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Three kinds of quantum phases

All quantum systems discussed here have lattice UV completion
which defines condensed matter systems

ε −> 0

∆

subspace
ground−state −>finite gap  

.

• Gapped → no low energy excitations
All excitations has energy gap.
Band insulators, FQH states
General theory: topological order, moduli bundle theory, braided
fusion higher category

• Gapless (finite) → finite low energy modes
Finite low energy modes: Dirac/Weyl semimetal, superfluid, critical
point at continuous phase transition
General theory: quantum field theory, conformal field theory, ???

• Gapless (infinite) → infinite low energy modes
Infinite low energy modes: Fermi metal, Bose metal, etc
(Low energy effective theory is beyond quantum field theory)
General theory: Landau Fermi liquid, ???

Xiao-Gang Wen (MIT) Symmetry/Topological-Order (Symm/TO) correspondence 2 / 28



Topological orders in quantum Hall effect

For a long time, we thought that Landau symmetry breaking
classify all phases of matter

• Quantum Hall states Rxy = Vy/Ix =
m
n

2πℏ
e2

von Klitzing Dorda Pepper, PRL 45 494 (1980)

Tsui Stormer Gossard, PRL 48 1559 (1982)

.

• FQH states have different
phases even when there is no
symm. and no symm. breaking.

• FQH liquids must
contain a new kind of order,
named as topological order
Wen, PRB 40 7387 (89); IJMP 4 239 (90)Xiao-Gang Wen (MIT) Symmetry/Topological-Order (Symm/TO) correspondence 3 / 28



Characterize topological order quantitatively

1 2

g=0

g=1

g=2

GSD=D GSD=DGSD=1
ε −> 0

∆

subspace
ground−state −>finite gap  

.

• How to extract universal numbers
(topological invariants) from
complicated many-body wavefunction
Ψ(x1, · · · , x1020)

Put the gapped system on space with various topologies,
and measure the ground state degeneracy → topological
order
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Ground state degen. characterizes phase of matter

Objection: GSD on S2 ̸= GSD on T 2 (coming from the motion of
center mass). Ground state degeneracy is just a finite size effect.
Ground state degeneracy does not reflect the thermodynamic phase
of matter.

φ

.

• Robust topological ground state degeneracy

- Inserting 2π flux pumps one quantum Hall ground state in
magnetic field B to another ground state.

- kx of the two ground states differ by
∆kx ∼ BLy → ∞|Ly→∞

- Impurities can only cause momentum
transfer δkx ∼

√
B , and split ground state degeneracy by

∆E ∼ e−#Ly
√
B

Wen Niu PRB 41, 9377 (90)

• Magnetic field B → UV-IR mixing and non-commutative geometry
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Even non-Abelian statistics can be realized

0 2 31 ... ...

bulk excitation edge excitation

E

µ

l = kR

ωc

.

Let χn(zi) be the many-body wave function of n
filled Landau level, which describes a gapped state.

• Products of gapped IQH wave functions χn are
also gapped → new FQH states Jain PRB 11 7635 (90)

• SU(m)n state χk
1χ

m
n via slave-particle Wen PRL 66 802 (1991)

ΨSU(3)2 = (χ2)
3, ν = 2/3; ΨSU(2)2 = χ1(χ2)

2, ν = 1/2;

→ Effective SU(3)2, SU(2)2 Chern-Simons theory
→ non-Abelian statistics (assume χk

1χ
m
n is gapped, conjecture)

• Pfaffien state via CFT correlation Moore-Read NPB 360 362 (1991)

ΨPfa = A[
1

z1 − z2

1

z3 − z4
· · · ]

∏
(zi − zj)

2e−
1
4

∑
|zi |2 , ν = 1/2

Conformal block = multi-valueness of many-body wave function
conjecture→ non-Abelian Berry phase → non-Abelian statistics
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Numerical confirmation of non-Abelian statistics
Application of TQFT/CFT correspondence. Witten, CMP 121 352 (89)

• Edge state of Abelian FQH state (classified by K -matrices) always
has an integral central charge c ∈ N, Wen Zee PRB 46 2290 (92)

• If edge states are described by a fractional central charge → The
bulk must be a non-Abelian state. Wen PRL 70 355 (93)

• For ν = 1/2 state with a three-body interaction, the edge
spectrum is given by

.

