrow non-Abelian statistics (assume $\chi_1^k \chi_n^m$ is gapped, conjecture)
- Pfaffien state via CFT correlation Moore-Read NPB 360 362 (1991)

$$\Psi_{\mathsf{Pfa}} = \mathcal{A}[\frac{1}{z_1 - z_2} \frac{1}{z_3 - z_4} \cdots] \prod (z_i - z_j)^2 e^{-\frac{1}{4} \sum |z_i|^2}, \quad \nu = 1/2$$

 $\begin{array}{l} \text{Conformal block} = \texttt{multi-valueness of many-body wave function} \\ \stackrel{\texttt{conjecture}}{\rightarrow} \texttt{non-Abelian Berry phase} \rightarrow \texttt{non-Abelian statistics} \end{array}$

Xiao-Gang Wen (MIT)

Jain PRB 11 7635 (90)

Wen PRL 66 802 (1991)

Numerical confirmation of non-Abelian statistics

Application of TQFT/CFT correspondence. Witten, CMP 121 352 (89)

- Edge state of Abelian FQH state (classified by K-matrices) always has an integral central charge $c \in \mathbb{N}$, Wen Zee PRB **46** 2290 (92)
- If edge states are described by a fractional central charge \rightarrow The bulk must be a non-Abelian state.
- For $\nu = 1/2$ state with a three-body interaction, the edge spectrum is given by

(for 8 electrons on 20 orbits):

L_{tot}: 52 53 54 55 56 57

NOS : 1 1 3 5 10 15

Edge states are described by:

- $1\frac{1}{2}$ chiral phonon modes $c = 1\frac{1}{2}$
- =1 chiral phonon mode
 - +1 chiral Majorana fermion

=3 chiral Majorana fermions The Pfaffien state is non-Abelian

Wen PRL 70 355 (93)

Topo. order & theory of long range entanglement

The microscopic mechanism of superconductivity: electron pairingThe microscopic mechanism of topological order:

Topological order = pattern of long range entanglement

Wen, PRB 40 7387 (89); IJMPB 4, 239 (90). Chen Gu Wen arXiv:1004.3835

Symmetry breaking orders are described by group theory. What theory describes topological orders (long range entanglement)?

 Ground states: Robust degenerate ground states form vector bundles on moduli spaces of gapped Hamiltonians → moduli bundle theory for topological orders.

 Excitations: The anyons are described by their fusion and braiding → modular tensor category theory for topological orders
 Moore Seiberg CMP 123 177 (89). Witten, CMP 121 352 (89)
 Xiao-Gang Wen (MIT)
 Symmetry/Topological-Order (Symm/TQ) correspondence
 8/28

Moduli bundle theory of topological order

The important data is the **connections** of ground-state vector bundle on moduli space.

- Non-Abelian Berry's phase along contractable loops in moduli space → a diagonal U(1) factor acting on the degenerate ground states
 - \rightarrow gravitational Chern-Simons term
 - \rightarrow chiral central charge *c* of edge state
- Non-Abelian Berry's phase along non-contractable loops in moduli space → S, T unitary matrices acting on the degenerate ground states → projective representation of mapping-class-group (which is SL(2, Z) for torus, generated by s : (x, y) → (-y, x), t : (x, y) → (x + y, y))

Wen, PRB 40 7387 (89); IJMPB 4, 239 (90).

ground-state

subspace

Modular tensor category theory for anyons and 2+1D topological orders

• Excitation in 2+1D topological order \rightarrow **Braided** fusion category (modular tensor category) \rightarrow A theory for 2+1D topological orders for bosons. rational CFT \rightarrow TQFT \rightarrow MTC

- In higher dimensions, topological excitations can be **point-like**, string-like, etc , which can fuse and braid \rightarrow
- Topological excitations are described by non-degenerate braided fusion higher **categories** \rightarrow theory of topological order
- The ground state degeneracy GSD on torus and fractional statistics $\theta = \pi \frac{p}{a}$ of topological excitations are closely related $U_x U_y U_x^{\dagger} U_y^{\dagger} = e^{2\pi \frac{p}{q}}$: GSD is a multiple of q.

