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. Large N QCD .

We consider 4-dimensional QCD with N¢ quarks

in ‘t Hooft's limit. At leading order in 1/N, the
theory decomposes into three sectors of
asymptotic states:

« Baryons * Glueballs
€ij.x9'q7 ..q" Tr(F*)
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. Large N QCD .

We consider 4-dimensional QCD with N¢ quarks
in ‘t Hooft's limit. At leading order in 1/N, the
theory decomposes into three sectors of
asymptotic states:

« Baryons * Glueballs
€ij.x9'q7 ..q" Tr(F*)

We will focus on the meson sector. The theory then
consists of an infinite collection of mesons.
We parametrize it with the following data:

J
2 . 1
{(mi ;]i), Aijkl)'ijklf } l 1o Aijk ~ \/_N
k
We will proceed to place on these data.
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- Bootstrap philosophy -

These data parametrize a space of putative
We will carve out allowed
regions in it by requiring consistency of meson S-matrices.

[ k S-matrix Bootstrap

\  Unitarity

* Regge boundedness

\ « Crossing symmetry
j 4
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- Bootstrap philosophy -

These data parametrize a space of putative
We will carve out allowed
regions in it by requiring consistency of meson S-matrices.

[ k S-matrix Bootstrap

\  Unitarity

* Regge boundedness

j 4

Crossing symmetry

The goal is to choose the right set of assumptions that will
, much like the Ising model in the CFT

bootstrap. A

3d Ising?
1.6}
141

1.2+

1.0 : : - - : - Ay
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. Pion scattering .

We start by scattering the lowest mesons in the spectrum,
the %, which are for

U(Nf)L X U(Nf)R - U(Ny) diag’
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. Pion scattering .

We start by scattering the lowest mesons in the spectrum,
the %, which are for

U(Nf)L X U(Nf)R - U(Ny) diag’

In the large N limit, diagrammatic contributions arrange in a
topological expansion. At leading order, only
contribute to the 2 — 2 pion amplitude.

d
T ~1nN T ~1/N? ~1/N3

Tr(T,T,T4T. XM (s, u)
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. Properties of M(s,u) .

 Crossing symmetry: Invariance under the exchange of
external pions implies

M(s,u) = M(u,s).
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. Properties of M(s,u) .

Crossing symmetry: Invariance under the exchange of
external pions implies

M(s,u) = M(u,s).

Analytic structure: M(s,u) is with poles
from tree-level exchanges of physical mesons.

S (fixedu < 0)

m:><
X
X
X
X
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. Properties of M(s,u) .

Unitarity: The residues of M(s,u) admit a partial wave
expansion with coefficients,

2u
Im M(s,u) = Z A2 mins(s —m? )Py, (1 + ?)

[ € spect.
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. Properties of M(s,u) .

Unitarity: The residues of M(s,u) admit a partial wave
expansion with coefficients,

2u
Im M(s,u) = Z A2 mins(s —m? )Py, (1 + ?)

[ € spect.

Regge behavior: In the Regge limit of |s| - co with
fixed u < 0, the growth of the amplitude is controlled by
the intercept of the :

M(s,u) ~ s*©)
J
This is the trajectory of the , SO 31 o
2 £ )
M(s,u p .
lim ( ) =0 1}/,! ° .
Is|=e S dl v -
m
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. Properties of M(s,u) .
Low-energy expansion: For energies below the first
pole mj, M(s,u) admits a ,

Miow(s, ) = g1o(s +w) + gzo(s® +u®) + 2gy15u + .
| S  (fixedu < 0)

2
|s| <mj
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. Properties of M(s,u) .
« Low-energy expansion: For energies below the first
pole mj, M(s,u) admits a ,
Miow(s, ) = g1o(s +w) + gzo(s® +u®) + 2gy15u + .
| S  (fixedu < 0)

2
|s| <mj

These coefficients are in one-to-one correspondence
with Wilson coefficients of the ,

Lch = —foTl‘ (GHUTO”U) + 1, Tr <(OMUT6”U)2> + 1, Tr (GMUTGVUBMUTO"U) 4.
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. Dispersion relations .