(for 8 electrons on 20 orbits):

Ltot : 52 53 54 55 56 57

NOS : 1 1 3 5 10 15
Edge states are described by:
11
2
chiral phonon modes c = 11

2

=1 chiral phonon mode
+ 1 chiral Majorana fermion

=3 chiral Majorana fermions The Pfaffien state is non-Abelian
Xiao-Gang Wen (MIT) Symmetry/Topological-Order (Symm/TO) correspondence 7 / 28



Topo. order & theory of long range entanglement

The microscopic mechanism of superconductivity: electron pairing
• The microscopic mechanism of topological order:
Topological order = pattern of long range entanglement

Wen, PRB 40 7387 (89); IJMPB 4, 239 (90). Chen Gu Wen arXiv:1004.3835

Symmetry breaking orders are described by group theory. What
theory describes topological orders (long range entanglement)?

• Ground states: Robust degenerate ground states form vector
bundles on moduli spaces of gapped Hamiltonians → moduli
bundle theory for topological orders.

Wen, IJMPB 4, 239 (90); Wen Niu PRB 41, 9377 (90)

1 2

g=0

g=1

g=2

GSD=D GSD=DGSD=1 j i

αi j

k

• Excitations: The anyons are described by their fusion and
braiding → modular tensor category theory for topological
orders Moore Seiberg CMP 123 177 (89). Witten, CMP 121 352 (89)

Xiao-Gang Wen (MIT) Symmetry/Topological-Order (Symm/TO) correspondence 8 / 28



Moduli bundle theory of topological order

The important data is the connections of ground-state vector
bundle on moduli space.

ε −> 0

∆

subspace
ground−state −>finite gap  

.

MCG

.

• Non-Abelian Berry’s phase along
contractable loops in moduli space
→ a diagonal U(1) factor acting on
the degenerate ground states
→ gravitational Chern-Simons term
→ chiral central charge c of edge state

• Non-Abelian Berry’s phase along non-contractable
loops in moduli space → S ,T unitary matrices acting
on the degenerate ground states → projective
representation of mapping-class-group (which is
SL(2,Z) for torus, generated by
s : (x , y) → (−y , x), t : (x , y) → (x + y , y) )

Wen, PRB 40 7387 (89); IJMPB 4, 239 (90).
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Modular tensor category theory for anyons

and 2+1D topological orders

.

.

• Excitation in 2+1D topological order → Braided
fusion category (modular tensor category) →
A theory for 2+1D topological orders for bosons.
rational CFT → TQFT → MTC

Moore-Seiberg CMP 123 177 (89); Witten, CMP 121 352 (89)

- In higher dimensions, topological excitations can be
point-like, string-like, etc , which can fuse and braid →

- Topological excitations are described by

x

y

x

y

t

i

j

j

i j

i

.

non-degenerate braided fusion higher
categories → theory of topological order

• The ground state degeneracy GSD
on torus and fractional statistics θ = π p

q

of topological excitations are closely related
UxUyU

†
xU

†
y = e2π

p
q : GSD is a multiple of q. Wen Niu PRB 41 9377 (90).
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Classify 2+1D bosonic topological orders (TOs)
Using moduli bundle theory (ie SL(2,Z) representations), plus
input from modular tensor category, we can classify 2+1D bosonic
topological orders (up to invertible E (8) states):

# of anyon types (rank) 1 2 3 4 5 6 7 8 9 10 11

# of 2+1D TOs 1 4 12 18 10 50 28 64 81 76 44

# of Abelian TOs 1 2 2 9 2 4 2 20 4 4 2

# of non-Abelian TOs 0 2 10 9 8 46 26 44 77 72 42

# of prime TOs 1 4 12 8 10 10 28 20 20 40 44

Rowell Stong Wang, arXiv:0712.1377: up to rank 4
Bruillard Ng Rowell Wang, arXiv:1507.05139: up to rank 5

Ng Rowell Wang Wen, arXiv:2203.14829: up to rank 6
Ng Rowell Wen, to appear: up to rank 11

• This classifies all 2+1D gapped phases for bosonic systems
without symmetry, with 11 topological excitations or less.
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Topological holographic principle

.