Classify 2+1D bosonic topological orders (TOs)

Using moduli bundle theory (ie $SL(2,\mathbb{Z})$ representations), plus input from modular tensor category, we can classify 2+1D bosonic topological orders (up to invertible E(8) states):

<pre># of anyon types (rank)</pre>	1	2	3	4	5	6	7	8	9	10	11
# of 2+1D TOs	1	4	12	18	10	50	28	64	81	76	44
# of Abelian TOs	1	2	2	9	2	4	2	20	4	4	2
# of non-Abelian TOs	0	2	10	9	8	46	26	44	77	72	42
# of prime TOs	1	4	12	8	10	10	28	20	20	40	44

Rowell Stong Wang, arXiv:0712.1377: up to rank 4 Bruillard Ng Rowell Wang, arXiv:1507.05139: up to rank 5 Ng Rowell Wang Wen, arXiv:2203.14829: up to rank 6 Ng Rowell Wen, to appear: up to rank 11

• This classifies all 2+1D gapped phases for bosonic systems without symmetry, with 11 topological excitations or less.

Xiao-Gang Wen (MIT)

Symmetry/Topological-Order (Symm/TO) correspondence

Topological holographic principle

String holographic principle: Susskind hep-th/9409089 boundary CFT = bulk AdS gravityMaldacena hep-th/9711200 • Holographic principle of topological order: Boundary determines bulk, but bulk does not determine boundary Kong Wen arXiv:1405.5858; Kong Wen Zheng arXiv:1502.01690 The excitations in a topological order are described by a braided fusion category \mathcal{M} . The excitations on a gapped boundary of a topological order are described by a fusion category \mathcal{F} \mathcal{F} determines \mathcal{M} : $\mathcal{Z}(\mathcal{F}) = \mathcal{M}$ (\mathcal{Z} is generalized Drinfeld-center) - String-operators that create pairs of boundary excitations form an algebra which is characterized by a braided fusion category \mathcal{M} . Chatteriee Wen arXiv:2205.06244 • A generalization of anomaly in-flow: Callan Harvey, NPB 250 427 (1985) The theory described by fusion category \mathcal{F} has a (non-invertible) gravitational anomaly (ie no UV completion) Kong Wen arXiv:1405.5858 (non-invertible) grav anomaly = bulk topological order \mathcal{M} Symmetry/Topological-Order (Symm/TO) correspondence Xiao-Gang Wen (MIT) 12 / 28

Classification of 3+1D bosonic topological orders (*ie* classification of 4D fully extended TQFTs)

An application of topological holographic principle

- 3+1D bosonic topological orders with only bosonic point-like excitations are classified by 3+1D Dijkgraaf-Witten theory of finite groups.
 Lan Kong Wen arXiv:1704.04221; Johnson-Freyd arXiv:2003.06663
- 3+1D fully extended TQFT's with only bosonic point-like excitations are classified by Dijkgraaf-Witten theories of finite groups.
- A duality relation: 3+1D twisted higher gauge theories of finite higher group with only bosonic point-like excitations are equivalent to twisted 1-gauge theories of finite group.
- 3+1D bosonic topological orders with both bosonic and fermionic point-like excitations are also classified.

Lan Wen arXiv:1801.08530; Johnson-Freyd arXiv:2003.06663

Next step: a general theory for 'finite' gapless state

A gapless state has emergent (and exact) symmetry:

- Group-like symmetries Heisenberg, Wigner, 1926 U(2)
 ightarrow
- Anomalous symmetries 't Hooft, 1980 $U_R(2) imes U_L(2)$
- Higher-form symmetries Nussinov Ortiz 09; Gaiotto Kapustin Seiberg Willett 14
- Higher-group symmetries Kapustin Thorngren 2013
- Algebraic higher symmetry Thorngren Wang 19; Kong Lan Wen Zhang Zheng 20 algebraic (higher) symmetry = non-invertible (higher) symmetry = fusion (higher) category symmetry =
- Petkova Zuber 2000; Coquereaux Schieber 2001; ... for 1+1D CFT - (Non-invertible) gravitational anomalies Kong Wen 2014; Ji Wen 2019
- Conjecture: The maximal emergent (generalized) symmetry largely determine the gapless states.

A classification of maximal emergent (generalized) symmetries \rightarrow A classification of "finite" gapless states. Chatterjee Ji Wen arXiv:2212.14432 What is the general theory for all those generalized symmetries, which are beyond group and higher group?

