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Large N QCD

We consider 4-dimensional QCD with 𝑁𝑓 massless quarks

in ‘t Hooft’s large 𝑁 limit. At leading order in 1/𝑁, the

theory decomposes into three decoupled sectors of stable

asymptotic states:

• Glueballs

Tr 𝐹#
• Mesons

𝑞ത𝑞

• Baryons

𝜖𝑖𝑗…𝑘𝑞
𝑖𝑞𝑗 …𝑞𝑘
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We consider 4-dimensional QCD with 𝑁𝑓 massless quarks

in ‘t Hooft’s large 𝑁 limit. At leading order in 1/𝑁, the

theory decomposes into three decoupled sectors of stable

asymptotic states:

• Glueballs

Tr 𝐹#
• Mesons

𝑞ത𝑞

• Baryons

𝜖𝑖𝑗…𝑘𝑞
𝑖𝑞𝑗 …𝑞𝑘

We will focus on the meson sector. The theory then

consists of an infinite collection of weakly coupled mesons.

We parametrize it with the following data:

𝑚𝑖
2, 𝐽𝑖 , 𝜆𝑖𝑗𝑘 , 𝜆𝑖𝑗𝑘𝑙 , … 𝑖

𝑗

𝑘

∝ 𝜆𝑖𝑗𝑘 ∼
1

𝑁

We will proceed to place bounds on these data.
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Bootstrap philosophy

These data parametrize a space of putative “large 𝑁
confining gauge theories”. We will carve out allowed

regions in it by requiring consistency of meson 𝑆-matrices.

𝑖

𝑗

𝑘

ℓ

• Unitarity

• Regge boundedness

• Crossing symmetry

• …

S-matrix Bootstrap

[Martin 1969, Pham & Truong 1985,

Ananthanarayan et al.1995, … ]

[Caron-Huot, Van Duong 2021,

Tolley, Wang, Zhou 2021,

Arkani-Hamed, Huang, Huang 2020]
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Bootstrap philosophy

These data parametrize a space of putative “large 𝑁
confining gauge theories”. We will carve out allowed

regions in it by requiring consistency of meson 𝑆-matrices.

• Unitarity

• Regge boundedness

• Crossing symmetry

• …

S-matrix Bootstrap

[Martin 1969, Pham & Truong 1985,

Ananthanarayan et al.1995, … ]

The goal is to choose the right set of assumptions that will

corner large 𝑁 QCD, much like the Ising model in the CFT

bootstrap.

[Caron-Huot, Van Duong 2021,

Tolley, Wang, Zhou 2021,

Arkani-Hamed, Huang, Huang 2020]

[El-Showk, Paulos, Poland, 

Rychkov, Simmons-Duffin, 

Vichi 2012]
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Pion scattering

We start by scattering the lowest mesons in the spectrum,

the pions 𝜋𝑎, which are Goldstone bosons for

𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅

→ 𝑈 𝑁𝑓 diag
. [Coleman, Witten 1980]
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We start by scattering the lowest mesons in the spectrum,

the pions 𝜋𝑎, which are Goldstone bosons for

𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅

→ 𝑈 𝑁𝑓 diag
.

In the large 𝑁 limit, diagrammatic contributions arrange in a

topological expansion. At leading order, only disk diagrams

contribute to the 2 → 2 pion amplitude.

𝒯𝑎𝑏
𝑐𝑑 = + + +⋯

𝜋𝑎

𝜋𝑏 𝜋𝑑

𝜋𝑐

∼ 1/𝑁 ∼ 1/𝑁2 ∼ 1/𝑁3

Tr 𝑇𝑎𝑇𝑏𝑇𝑑𝑇𝑐 𝑀 𝑠, 𝑢 Flavor-ordered amplitude

[Coleman, Witten 1980]
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Properties of M(s,u)

• Crossing symmetry: Invariance under the exchange of

external pions implies

𝑀 𝑠, 𝑢 = 𝑀 𝑢, 𝑠 .
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Properties of M(s,u)

• Crossing symmetry: Invariance under the exchange of

external pions implies

𝑀 𝑠, 𝑢 = 𝑀 𝑢, 𝑠 .

• Analytic structure: 𝑀 𝑠, 𝑢 is meromorphic with poles

from tree-level exchanges of physical mesons.

