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Black holes in quantum gravity

® \We'd like to understand black holes in quantum gravity.

® This has turned out to be subtle because of the information problem,
which is a tension between [Hawking, Mathur, Almheiri-Marolf-Polchinski-Sully, ..]

1. A finite black hole entropy
2. A unitary black hole S-matrix

3. A black hole interior described to a good
approximation by gravitational EFT

® String theory and especially AdS/CFT have given us a strong reason to
accept (1) and (2).
® This leaves us with two options:

A. Give up on (3). The interior of the black hole
is very different from semiclassical expectations.
B. Find some way to reconcile (3) with (1) & (2).
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A version of the information problem

® Say we have a holographic CFT in some high energy state, coupled to a
reservoir R, and we time evolve,

S(R) := ~trlprlog pr]
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A version of the information problem

® Say we have a holographic CFT in some high energy state, coupled to a
reservoir R, and we time evolve,

S(R) := ~tr[pr log pr|

t
tPage

® Many of these states have bulk descriptions that look like evaporating
black holes,

tpage

® This is an illustration of the information problem: the bulk description
has an interior but naively not unitary.
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Quantum extremal surfaces
® Amazingly, this apparent mismatch is resolved by the quantum extremal
surface formula, here taking the form
[QES: Ryu-Takayanagi 06, Hubeny-Rangamani-Takayanagi '07, Faulkner-Lewkowycz-Maldacena '13, Engelhardt-Wall '14]

[This application: Penington '19, Almheiri-Engelhardt-Marolf-Maxfield '19]

A
S(R)Funa = min ext —(7) + S(R U7Y)Efrective
¥ 4G

Entanglement wedge

Entanglement wedge

Young black hole Old black hole
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® The Page curve is correctly computed!

S(R)

trivial 4 non-trivial
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QES from the gravitational path integral

® There is some insight here into solving the information paradox. The bulk
has an interior and this bulk(-ish) computation gives unitarity.
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® There is some insight here into solving the information paradox. The bulk
has an interior and this bulk(-ish) computation gives unitarity.

® Where does this QES formula come from? Really it was a guess for the
entropy of holographic CFTs that satisfied many non-trivial checks.
[Ryu-Takayanagi '06, Hubeny-Rangamani-Takayanagi '07, Engelhardt-Wall '14]

® Then it was “derived” from the gravitational path integral in increasing

generallty [Lewkowycz-Mald: ‘13, Faulkner-Lewkowycz-Mald '13, Dong-Lewkowycz '17,

Penington-Shenker-Stanford-Yang '19, Almheiri-Hartman-Maldacena-Shaghoulian-Tajdini '19]
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QES and interiors from quantum codes

® There's also a directly Hilbert space way to understand both the QES
formula and directly how to reconcile nice interiors with unitarity:

“ "
quantum codes. [Harlow '16, CA-Penington '21, CA-Engelhardt-Harlow-Penington-Vardhan '22]
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® |t has been known since 2014 that the properties quantum codes are
relevant for understanding the emergence of spacetime
[Almheiri-Dong-Harlow '14, Harlow-Pastawski-Preskill-Yoshida '15]
But only more recently have we understood how to extend that story to
black hole interiors,
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Hes Hrund

® |t has been known since 2014 that the properties quantum codes are
relevant for understanding the emergence of spacetime
[Almheiri-Dong-Harlow '14, Harlow-Pastawski-Preskill-Yoshida '15]
But only more recently have we understood how to extend that story to
black hole interiors,
[CA-Engelhardt-Harlow-Penington-Vardhan '22, Kar '22, Kim-Preskill '22, DeWolfe-Higginbotham '23].

® The new subtlety was that |[Hgg| > |Hpund|, “non-isometric code”. Inner
products are not preserved — information loss??
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Quantum codes: toy model

® To illustrate the QES formula and a non-isometric code, consider

| B

1 .
v |n>r - = ez&(n,b) |b>B
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Quantum codes: toy model

® To illustrate the QES formula and a non-isometric code, consider

| B

1 .
v |n>r - = ez&(n,b) |b>B
VIB| ;

® This models the nice property that inner products are approximately

preserved
I

1
(W VVin) = {0 (1/VIBI) o #n

even for |r| > | B|.
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QES from quantum codes: toy model
® The analog of the “Hawking state” is
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QES from quantum codes: toy model
® The analog of the “Hawking state” is

Il
P ~ Z /Dy ), [n) g = [Yrav)
n=1

® The encoded state is
(V (39 IR) |¢Hawk>

® One can then compute e.g.