.

String holographic principle: Susskind hep-th/9409089

boundary CFT = bulk AdS gravity Maldacena hep-th/9711200

• Holographic principle of topological order:
Boundary determines bulk, but bulk does not determine
boundary Kong Wen arXiv:1405.5858; Kong Wen Zheng arXiv:1502.01690

The excitations in a topological order are described by a
braided fusion category M. The excitations on a gapped boundary
of a topological order are described by a fusion category F
F determines M: Z(F) = M (Z is generalized Drinfeld-center)

- String-operators that create pairs of boundary excitations form an
algebra which is characterized by a braided fusion category M.

Chatterjee Wen arXiv:2205.06244

• A generalization of anomaly in-flow: Callan Harvey, NPB 250 427 (1985)

The theory described by fusion category F has a (non-invertible)
gravitational anomaly (ie no UV completion) Kong Wen arXiv:1405.5858

(non-invertible) grav anomaly = bulk topological order M
Xiao-Gang Wen (MIT) Symmetry/Topological-Order (Symm/TO) correspondence 12 / 28



Classification of 3+1D bosonic topological orders

(ie classification of 4D fully extended TQFTs)

An application of topological holographic principle

• 3+1D bosonic topological orders with only bosonic point-like
excitations are classified by 3+1D Dijkgraaf-Witten theory of finite
groups. Lan Kong Wen arXiv:1704.04221; Johnson-Freyd arXiv:2003.06663

- 3+1D fully extended TQFT’s with only bosonic point-like
excitations are classified by Dijkgraaf-Witten theories of finite
groups.

- A duality relation: 3+1D twisted higher gauge theories of finite
higher group with only bosonic point-like excitations are equivalent
to twisted 1-gauge theories of finite group.

• 3+1D bosonic topological orders with both bosonic and fermionic
point-like excitations are also classified.

Lan Wen arXiv:1801.08530; Johnson-Freyd arXiv:2003.06663
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Next step: a general theory for ‘finite’ gapless state

k

ψ ψL R

A gapless state has emergent (and exact) symmetry:

- Group-like symmetries Heisenberg, Wigner, 1926 U(2) →
- Anomalous symmetries ’t Hooft, 1980 UR(2)× UL(2)
- Higher-form symmetries Nussinov Ortiz 09; Gaiotto Kapustin Seiberg Willett 14

- Higher-group symmetries Kapustin Thorngren 2013

- Algebraic higher symmetry Thorngren Wang 19; Kong Lan Wen Zhang Zheng 20

algebraic (higher) symmetry = non-invertible (higher) symmetry
= fusion (higher) category symmetry = ... ...

Petkova Zuber 2000; Coquereaux Schieber 2001; ... for 1+1D CFT

- (Non-invertible) gravitational anomalies Kong Wen 2014; Ji Wen 2019

• Conjecture: The maximal emergent (generalized) symmetry
largely determine the gapless states.
A classification of maximal emergent (generalized) symmetries → A
classification of “finite” gapless states. Chatterjee Ji Wen arXiv:2212.14432

What is the general theory for all those generalized symmetries,
which are beyond group and higher group?
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Symmetry/Topological-Order correspondence
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A symmetry corresponds to:
- an isomorphic decomposition Dn

∼= Cn ⊠Zn(Cn) f
(0)
n

Kong Wen Zheng arXiv:1502.01690; Freed Moore Teleman arXiv: 2209.07471

- a non-invertible gravitational anomaly Ji Wen arXiv:1905.13279

- a symmetry + dual symmetry + braiding Ji Wen arXiv:1912.13492

Conservation/fusion-ring of symmetry charges = symmetry
Conservation/fusion-ring of symmetry defects = dual-symmetry

- a gappable-boundary topological order in one higher dimension
Ji Wen arXiv:1912.13492; Kong Lan Wen Zhang Zheng arXiv:2005.14178

- a Braided fusion higher category in trivial Witt class
Thorngren Wang arXiv:1912.02817; Kong Lan Wen Zhang Zheng arXiv:2005.14178.