=
𝜌 𝑓2

+ +⋯

∼
1

𝑁

𝑚𝜌
2

(fixed 𝑢 ≲ 0)
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Properties of M(s,u)

• Unitarity: The residues of 𝑀 𝑠, 𝑢 admit a partial wave

expansion with positive coefficients,

Im 𝑀 𝑠, 𝑢 = ෍

𝑖 ∈ spect.

𝜆𝜋𝜋𝑖
2 𝑚𝑖

2𝜋𝛿 𝑠 − 𝑚𝑖
2 𝑃𝐽𝑖 1 +

2𝑢

𝑠
.

≥ 0
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Properties of M(s,u)

• Unitarity: The residues of 𝑀 𝑠, 𝑢 admit a partial wave

expansion with positive coefficients,

• Regge behavior: In the Regge limit of 𝑠 → ∞ with

fixed 𝑢 ≲ 0, the growth of the amplitude is controlled by

the intercept of the leading Regge trajectory,

This is the trajectory of the rho, so

Im 𝑀 𝑠, 𝑢 = ෍

𝑖 ∈ spect.

𝜆𝜋𝜋𝑖
2 𝑚𝑖

2𝜋𝛿 𝑠 − 𝑚𝑖
2 𝑃𝐽𝑖 1 +

2𝑢

𝑠
.

≥ 0

𝑀 𝑠, 𝑢 ∼ 𝑠𝛼 0 .

lim
𝑠 →∞

𝑀 𝑠, 𝑢

𝑠
= 0 . 1

0

2

3

𝑚2

𝐽

𝜌

𝛼𝜌 𝑚2
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Properties of M(s,u)

• Low-energy expansion: For energies below the first

pole 𝑚𝜌
2, 𝑀 𝑠, 𝑢 admits a polynomial expansion,

𝑀low 𝑠, 𝑢 ≈ 𝑔1,0 𝑠 + 𝑢 + 𝑔2,0 𝑠2 + 𝑢2 + 2𝑔2,1𝑠𝑢 + ⋯ .

𝑚𝜌
2

𝑠 < 𝑚𝜌
2

(fixed 𝑢 ≲ 0)
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Properties of M(s,u)

• Low-energy expansion: For energies below the first

pole 𝑚𝜌
2, 𝑀 𝑠, 𝑢 admits a polynomial expansion,

These coefficients are in one-to-one correspondence

with Wilson coefficients of the chiral Lagrangian,

𝑀low 𝑠, 𝑢 ≈ 𝑔1,0 𝑠 + 𝑢 + 𝑔2,0 𝑠2 + 𝑢2 + 2𝑔2,1𝑠𝑢 + ⋯ .

𝑚𝜌
2

𝑠 < 𝑚𝜌
2

(fixed 𝑢 ≲ 0)

ℒCh = −
𝑓𝜋
2

4
Tr 𝜕𝜇𝑈

†𝜕𝜇𝑈 + 𝜅1Tr 𝜕𝜇𝑈
†𝜕𝜇𝑈

2
+ 𝜅2Tr 𝜕𝜇𝑈

†𝜕𝜈𝑈𝜕
𝜇𝑈†𝜕𝜈𝑈 +⋯ .
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Dispersion relations

By the Regge behavior,

(fixed 𝑢 ≲ 0)

𝑚𝜌
2

1

2𝜋𝑖
ර
∞

𝑑𝑠′
𝑀 𝑠′, 𝑢

𝑠′𝑘+1
= 0. 𝑘 = 1,2, …
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Dispersion relations

By the Regge behavior,

(fixed 𝑢 ≲ 0)

𝑚𝜌
2

𝑔𝑛,ℓ = ෍

𝑖 ∈ spect.

𝜆𝜋𝜋𝑖
2 𝐹𝑛,ℓ 𝐽𝑖 , 𝑚𝑖

2 ≡ 𝐹𝑛,ℓ 𝐽, 𝑚
2 .

1

2𝜋𝑖
ර
∞

𝑑𝑠′
𝑀 𝑠′, 𝑢

𝑠′𝑘+1
= 0. 𝑘 = 1,2, …

Deforming the contour yields a UV-IR link in the form of

Sum rules:

≥ 0 (unitarity)
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Dispersion relations

By the Regge behavior,

(fixed 𝑢 ≲ 0)

𝑚𝜌
2

𝑔𝑛,ℓ = ෍

𝑖 ∈ spect.

𝜆𝜋𝜋𝑖
2 𝐹𝑛,ℓ 𝐽𝑖 , 𝑚𝑖

2 ≡ 𝐹𝑛,ℓ 𝐽, 𝑚
2 .