Xiao-Gang Wen (MIT)

Symmetry/Topological-Order (Symm/TO) correspondence

 Ψ_P

 Ψ_L

Symmetry/Topological-Order correspondence

A symmetry corresponds to:

- an **isomorphic decomposition** $\mathcal{D}_n \cong \mathcal{C}_n \boxtimes_{\mathcal{Z}_n(\mathcal{C}_n)} f_n^{(0)}$ Kong Wen Zheng arXiv:1502.01690; Freed Moore Teleman arXiv: 2209.07471
- a **non-invertible gravitational anomaly** Ji Wen arXiv:1905.13279
- a symmetry + dual symmetry + braiding Ji Wen arXiv:1912.13492 Conservation/fusion-ring of symmetry charges = symmetry Conservation/fusion-ring of symmetry defects = dual-symmetry
- a gappable-boundary topological order in one higher dimension

Ji Wen arXiv:1912.13492; Kong Lan Wen Zhang Zheng arXiv:2005.14178

- a Braided fusion higher category in trivial Witt class

Thorngren Wang arXiv:1912.02817; Kong Lan Wen Zhang Zheng arXiv:2005.14178.

- \rightarrow a unified frame work to classify SSB, TO, SPT, SET phases.
- a topological skeleton in QFT
- an algebra of patch commutant operators.

Kong Zheng arXiv:2201.05726; Chatterjee Wen arXiv:2205.06244

Kong Zheng arXiv:2011.02859

Symmetry/Topological-Order (Symm/TO) correspondence

15/28

Symmetry \sim non-invertible gravitational anomaly

- A symmetry is generated by an unitary operators U that commute with the Hamiltonian: UH = HU.
- We describe a symmetric system (with lattice UV completion) restricted in the symmetric sub-Hilbert space

 $U\mathcal{V}_{symmetric} = \mathcal{V}_{symmetric}$. Both system and the probing instruments respect the symmetry

- The symmetry transformation U acts trivially within $\mathcal{V}_{symmetric}$. How to know there is a symmetry? How to identify the symmetry?
- The total Hilbert space \mathcal{V}_{tot} has a tensor product decomposition $\mathcal{V}_{tot} = \bigotimes_i \mathcal{V}_i$, where *i* labels sites, due to the lattice UV completion.
- The symmetric sub-Hilbert space $\mathcal{V}_{symmetric}$ does not have a tensor product decomposition $\mathcal{V}_{symmetric} \neq \bigotimes_i \mathcal{V}_i$, indicating the presence of a symmetry.
- Lack of tensor product decomposition \rightarrow gravitational anomaly.

\rightarrow symmetry \cong non-invertible gravitational anomaly

Symmetry \cong topological order in one higher dim

- Gravitational anomaly = topo. order in one higher dim
- The total boundary Hilbert space of a topologically ordered state has no tensor product decomposition. Yang etal arXiv:1309.4596 Lack of tensor product decomposition is described by boundary of topological order Systems with a (generalized) symmetry (restricted within $\mathcal{V}_{symmetric}$) can be fully and exactly simulated by boundaries of a topological order, called symmetry-TO (with lattice UV completion) or symmetry TFT.

Ji Wen arXiv:1912.13492; Kong Lan Wen Zhang Zheng arXiv:2005.14178 Apruzzi Bonetti Etxebarria Hosseini Schafer-Nameki arXiv:2112.02092

- Symmetry-TO or symmetry TFT was originally called **categorical symmetry** in Ji Wen arXiv:1912.13492; Kong etal arXiv:2005.14178

\rightarrow Symm/TO correspondence

Classify 1+1D symmetries (up to holo-equivalence)

Not every topological order describes a generalized symmetry.