→ a unified frame work to classify SSB, TO, SPT, SET phases.
- a topological skeleton in QFT Kong Zheng arXiv:2011.02859

- an algebra of patch commutant operators.
Kong Zheng arXiv:2201.05726; Chatterjee Wen arXiv:2205.06244
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Symmetry ∼ non-invertible gravitational anomaly

• A symmetry is generated by an unitary operators U that commute
with the Hamiltonian: UH = HU .

• We describe a symmetric system (with lattice UV completion)
restricted in the symmetric sub-Hilbert space

UVsymmetric = Vsymmetric.
Both system and the probing instruments respect the symmetry

• The symmetry transformation U acts trivially within Vsymmetric.
How to know there is a symmetry? How to identify the symmetry?

- The total Hilbert space Vtot has a tensor product decomposition
Vtot = ⊗iVi , where i labels sites, due to the lattice UV completion.

- The symmetric sub-Hilbert space Vsymmetric does not have a tensor
product decomposition Vsymmetric ̸= ⊗iVi , indicating the presence of
a symmetry.

- Lack of tensor product decomposition → gravitational anomaly.
→ symmetry ∼= non-invertible gravitational anomaly
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Symmetry ∼= topological order in one higher dim

• Gravitational anomaly = topo. order in one higher dim
Kong Wen arXiv:1405.5858

bulk gap −>   

all boundary exc   .

with
boundary

grav anomaly
generalized

topological
order

bulk

.

- The total boundary Hilbert space of a
topologically ordered state has no tensor
product decomposition. Yang etal arXiv:1309.4596

Lack of tensor product decomposition is
described by boundary of topological order
Systems with a (generalized) symmetry
(restricted within Vsymmetric) can be fully
and exactly simulated by boundaries of a
topological order, called symmetry-TO (with
lattice UV completion) or symmetry TFT.

Ji Wen arXiv:1912.13492; Kong Lan Wen Zhang Zheng arXiv:2005.14178

Apruzzi Bonetti Etxebarria Hosseini Schafer-Nameki arXiv:2112.02092

- Symmetry-TO or symmetry TFT was originally called categorical
symmetry in Ji Wen arXiv:1912.13492; Kong etal arXiv:2005.14178

→ Symm/TO correspondence
Xiao-Gang Wen (MIT) Symmetry/Topological-Order (Symm/TO) correspondence 17 / 28



Classify 1+1D symmetries (up to holo-equivalence)
Not every topological order describes a generalized symmetry.

• Only topological orders with gappable boundary (ie in trivial Witt
class) correspond to (generalized) symmetries.

Kong Lan Wen Zhang Zheng arXiv:2005.14178; Freed Moore Teleman arXiv:2209.07471

We refer to gappable-boundary topological order (TO) in one
higher dimension as symmetry-TO (with lattice UV completion).

Finite symmetries (up to holo-equivalence) are one-to-one
classified by symmetry-TOs in one higher dimension

• We can use 2+1D symmetry-TOs (instead of groups) to classify
1+1D finite (generalized) symmetries (up to holo-equivalence):

# of symm charges/defects (rank) 1 2 3 4 5 6 7 8 9 10 11

# of 2+1D TOs 1 4 12 18 10 50 28 64 81 76 44

# of symm classes (symm-TOs) 1 0 0 3 0 0 0 6 6 ≤3 0

# of (anomalous) group-symmetries 1Z1 0 0 2Zω
2

0 0 0 6Sω
3
3Zω

3
0 0

- At rank-4: Z2 symm, anomalous Z2 symm, double-Fibonacci symm
Xiao-Gang Wen (MIT) Symmetry/Topological-Order (Symm/TO) correspondence 18 / 28



Local fusion category & isomorphic decomposition

An anomaly-free ordineray symmetry is decribed by a group

• An anomaly-free generalized (ie non-invertible higher) symmetry
(ie algebraic higher symmetry) in n + 1D is decribed by

- a local fusion n-category Rcharge that describes symmetry charges
(excitations over trivial symmetric ground state), or by

- a local fusion n-category R̃defect that describes symmetry defects.
Thorngren Wang arXiv:1912.02817 (1+1D); Kong Lan Wen Zhang Zheng arXiv:2005.14178

QFTQFT

R

Z(        )R

δisosymm ano

def

def

gap =

.