1 ,M(s',u)
By the Iy OodS s

e e | S  (fixedu < 0)

=0. (k=12,..)

TN
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. Dispersion relations .

By th 1 d MG’ w)
y ine ) S Gk

S (fixedu < 0)

=0. (k=12,..)

%

TN

Deforming the contour yields a UV-IR link in the form of

Sumrules: gne = z /Lzmi Fn,e(]i,miz) = (Fn,e(l»mz) )

[ € spect.
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. Dispersion relations .

1 ,M(s',u)
By the Iy oodS s

S (fixedu < 0)

=0. (k=12,..)

%

TN

Deforming the contour yields a UV-IR link in the form of

Sumrules: gne = z /Lzmi Fn,{)(]i,ml’z) = (Fn,e(l,mz) )

[ € spect.

IS encoded in an infinite set of

Null constraints: 0= gn,— gnn-s = { Npr,(J,m?) ).
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. Bootstrap bounds .

We choose a potential , and we
recast sum rules and null constraints into a
to place bounds on:

 Wilson coefficients: When being ag-
nostic about the heavy mesons, we can
bound the effective pion couplings from i
integrating them out. Thﬁ m?2

T T

S RN W

2(n—-1
571L€771p(1l )

In,t 91,0
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. Bootstrap bounds

We choose a potential , and we
recast sum rules and null constraints into a
to place bounds on:

 Wilson coefficients: When being ag-
nostic about the heavy mesons, we can
bound the effective pion couplings from
integrating them out.

T T
2(n-1)
571L€771p
Ont 91,0
T T

* On-shell couplings: If we refine our
spectrum choice, we can directly probe
their on-shell interactions.

T

/12

TTTTL

2
Armi g 1,0mp

I
31
2| |
11
0 52

mg m?
J :
3 |
2l
11 i

P

0 ———
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Bounds on Wilson

coefficients
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Figure 1: Allowed region in the space of (normalized) four-

derivative couplings of the chiral Lagrangian. 016
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. Extremal amplitudes .
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. Extremal amplitudes .
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. Extremal amplitudes .
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Bounds on on-shell
couplings

S PN W
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Bounds on on-shell
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Figure 2. Upper bound on the (normalized) f, on-shell
coupling as a function of the gap after the f,.
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. Ratio of couplings .
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. Ratio of couplings .
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. Spectrum at the kink .
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Figure 4: Spectrum of the numerical solution at the kink.
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. Spectrum of QCD .
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Figure 5. Comparison of the spectra of the extremal solu-
tion and real-world QCD.
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° Mixed S-matrices °

Many more constraints come from considering a mixed
scattering system of . But the
difficulty grows quickly with spin.

a c a 1 Aq A3
. R ol Pa 2
N , N
\\. 4 \\
o |
’ S s A A 4
P N 7 4 2
b ¢ i Pa Pp Pa
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° Mixed S-matrices °

Many more constraints come from considering a mixed
scattering system of . But the
difficulty grows quickly with spin.

T[a\\ .’ m T[a\\ jpgg pc/}l '0213
//// \\\ //// A A, /14_
P 4 i pd4 pbz Pa
A simpler system is that of , Which
captures the . Matching the anomaly yields
bounds with an explicit dependence on N/fnz.
m°F AF

167‘[2fn

JA ﬁﬁ
” M,
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Summary:
« We are the space of large N confining gauge theories.
« Generic bounds on are saturated by simple solutions.

o Conclusions .

The key seems to be to include explicit poles up to
This reveals a kink with many features in common with
“Have we cornered large N QCD?

Not clear yet, but we’re getting tantalizingly close.”
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o Conclusions .

Summary:
« We are the space of large N confining gauge theories.
« Generic bounds on are saturated by simple solutions.

* The key seems to be to include explicit poles up to
« This reveals a kink with many features in common with
“Have we cornered large N QCD?
Not clear yet, but we’re getting tantalizingly close.”

Future directions:

* Include external rho mesons.

« Consider general background gauge fields and anomalies.

« Explore the glueball and baryon sectors.

« Target other weakly coupled systems.

(e.g. tree-level string theory. )

e Etc! 16/16



Thank you!
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