- Only topological orders with gappable boundary (*ie* in trivial Witt class) correspond to (generalized) symmetries.
 - Kong Lan Wen Zhang Zheng arXiv:2005.14178; Freed Moore Teleman arXiv:2209.07471 We refer to gappable-boundary topological order (TO) in one higher dimension as **symmetry-TO** (with lattice UV completion).
 - Finite symmetries (up to holo-equivalence) are one-to-one classified by symmetry-TOs in one higher dimension
- We can use 2+1D symmetry-TOs (instead of groups) to classify 1+1D finite (generalized) symmetries (up to holo-equivalence):

# of symm charges/defects (rank)	1	2	3	4	5	6	7	8	9	10	11
# of 2+1D TOs	1	4	12	18	10	50	28	64	81	76	44
# of symm classes (symm-TOs)	1	0	0	3	0	0	0	6	6	≤ 3	0
# of (anomalous) group-symmetries	$1_{\mathbb{Z}_1}$	0	0	$2_{\mathbb{Z}_2^\omega}$	0	0	0	$6_{S_{3}^{\omega}}$	$3_{\mathbb{Z}_3^\omega}$	0	0

- At rank-4: Z₂ symm, anomalous Z₂ symm, double-Fibonacci symm Xiao-Gang Wen (MIT) Symmetry/Topological-Order (Symm/TO) correspondence 18/28

Local fusion category & isomorphic decomposition

An anomaly-free ordineray symmetry is decribed by a group

- An anomaly-free generalized (*ie* non-invertible higher) symmetry (*ie* algebraic higher symmetry) in n + 1D is decribed by
- a **local fusion** *n*-category \mathcal{R}_{charge} that describes symmetry charges (excitations over trivial symmetric ground state), or by
- a local fusion *n*-category R_{defect} that describes symmetry defects.
 Thorngren Wang arXiv:1912.02817 (1+1D); Kong Lan Wen Zhang Zheng arXiv:2005.14178
- generalized symmetry = isomorphic decomposition: $\widehat{\mathcal{R}}_{def}$ $\delta_{iso} : QFT_{symm} \cong QFT_{ano} \boxtimes_{\mathcal{Z}(\widetilde{\mathcal{R}}_{def})} \widetilde{\mathcal{R}}_{def}$ Kong Wen Zheng arXiv:1502.01690 Kong Lan Wen Zhang Zheng arXiv:2005.14178 $\delta_{iso} : Z(QFT_{symm}) = Z(QFT_{ano} \boxtimes_{\mathcal{Z}(\widetilde{\mathcal{R}}_{def})} \widetilde{\mathcal{R}}_{def}) \qquad \overline{\mathcal{Q}FT}_{symm} \quad \delta_{iso} \quad QFT_{ano}$
- A similar but different theory: A generalized (potentially anomalous) symmetry = $(\rho, \sigma = \mathcal{Z}(\rho))$ = fusion *n*-categroy ρ (no local condition). Freed Moore Teleman arXiv: 2209.07471

Xiao-Gang Wen (MIT)

Classify gapped/gapless phases of symm systems

via Symm/TO correspondence:

 $\begin{array}{ll} \delta_{\mathrm{iso}}: & QFT_{\mathrm{symm}} \cong QFT_{\mathrm{ano}} \boxtimes_{\mathcal{Z}(\widetilde{\mathcal{R}}_{\mathrm{def}})} \widetilde{\mathcal{R}}_{\mathrm{def}} \\ \mathrm{Kong \ Wen \ Zheng \ arXiv:1502.01690} \\ \mathrm{Kong \ Lan \ Wen \ Zhang \ Zheng \ arXiv:2005.14178} \\ \delta_{\mathrm{iso}}: & Z(QFT_{\mathrm{symm}}) = Z(QFT_{\mathrm{ano}} \boxtimes_{\mathcal{Z}(\widetilde{\mathcal{R}}_{\mathrm{rlef}})} \widetilde{\mathcal{R}}_{\mathrm{def}}) \end{array}$

- Gapped liquid phases are gapped boundaries of $\mathcal{Z}(\widetilde{\mathcal{R}}_{def})$ (symm-TO)
- Includes spontaneous symmetry breaking orders, symmetry protected topological (SPT) orders, symmetry enriched topological (SET) orders for systems with algebraic higher symmetry $\widetilde{\mathcal{R}}_{def}$
- Gapless liquid phases are gapless boundaries of $\mathcal{Z}(\widetilde{\mathcal{R}}_{def})$ (symm-TO)
- SPT phases protected by algebraic higher symmetry \mathcal{R}_{def} are classified by the automorphisms α of the corresponding symmetry-TO $\mathcal{Z}(\mathcal{R}_{def})$, that leave \mathcal{R}_{def} invariant.
- Anomalous algebraic higher symmetries are classified by $(\widetilde{\mathcal{R}}_{def}, \widetilde{\alpha})$, where $\widetilde{\alpha} \in Auto(\mathbb{Z}(\Sigma\widetilde{\mathcal{R}}_{def}))$ that leave $\Sigma\widetilde{\mathcal{R}}_{def}$ invariant.