• generalized symmetry = isomorphic decomposition:
δiso : QFTsymm

∼= QFTano ⊠Z(R̃def)
R̃def

Kong Wen Zheng arXiv:1502.01690

Kong Lan Wen Zhang Zheng arXiv:2005.14178

δiso : Z (QFTsymm) = Z (QFTano ⊠Z(R̃def)
R̃def)

• A similar but different theory: A generalized (potentially
anomalous) symmetry =

(
ρ, σ = Z(ρ)

)
= fusion n-categroy ρ (no

local condition). Freed Moore Teleman arXiv: 2209.07471
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Classify gapped/gapless phases of symm systems

QFTQFT

R

Z(        )R

δisosymm ano

def

def

gap =

.

via Symm/TO correspondence:

δiso : QFTsymm
∼= QFTano ⊠Z(R̃def)

R̃def
Kong Wen Zheng arXiv:1502.01690

Kong Lan Wen Zhang Zheng arXiv:2005.14178

δiso : Z (QFTsymm) = Z (QFTano ⊠Z(R̃def)
R̃def)

• Gapped liquid phases are gapped boundaries of Z(R̃def)(symm-TO)
- Includes spontaneous symmetry breaking orders, symmetry
protected topological (SPT) orders, symmetry enriched topological

(SET) orders for systems with algebraic higher symmetry R̃def

• Gapless liquid phases are gapless boundaries of Z(R̃def) (symm-TO)

• SPT phases protected by algebraic higher symmetry R̃def are
classified by the automorphisms α of the corresponding
symmetry-TO Z(R̃def), that leave R̃def invariant.

• Anomalous algebraic higher symmetries are classified by (R̃def, α̃),

where α̃ ∈ Auto(Z(ΣR̃def)) that leave ΣR̃def invariant.
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A general theory of duality (holo-equivalence)

QFTQFT

R

Z(        )R

δisosymm ano

def

def

gap =

.

δ

R’

QFT’ QFT

Z(        )R

iso ano

def

def

gap =

symm’
.

via Symm/TO correspondence and
isomorphic decomposition:
δiso : QFTsymm

∼= QFTano ⊠Z(R̃def)
R̃def

Kong Wen Zheng arXiv:1502.01690

Kong Lan Wen Zhang Zheng arXiv:2005.14178

δiso : Z (QFTsymm) = Z (QFTano ⊠Z(R̃def)
R̃def)

• Choose a different gapped boundary R̃′
def,

without changing the bulk topological order
Z(R̃def) = Z(R̃′

def) and without changing the
boundary QFTanom → the two quantum field theories,
QFTsymm and QFT’symm’, are holo-equivalent, or are related by
duality or gauging transformation. Bhardwaj Tachikawa arXiv:1704.02330

- QFTsymm and QFT’symm’ may have different generalized symmetries.

• Two generalized symmetries R̃ and R̃′ are holo-equivalent, if they
have the same bulk (ie the same symmetry-TO) Z(R̃) = Z(R̃′).

- 1+1D Z2 × Z2 symmetry with mixed anomaly ∼= Z4 symmetry
Xiao-Gang Wen (MIT) Symmetry/Topological-Order (Symm/TO) correspondence 21 / 28



Gapped/gapless phases of symmetric systems are

‘classified’ by condensible algebras of symmetry-TO

• For 1+1D systems with (generalized) symmetry, their gapped
states and gapless states can be “classfied” by condensible
algebras A = 1⊕ a ⊕ b... (ie the sets of anyons that can
condense together) in the corresponding symmetry-TO (in one
higher dimension):

- The maximal (Langrangian) condensible algebras of the
2+1D symmetry-TO classify (1-to-1) gapped phases.