1

2𝜋𝑖
ර
∞

𝑑𝑠′
𝑀 𝑠′, 𝑢

𝑠′𝑘+1
= 0. 𝑘 = 1,2, …

Deforming the contour yields a UV-IR link in the form of

Crossing symmetry is encoded in an infinite set of

Sum rules:

Null constraints: 0 = 𝑔𝑛,ℓ − 𝑔𝑛,𝑛−ℓ = 𝒩𝑛,ℓ 𝐽,𝑚
2 .

≥ 0 (unitarity)

[Caron-Huot, Van Duong 2021, Tolley, Wang, Zhou 2021]
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Bootstrap bounds

We choose a potential spectrum, and we

recast sum rules and null constraints into a

semidefinite program to place bounds on:

• Wilson coefficients: When being ag-

nostic about the heavy mesons, we can

bound the effective pion couplings from

integrating them out. 𝑚𝜌
2

1

0

2

3

𝑚2

𝐽

𝑔𝑛,ℓ𝑚𝜌
2(𝑛−1)

𝑔1,0
𝜋

𝜋

𝜋

𝜋

𝑔𝑛,ℓ
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Bootstrap bounds

We choose a potential spectrum, and we

recast sum rules and null constraints into a

semidefinite program to place bounds on:

• On-shell couplings: If we refine our

spectrum choice, we can directly probe

their on-shell interactions.

• Wilson coefficients: When being ag-

nostic about the heavy mesons, we can

bound the effective pion couplings from

integrating them out. 𝑚𝜌
2

1

0

2

3

𝑚2

𝐽

𝜋

𝜋

𝑖
𝜆𝜋𝜋𝑖

𝑔𝑛,ℓ𝑚𝜌
2(𝑛−1)

𝑔1,0
𝜋

𝜋

𝜋

𝜋

𝑔𝑛,ℓ

𝜆𝜋𝜋𝑖
2

𝑔1,0𝑚𝜌
2

𝑚𝜌
2

1

0

2

3

𝑚2

𝐽

𝑀2

𝜌
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Bounds on Wilson 
coefficients

𝑔2,0𝑚𝜌
2

𝑔1,0

2𝑔2,1𝑚𝜌
2

𝑔1,0

Figure 1: Allowed region in the space of (normalized) four-

derivative couplings of the chiral Lagrangian.
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Large 𝑁 QCD?

Bounds on Wilson 
coefficients

𝑔2,0𝑚𝜌
2

𝑔1,0

2𝑔2,1𝑚𝜌
2

𝑔1,0

Figure 1: Allowed region in the space of (normalized) four-

derivative couplings of the chiral Lagrangian.

[Gasser & Leutwyler 1984,

Bijnens et al. 1994,

Girlanda et al. 1997,

Amoros et al. 2000]
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Large 𝑁 QCD?

Extremal amplitudes

2𝑔2,1𝑚𝜌
2

𝑔1,0

Figure 1: Allowed region in the space of (normalized) four-

derivative couplings of the chiral Lagrangian.

𝑚𝜌
2

1

0

2

3

𝑚2

𝐽𝑔2,0𝑚𝜌
2

𝑔1,0
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Large 𝑁 QCD?

Extremal amplitudes

2𝑔2,1𝑚𝜌
2

𝑔1,0

Figure 1: Allowed region in the space of (normalized) four-

derivative couplings of the chiral Lagrangian.

𝑚𝜌
2

1

0

2

3

𝑚2

𝐽𝑔2,0𝑚𝜌
2

𝑔1,0

𝑚𝜌
2

1

0

2

3

𝑚2

𝐽
[Caron-Huot, Van 

Duong 2021]
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Extremal amplitudes

2𝑔2,1𝑚𝜌
2

𝑔1,0

Figure 1: Allowed region in the space of (normalized) four-

derivative couplings of the chiral Lagrangian.