Xiao-Gang Wen (MIT)

gap = C

 $QFT_{symm}^{-}\delta_{iso}$

A general theory of duality (holo-equivalence)

via Symm/TO correspondence and isomorphic decomposition:

- gap = $\delta_{\mathsf{iso}}: \ QFT_{\mathsf{symm}} \cong QFT_{\mathsf{ano}} \boxtimes_{\mathcal{Z}(\widetilde{\mathcal{R}}_{\mathsf{def}})} \mathcal{R}_{\mathsf{def}}$ Kong Wen Zheng arXiv:1502.01690 **O**FT_{symm} Kong Lan Wen Zhang Zheng arXiv:2005.14178 $\delta_{\mathsf{iso}}: \ \mathsf{Z}(\mathsf{QFT}_{\mathsf{symm}}) = \mathsf{Z}(\mathsf{QFT}_{\mathsf{ano}} \boxtimes_{\mathcal{Z}(\widetilde{\mathcal{R}}_{\mathsf{def}})} \mathcal{R}_{\mathsf{def}})$ • Choose a different gapped boundary \mathcal{R}'_{def} , gap = 0without changing the bulk topological order $\mathcal{Z}(\mathcal{R}_{def}) = \mathcal{Z}(\mathcal{R}'_{def})$ and without changing the QFT'_{symm}, $\overline{\delta}_{-}$ boundary $QFT_{anom} \rightarrow$ the two quantum field theories, QFT_{symm} and QFT'_{symm}, are holo-equivalent, or are related by duality or gauging transformation. Bhardwaj Tachikawa arXiv:1704.02330 - QFT_{symm} and QFT'_{symm} may have different generalized symmetries.
- Two generalized symmetries \mathcal{R} and \mathcal{R}' are holo-equivalent, if they have the same bulk (*ie* the same symmetry-TO) $\mathfrak{Z}(\mathcal{R}) = \mathfrak{Z}(\mathcal{R}')$.
- 1+1D $\mathbb{Z}_2 \times \mathbb{Z}_2$ symmetry with mixed anomaly $\cong \mathbb{Z}_4$ symmetry Xiao-Gang Wen (MIT) Symmetry/Topological-Order (Symm/TO) correspondence

Gapped/gapless phases of symmetric systems are 'classified' by condensible algebras of symmetry-TO

- For 1+1D systems with (generalized) symmetry, their gapped states and gapless states can be "classfied" by condensible algebras A = 1 ⊕ a ⊕ b... (*ie* the sets of anyons that can condense together) in the corresponding symmetry-TO (in one higher dimension):
- The maximal (Langrangian) condensible algebras of the 2+1D symmetry-TO classify (1-to-1) gapped phases.
- The non-maximal (non-Langrangian) condensible algebras of the 2+1D symmetry-TO label (1-to-many) gapless phases (1+1D CFTs).

This is because the gappled/gapless boundaries of 2+1D topological orders \mathcal{M} are "classified" by the condensible algebras \mathcal{A} of \mathcal{M} .

Classify 1+1D gapped phases for systems w/ $\mathbb{Z}_2^a \times \mathbb{Z}_2^b$ symm via Lagrangian condensable algebra

- The symmetry-TO for 1+1D $\mathbb{Z}_2^a \times \mathbb{Z}_2^b$ symmetry is 2+1D $\mathbb{Z}_2^a \times \mathbb{Z}_2^b$ gauge theory $\operatorname{Gau}_{\mathbb{Z}_2^a \times \mathbb{Z}_2^b}$, with excitations generated by e_a, e_b, m_a, m_b .
- Six Lagrangian condensible algebras:

Chatterjee Wen arXiv:2205.06244

$$\begin{split} \mathbf{1} \oplus m_a \oplus m_b \oplus m_a m_b &\to \mathbb{Z}_2^a\text{-symmetric-}\mathbb{Z}_2^b\text{-symmetric}\\ \mathbf{1} \oplus m_a \oplus e_b \oplus m_a e_b &\to \mathbb{Z}_2^a\text{-symmetric-}\mathbb{Z}_2^b\text{-broken}\\ \mathbf{1} \oplus e_a \oplus m_b \oplus e_a m_b &\to \mathbb{Z}_2^a\text{-broken-}\mathbb{Z}_2^b\text{-symmetric}\\ \mathbf{1} \oplus e_a \oplus e_b \oplus e_a e_b &\to \mathbb{Z}_2^a\text{-broken-}\mathbb{Z}_2^b\text{-broken}\\ \mathbf{1} \oplus e_a e_b \oplus m_a m_b \oplus e_a m_a e_b m_b &\to \text{diagonal-}\mathbb{Z}_2\text{-symmetric}\\ \mathbf{1} \oplus e_a m_b \oplus m_a e_b \oplus e_a m_a e_b m_b &\to \mathbb{Z}_2^a \times \mathbb{Z}_2^b\text{-symmetric}\\ \end{split}$$

Q: How symmetry-TO determines gapless states?A: Via modular covariant partition function

A symmetry is described by its symmetry-TO. Its gapless states are simulated by the boundaries of the symmetry-TO.

• Boundary of 2+1D symmetry-TO has a vector-valued partition function, whose component $Z_i(\tau, \bar{\tau})$ is labeled by the anyon types *i* of the 2+1D bulk topological order. Chen *etal* arXiv:1903.12334; Ji Wen arXiv:1905.13279, 1912.13492 Kong Zheng arXiv:1905.04924, arXiv:1912.01760

• $Z_i(\tau, \bar{\tau})$ is not modular invariant but **modular covariant**:

 $\overline{T^{\mathfrak{M}}:\ Z_i(au+1)=T^{\mathfrak{M}}_{ij}Z_j(au)}, \quad S^{\mathfrak{M}}:\ Z_i(-1/ au)=S^{\mathfrak{M}}_{ij}Z_j(au).$

where $S^{\mathcal{M}}$, $T^{\mathcal{M}}$ -matrix characterize the 2+1D bulk topological order \mathcal{M} (*ie* the symmetry-TO).

Ji Wen arXiv:1905.13279, 1912.13492; Lin Shao arXiv:2101.08343 • CFT (gapless liquid phase) is a number theoretical problem.

Xiao-Gang Wen (MIT)

Symmetry/Topological-Order (Symm/TO) correspondence

The symmetry-TO for 1+1D S_3 symmetry is 2+1D S_3 -gauge theory $\text{Gau}_{S_3} \rightarrow \text{gapped/gapless states}$

d, s	1, 0	1,0	2,0	2,0	2, $\frac{1}{3}$	$2, -\frac{1}{3}$	3, 0	$3, \frac{1}{2}$
\otimes	1	a ₁	a2	b	<i>b</i> ₁	<i>b</i> ₂	с	<i>c</i> ₁
1	1	a ₁	a2	Ь	<i>b</i> ₁	<i>b</i> ₂	с	<i>c</i> ₁
a ₁	a ₁	1	a ₂	Ь	<i>b</i> 1	<i>b</i> ₂	c1	с
a ₂	a ₂	a ₂	$1 \oplus \mathbf{a}_1 \oplus \mathbf{a}_2$	$b_1 \oplus b_2$	$b \oplus b_2$	$b \oplus b_1$	$c \oplus c_1$	$c \oplus c_1$
Ь	Ь	Ь	$b_1 \oplus b_2$	$1 \oplus \mathbf{a}_1 \oplus \mathbf{b}$	$b_2 \oplus a_2$	$b_1 \oplus a_2$	$c\oplus c_1$	$c\oplus c_1$
b_1	b_1	b_1	$b \oplus b_2$	$b_2 \oplus a_2$	$1 \oplus a_1 \oplus b_1$	$b \oplus a_2$	$c \oplus c_1$	$c \oplus c_1$
b ₂	<i>b</i> ₂	<i>b</i> ₂	$b\oplus b_1$	$b_1 \oplus a_2$	$b \oplus a_2$	$1 \oplus a_1 \oplus b_2$	$c \oplus c_1$	$c \oplus c_1$
с	с	c_1	$c\oplus c_1$	$c\oplus c_1$	$c\oplus c_1$	$c\oplus c_1$	$1 \oplus a_2 \oplus b \oplus b_1 \oplus b_2$	$a_1 \oplus a_2 \oplus b \oplus b_1 \oplus b_2$
c_1	c_1	с	$c\oplus c_1$	$c\oplus c_1$	$c\oplus c_1$	$c\oplus c_1$	${\sf a}_1\oplus{\sf a}_2\oplus{\sf b}\oplus{\sf b}_1\oplus{\sf b}_2$	$1 \oplus \mathbf{a}_2 \oplus \mathbf{b} \oplus \mathbf{b}_1 \oplus \mathbf{b}_2$