- The non-maximal (non-Langrangian) condensible algebras
of the 2+1D symmetry-TO label (1-to-many) gapless
phases (1+1D CFTs).

This is because the gappled/gapless boundaries of 2+1D
topological orders M are “classified” by the condensible algebras A
of M.

Chen etal arXiv:1903.12334; Kong Zheng arXiv:2011.02859Xiao-Gang Wen (MIT) Symmetry/Topological-Order (Symm/TO) correspondence 22 / 28



Classify 1+1D gapped phases for systems w/

Za
2 × Zb

2 symm via Lagrangian condensable algebra

• The symmetry-TO for 1+1D Za
2 × Zb

2 symmetry is 2+1D Za
2 × Zb

2

gauge theory GauZa
2×Zb

2
, with excitations generated by

ea, eb,ma,mb.
• Six Lagrangian condensible algebras: Chatterjee Wen arXiv:2205.06244

1⊕ma ⊕mb ⊕mamb → Za
2-symmetric-Zb

2-symmetric

1⊕ma ⊕ eb ⊕maeb → Za
2-symmetric-Zb

2-broken

1⊕ ea ⊕mb ⊕ eamb → Za
2-broken-Zb

2-symmetric

1⊕ ea ⊕ eb ⊕ eaeb → Za
2-broken-Zb

2-broken

1⊕ eaeb ⊕mamb ⊕ eamaebmb → diagonal-Z2-symmetric

1⊕ eamb ⊕maeb ⊕ eamaebmb → Za
2 × Zb

2 SPT phase
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Q: How symmetry-TO determines gapless states?

A: Via modular covariant partition function

A symmetry is described by its symmetry-TO. Its gapless states are
simulated by the boundaries of the symmetry-TO.

x

t

y

boundary

S 1

type−i anyon

.

• Boundary of 2+1D symmetry-TO has a
vector-valued partition function, whose
component Zi(τ, τ̄) is labeled by the anyon
types i of the 2+1D bulk topological order.
Chen etal arXiv:1903.12334; Ji Wen arXiv:1905.13279, 1912.13492

Kong Zheng arXiv:1905.04924, arXiv:1912.01760

• Zi(τ, τ̄) is not modular invariant but modular covariant:

TM : Zi(τ + 1) = TM
ij Zj(τ), SM : Zi(−1/τ) = SM

ij Zj(τ).

where SM,TM-matrix characterize the 2+1D bulk topological
order M (ie the symmetry-TO).

Ji Wen arXiv:1905.13279, 1912.13492; Lin Shao arXiv:2101.08343

• CFT (gapless liquid phase) is a number theoretical problem.
Xiao-Gang Wen (MIT) Symmetry/Topological-Order (Symm/TO) correspondence 24 / 28



The symmetry-TO for 1+1D S3 symmetry is 2+1D

S3-gauge theory GauS3 → gapped/gapless states
d, s 1, 0 1, 0 2, 0 2, 0 2, 1

3
2,− 1

3
3, 0 3, 1

2
⊗ 1 a1 a2 b b1 b2 c c1

1 1 a1 a2 b b1 b2 c c1
a1 a1 1 a2 b b1 b2 c1 c

a2 a2 a2 1 ⊕ a1 ⊕ a2 b1 ⊕ b2 b ⊕ b2 b ⊕ b1 c ⊕ c1 c ⊕ c1
b b b b1 ⊕ b2 1 ⊕ a1 ⊕ b b2 ⊕ a2 b1 ⊕ a2 c ⊕ c1 c ⊕ c1
b1 b1 b1 b ⊕ b2 b2 ⊕ a2 1 ⊕ a1 ⊕ b1 b ⊕ a2 c ⊕ c1 c ⊕ c1
b2 b2 b2 b ⊕ b1 b1 ⊕ a2 b ⊕ a2 1 ⊕ a1 ⊕ b2 c ⊕ c1 c ⊕ c1
c c c1 c ⊕ c1 c ⊕ c1 c ⊕ c1 c ⊕ c1 1 ⊕ a2 ⊕ b ⊕ b1 ⊕ b2 a1 ⊕ a2 ⊕ b ⊕ b1 ⊕ b2
c1 c1 c c ⊕ c1 c ⊕ c1 c ⊕ c1 c ⊕ c1 a1 ⊕ a2 ⊕ b ⊕ b1 ⊕ b2 1 ⊕ a2 ⊕ b ⊕ b1 ⊕ b2

S3 (6, 5)MM Z2.