𝑚𝜌
2

1

0

2

3

𝑚2

𝐽𝑔2,0𝑚𝜌
2

𝑔1,0

𝑚𝜌
2

1

0

2

3

𝑚2

𝐽
[Caron-Huot, Van 

Duong 2021]

𝑚𝜌
2

1

0

2

3

𝑚2

𝐽

→ ∞

[Fernandez, Pomarol, 

Riva, Sciotti 2022,

Li 2023]
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Bounds on on-shell 
couplings

𝑀2

1

0

2

3

𝑚2

𝐽

𝜌

𝑓2
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Bounds on on-shell 
couplings

𝑚𝜌
2

𝑀2

Figure 2: Upper bound on the (normalized) 𝑓2 on-shell

coupling as a function of the gap after the 𝑓2.
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0

2

3

𝑚2
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𝜌

𝑓2

Stable kink!
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𝑔1,0𝑚𝜌
2
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𝜆𝜋𝜋𝜌
2

𝑔1,0𝑚𝜌
2

Ratio of couplings

Figure 3: Exclusion plot in the space of (normalized) on-

shell couplings for the rho and the 𝑓2.

Kink

0.0

0.1

0.2

0.3

0.4

𝜆𝜋𝜋𝑓2
2

𝑔1,0𝑚𝜌
2

0.0 0.1 0.2 0.3 0.4 0.5 0.6
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𝜆𝜋𝜋𝜌
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2

Ratio of couplings

Figure 3: Exclusion plot in the space of (normalized) on-

shell couplings for the rho and the 𝑓2.

Kink

Line of constant ratio 
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2
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2

0.0

0.1

0.2

0.3
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Spectrum at the kink

𝐽

𝑚2

Figure 4: Spectrum of the numerical solution at the kink.

 1       5 

 

 

 

 

1 

1 

1 

1 

1 

  

No daughter trajectories?

𝜌
𝑓2

Leading (non-linear) 

Regge trajectory!

[Eckner, Figueroa, Tourkine 2024]
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Spectrum of QCD

𝐽

𝑚2

Figure 5: Comparison of the spectra of the extremal solu-

tion and real-world QCD.

Kink solution

exp. QCD
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Mixed S-matrices

𝜋𝑎

𝜋𝑏

𝜋𝑐

𝜋𝑑

𝜋𝑎

𝜋𝑏

𝜌𝑐
𝜆3

𝜌𝑑
𝜆4

𝜌𝑎
𝜆1

𝜌𝑏
𝜆2

𝜌𝑐
𝜆3

𝜌𝑑
𝜆4

Many more constraints come from considering a mixed

scattering system of pions and rho mesons. But the

difficulty grows quickly with spin.

8 amplitudes𝑀 𝑠, 𝑢 17 amplitudes

15/16

[JA, Henriksson, Rastelli, Vichi, wip]



Mixed S-matrices

𝜋𝑎

𝜋𝑏

𝜋𝑐

𝜋𝑑

𝜋𝑎

𝜋𝑏

𝜌𝑐
𝜆3

𝜌𝑑
𝜆4

𝜌𝑎
𝜆1

𝜌𝑏
𝜆2

𝜌𝑐
𝜆3

𝜌𝑑
𝜆4

Many more constraints come from considering a mixed

scattering system of pions and rho mesons. But the

difficulty grows quickly with spin.

A simpler system is that of pions and photons, which

captures the chiral anomaly. Matching the anomaly yields

bounds with an explicit dependence on 𝑁/𝑓𝜋
2.

8 amplitudes𝑀 𝑠, 𝑢 17 amplitudes

𝐽𝐴
𝑎
𝜇

𝐴𝜈

𝐴𝜌

𝜋0

𝛾

𝛾

∝
𝑒2𝑁

16𝜋2𝑓𝜋
𝜋0𝐹 ∧ 𝐹=

15/16

[JA, Rastelli, 2023]



Conclusions

• We are carving out the space of large 𝑁 confining gauge theories.

• Generic bounds on Wilson coefficients are saturated by simple solutions.

• The key seems to be to include explicit poles up to spin two.

• This reveals a kink with many features in common with real-world QCD.

“Have we cornered large N QCD?

Not clear yet, but we’re getting tantalizingly close.”

Summary:
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Conclusions

• We are carving out the space of large 𝑁 confining gauge theories.

• Generic bounds on Wilson coefficients are saturated by simple solutions.

• The key seems to be to include explicit poles up to spin two.

• This reveals a kink with many features in common with real-world QCD.

“Have we cornered large N QCD?

Not clear yet, but we’re getting tantalizingly close.”

• Include external rho mesons.

• Consider general background gauge fields and anomalies.

• Explore the glueball and baryon sectors.

• Target other weakly coupled systems.

(e.g. tree-level string theory.                                 )

• Etc!

[in progress: JA, Henriksson, Rastelli, Vichi]

[to appear: JA, Knop, Rastelli]

Summary:

Future directions:
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Thank you!
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