1 N ’ ’ ’ /
tr(p2) _ Tk ZDnDn,ez<9(n,b)—0(n b)+0(n b )—0(n,b") ZDQ

b,b’

IBI

1 )
Sa(pr) = —5 log tr(p%) ~ min (S2(VHawk,r), log |B|)
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Operator reconstruction

® Either way we think about the QES formula, it has dramatic implications
for thinking about operators in quantum gravity, because of
“entanglement wedge reconstruction.” [czechKarcamarek Noguiera-van Raamsdonk 12,

Jafferis-Lewkowycz-Maldecena-Suh '15, Dong-Harlow-Wall '16, Harlow '16, CA-Penington '21]
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Operator reconstruction
® Either way we think about the QES formula, it has dramatic implications
for thinking about operators in quantum gravity, because of
“entanglement wedge reconstruction.” [czechKarcamarek Noguiera-van Raamsdonk 12,
Jafferis-Lewkowycz-Maldecena-Suh '15, Dong-Harlow-Wall '16, Harlow '16, CA-Penington '21]

® Consider an operator O in the interior,

X

(@)

What operator O on BR satisfies
OV |¢) = VO[¥)
<1/11|VTO~VW2> ~ (1]|Ol¢2) 7

® Theorem: O can have support on only R (or B, or BR) iff O acts inside
the “entanglement wedge” of R (or B, or BR), before and after it acts.
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Operator reconstruction: upshot

Entanglement wedge
of R

Young black hole
Orp 1no

Op Vves

Entanglement wedge

0Old black hole
Ogr yes!

Op 1o
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Complexity

® The complexity of the operators is important in two related ways.
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depend on the details of the (chaotic) black hole S-matrix. (Herow-Hayden 13)
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|Heg| > |Hrundl: it is impossible that for all states

(W1|[VIV |tha) = (b1 |aba)

However, it can be true for all states of sub-exp(Sgu) complexity.
[CA-Engelhardt-Harlow-Penington-Vardhan '22].

Maybe we should only demand sub-exponentially complex operators make
sense in semiclassical gravity.
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This is good for EFT. Otherwise, simple low energy operations on the
radiation might act non-locally in the interior.

This leads to an interesting idea to resolve an issue with the fact that
|Heg| > |Hrundl: it is impossible that for all states

(W1|[VIV |tha) = (b1 |aba)

However, it can be true for all states of sub-exp(Sgu) complexity.
[CA-Engelhardt-Harlow-Penington-Vardhan '22].

Maybe we should only demand sub-exponentially complex operators make
sense in semiclassical gravity.

This leads to a self-consistent picture: semiclassical gravity is valid for
simple operators, but not all operators. The locality structure of the
semiclassical description can fail if you do exponentially complex
operations.
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Complexity versus information paradox

® Now we can revisit the original tension between

1. A finite black hole entropy

2. A unitary black hole S-matrix
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Complexity versus information paradox

® Now we can revisit the original tension between

1. A finite black hole entropy

2. A unitary black hole S-matrix

3. A black hole interior described to a good
approximation by gravitational EFT

® \\e can summarize one lesson: there is no tension between

1. A finite black hole entropy
2. A unitary black hole S-matrix
3*. A black hole interior described to a good approximation

by gravitational EFT for low-complexity operators
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® Consider again: for O in the interior, what is O like?
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State dependence
® Consider again: for O in the interior, what is O like?

® |t turns out O must be “state-dependent.”
[Papadodimus-Raju '13, Hayden-Penington ‘17, CA-Penington ‘21, CA-Engelhardt-Harlow-Penington-Vardhan '22, ...]
® To see this, recall that

Young BH: O must act on B
Old BH: O must act on R

We might hope there's some O on both BR that always works.
® No! We find a contradiction if we even demand O works on states
different by a simple URZ [c.f. CA-Engelhardt-Harlow-Penington-Vardhan '22 theorem 5.1]

/ (Wl ULV OVURI1) o< (1 VT trR O]V [o)
simple
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State dependence: Physical consequences?
® This state dependence seems dramatic: there's no way to write interior
operators as some definite operator on Hpund.

® For example, say Alice makes a measurement of the interior.

R

Her projection operators do not admit a representation on Hpunq that
works for all states.

® We can ameliorate this slightly by constructing “code subspaces”. If
Alice doesn’t measure too much of the interior radiation, then there's
some Hcode € Hruna ©n Which we can describe her measurement as a
normal measurement on H¢ode.

® However, any measurement on more than O (log |Hruna|) modes cannot
fit into such a Hcode. Unclear how to describe the statistics of these
measurements.

13/14
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® So far, we've discussed ideas for evading firewalls in evaporating black
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Generic state firewalls?

® So far, we've discussed ideas for evading firewalls in evaporating black
holes.

® There are independent reasons to worry that black holes evolved for
> O(eSBH) time have firewalls [Almheiri-Marolf-Polchinski-Stanford-Sully '13, Marolf-Polchinski '13,
Stanford-Yang '22, ..]

® There are other arguments suggesting the opposite (papadodimus Raju 12/13,
Penington-Witten '23 7]

® What's the right answer? How might we settle this? Will this depend on
our measurement theory for interior observers?
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