(4, 3)MM
(7, 6)MM

(4, 3)′MM

Z3 (6, 5)′MM Z1.

1   b   c

1   b

1   a    2b

1   a

1   a    c

1   a    2a1   a

Z3
Gau

S3
Gau

1

1

2

2

2

1 1

Z2
GauGau Z2

3

3

2

1

(4,3) MM

S  −phase Z  −phase

Z  −phase Z  −phase

(6,5) MM
(7,6) MM
O(2) CFT

(6,5)’ MM

(4,3)’ MM

.
Chatterjee Wen arXiv:2205.06244
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The S3 Symmetry-TO GauS3 has an automorphism
d, s 1, 0 1, 0 2, 0 2, 0 2, 1

3
2,− 1

3
3, 0 3, 1

2
⊗ 1 a1 a2 b b1 b2 c c1

1 1 a1 a2 b b1 b2 c c1
a1 a1 1 a2 b b1 b2 c1 c

a2 a2 a2 1 ⊕ a1 ⊕ a2 b1 ⊕ b2 b ⊕ b2 b ⊕ b1 c ⊕ c1 c ⊕ c1
b b b b1 ⊕ b2 1 ⊕ a1 ⊕ b b2 ⊕ a2 b1 ⊕ a2 c ⊕ c1 c ⊕ c1
b1 b1 b1 b ⊕ b2 b2 ⊕ a2 1 ⊕ a1 ⊕ b1 b ⊕ a2 c ⊕ c1 c ⊕ c1
b2 b2 b2 b ⊕ b1 b1 ⊕ a2 b ⊕ a2 1 ⊕ a1 ⊕ b2 c ⊕ c1 c ⊕ c1
c c c1 c ⊕ c1 c ⊕ c1 c ⊕ c1 c ⊕ c1 1 ⊕ a2 ⊕ b ⊕ b1 ⊕ b2 a1 ⊕ a2 ⊕ b ⊕ b1 ⊕ b2
c1 c1 c c ⊕ c1 c ⊕ c1 c ⊕ c1 c ⊕ c1 a1 ⊕ a2 ⊕ b ⊕ b1 ⊕ b2 1 ⊕ a2 ⊕ b ⊕ b1 ⊕ b2

Chatterjee Wen arXiv:2205.06244
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(4,3)’ MM

.

The GauS3 symmetry-TO is
invariant under the exchange
a2 ↔ b, which corresponds to
a horizontal reflections of the
S3 phase diagram:

(S3-phase, Z3-phase ) ↔ (Z2-phase, Z1-phase)
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Automorphism in Symm-TO→equivalent transition
Chatterjee Wen arXiv:2205.06244

• The phase transitions S3 ↔ Z1 and Z3 ↔ Z2 are equivalent.
• The phase transitions S3 ↔ Z3 and Z2 ↔ Z1 are equivalent.
• The following two paires of multi-critical points are equivalent
(S3,Z3,Z2) =
(S3,Z2,Z1)

(Z3,Z2,Z1) =
(S3,Z3,Z1)

They are
1-condensed
CFT with
2 relavent
operators
and has
(c , c̄) = (1, 1)
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The essence of a symmetry

• Emergent symmetries can go beyond groups, higher groups, and/or
anomalies. But their can always be described by
a gappable-boundary topological order in one higher
dimension (with lattice UV
completion) = symmetry-TO

• The same topological order (in one higher dimensions) can have
different shadows → holo-equivalent symmetries.

Category ↔ Generalized symmetry ↔ Geometry/CFT
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