The S_3 Symmetry-TO Gau_{S_3} has an automorphism

d, s	1, 0	1,0	2,0	2,0	$2, \frac{1}{3}$	$2, -\frac{1}{3}$	3, 0	$3, \frac{1}{2}$
\otimes	1	a ₁	a2	Ь	<i>b</i> ₁	<i>b</i> ₂	с	<i>c</i> 1
1	1	a_1	a2	Ь	b_1	<i>b</i> ₂	с	<i>c</i> ₁
a ₁	a1	1	a2	Ь	b_1	<i>b</i> ₂	c1	с
a ₂	a ₂	a ₂	$1 \oplus \textit{a}_1 \oplus \textit{a}_2$	$b_1 \oplus b_2$	$b \oplus b_2$	$b\oplus b_1$	$c \oplus c_1$	$c\oplus c_1$
Ь	Ь	Ь	$b_1 \oplus b_2$	$1 \oplus a_1 \oplus b$	$b_2 \oplus a_2$	$b_1\oplus a_2$	$c \oplus c_1$	$c\oplus c_1$
b_1	b_1	b_1	$b \oplus b_2$	$b_2 \oplus a_2$	$1 \oplus a_1 \oplus b_1$	$b\oplus a_2$	$c \oplus c_1$	$c\oplus c_1$
<i>b</i> ₂	<i>b</i> ₂	b_2	$b\oplus b_1$	$b_1\oplus a_2$	$b\oplus a_2$	$1 \oplus a_1 \oplus b_2$	$c \oplus c_1$	$c \oplus c_1$
с	с	c_1	$c\oplus c_1$	$c \oplus c_1$	$c \oplus c_1$	$c\oplus c_1$	$1 \oplus a_2 \oplus b \oplus b_1 \oplus b_2$	$a_1 \oplus a_2 \oplus b \oplus b_1 \oplus b_2$
c_1	c_1	с	$c \oplus c_1$	$c\oplus c_1$	$c\oplus c_1$	$c\oplus c_1$	${\sf a}_1\oplus{\sf a}_2\oplus{\sf b}\oplus{\sf b}_1\oplus{\sf b}_2$	$1 \oplus a_2 \oplus b \oplus b_1 \oplus b_2$

(S_3 -phase, \mathbb{Z}_3 -phase) \leftrightarrow (\mathbb{Z}_2 -phase, \mathbb{Z}_1 -phase)

Xiao-Gang Wen (MIT)

Symmetry/Topological-Order (Symm/TO) correspondence

Automorphism in Symm-TO \rightarrow equivalent transition

- Chatterjee Wen arXiv:2205.06244 • The phase transitions $S_3 \leftrightarrow \mathbb{Z}_1$ and $\mathbb{Z}_3 \leftrightarrow \mathbb{Z}_2$ are equivalent.
- The phase transitions $S_3 \leftrightarrow \mathbb{Z}_3$ and $\mathbb{Z}_2 \leftrightarrow \mathbb{Z}_1$ are equivalent.
- The following two paires of multi-critical points are equivalent

Xiao-Gang Wen (MIT)

They are

CFT with 2 relavent

operators

and has

The essence of a symmetry

Emergent symmetries can go beyond groups, higher groups, and/or anomalies. But their can always be described by
 a gappable-boundary topological order in one higher
 dimension (with lattice UV completion) = symmetry-TO

 The same topological order (in one higher dimensions) can have different shadows → holo-equivalent symmetries.

 $\textbf{Category} \leftrightarrow \textbf{Generalized symmetry} \leftrightarrow \textbf{Geometry/CFT}$

Xiao-Gang Wen (MIT)

Symmetry/Topological-Order (Symm/TO) correspondence