A (non-)worldsheet description of strings backgrounds

Minjae Cho
Princeton University
(2311.04959 and W.I.P with Kim, unpublished with Agmon, Collier and Yin and 1811.00032 with Collier and Yin)

Strings 2024

Motivation

Question

How do we describe string backgrounds and physics around them?

Motivation

Question

How do we describe string backgrounds and physics around them?

- If there is an exact worldsheet CFT description, we can perform ordinary string perturbation theory which is α^{\prime}-exact at each order in g_{s}.

Motivation

Question

How do we describe string backgrounds and physics around them?

- If there is an exact worldsheet CFT description, we can perform ordinary string perturbation theory which is α^{\prime}-exact at each order in g_{s}.
- However, such a description is not always known explicitly. In the NSR formalism for superstrings, we lack such a description for backgrounds involving Ramond-Ramond (RR) fluxes, including most of AdS and flux compactifications (alternative formalisms may be present).

Motivation

Question

How do we describe string backgrounds and physics around them?

- If there is an exact worldsheet CFT description, we can perform ordinary string perturbation theory which is α^{\prime}-exact at each order in g_{s}.
- However, such a description is not always known explicitly. In the NSR formalism for superstrings, we lack such a description for backgrounds involving Ramond-Ramond (RR) fluxes, including most of AdS and flux compactifications (alternative formalisms may be present).
- In contrast, low energy supergravity description provides the Einstein equation whose solutions correspond to 'string' backgrounds. But it comes with a limitation that observables beyond the protected quantities are difficult to access.

Motivation

Question

How do we describe string backgrounds and physics around them?

- If there is an exact worldsheet CFT description, we can perform ordinary string perturbation theory which is α^{\prime}-exact at each order in g_{s}.
- However, such a description is not always known explicitly. In the NSR formalism for superstrings, we lack such a description for backgrounds involving Ramond-Ramond (RR) fluxes, including most of AdS and flux compactifications (alternative formalisms may be present).
- In contrast, low energy supergravity description provides the Einstein equation whose solutions correspond to 'string' backgrounds. But it comes with a limitation that observables beyond the protected quantities are difficult to access.
- It will be great if there is a 'stringy' version of supergravity.

Motivation

Question

How do we describe string backgrounds and physics around them?

- If there is an exact worldsheet CFT description, we can perform ordinary string perturbation theory which is α^{\prime}-exact at each order in g_{s}.
- However, such a description is not always known explicitly. In the NSR formalism for superstrings, we lack such a description for backgrounds involving Ramond-Ramond (RR) fluxes, including most of AdS and flux compactifications (alternative formalisms may be present).
- In contrast, low energy supergravity description provides the Einstein equation whose solutions correspond to 'string' backgrounds. But it comes with a limitation that observables beyond the protected quantities are difficult to access.
- It will be great if there is a 'stringy' version of supergravity.
- String field theory (SFT) comes close at least conceptually (but with some limitations which we will discuss soon). Today, we discuss how it can be useful even in practice for some interesting cases.

String field theory - what it is like as of today

String field theory - what it is like as of today

- By now, SFT is a well-established framekwork for perturbative strings in NSR formalism. Some helpful references/reviews below:
- Bosonic SFT (9206084, 9705241 Zwiebach)
- NSR II and heterotic (1508.05387 Sen, 1703.06410 de Lacroix, Erbin, Kashyap, Sen, Verma)
- NSR open-closed-unoriented (1907.10632 Moosavian, Sen, Verma)
\Rightarrow Waiting for interesting applications!

String field theory - what it is like as of today

- By now, SFT is a well-established framekwork for perturbative strings in NSR formalism. Some helpful references/reviews below:
- Bosonic SFT (9206084, 9705241 Zwiebach)
- NSR II and heterotic (1508.05387 Sen, 1703.06410 de Lacroix, Erbin, Kashyap, Sen, Verma)
- NSR open-closed-unoriented (1907.10632 Moosavian, Sen, Verma)
\Rightarrow Waiting for interesting applications!
- But it comes with some limitations. First of all, it requires a 'good starting point,' described by an exact worldsheet CFT (pure NSNS for superstrings). Denote such a starting string background \mathcal{T}_{0}.

String field theory - what it is like as of today

- By now, SFT is a well-established framekwork for perturbative strings in NSR formalism. Some helpful references/reviews below:
- Bosonic SFT (9206084, 9705241 Zwiebach)
- NSR II and heterotic (1508.05387 Sen, 1703.06410 de Lacroix, Erbin, Kashyap, Sen, Verma)
- NSR open-closed-unoriented (1907.10632 Moosavian, Sen, Verma)
\Rightarrow Waiting for interesting applications!
- But it comes with some limitations. First of all, it requires a 'good starting point,' described by an exact worldsheet CFT (pure NSNS for superstrings). Denote such a starting string background \mathcal{T}_{0}.
- Once we plug \mathcal{T}_{0} into SFT machinery, it produces a path integral Z. SFT: $\mathcal{T}_{0} \rightarrow Z=\int d \phi \exp (-S[\phi])$

String field theory - what it is like as of today

- SFT: $\mathcal{T}_{0} \rightarrow Z=\int d \phi \exp (-S[\phi])$

String field theory - what it is like as of today

- SFT: $\mathcal{T}_{0} \rightarrow Z=\int d \phi \exp (-S[\phi])$
- Strings fields ϕ : The worldsheet CFT Hilbert space of \mathcal{T}_{0} provides the space of string fields. These string fields ϕ are spacetime fields, and $S[\phi]$ is the spacetime action (rather than a worldsheet action).

String field theory - what it is like as of today

- SFT: $\mathcal{T}_{0} \rightarrow Z=\int d \phi \exp (-S[\phi])$
- Strings fields ϕ : The worldsheet CFT Hilbert space of \mathcal{T}_{0} provides the space of string fields. These string fields ϕ are spacetime fields, and $S[\phi]$ is the spacetime action (rather than a worldsheet action).
- Perturbative nature: $S[\phi]$ is perturbative in g_{s} and the number of fields (in the presence of dynamical closed strings). Its terms can be computed using the worldsheet CFT correlators of \mathcal{T}_{0} on Riemann surfaces of generic genera and punctures.

String field theory - what it is like as of today

- SFT: $\mathcal{T}_{0} \rightarrow Z=\int d \phi \exp (-S[\phi])$
- Strings fields ϕ : The worldsheet CFT Hilbert space of \mathcal{T}_{0} provides the space of string fields. These string fields ϕ are spacetime fields, and $S[\phi]$ is the spacetime action (rather than a worldsheet action).
- Perturbative nature: $S[\phi]$ is perturbative in g_{s} and the number of fields (in the presence of dynamical closed strings). Its terms can be computed using the worldsheet CFT correlators of \mathcal{T}_{0} on Riemann surfaces of generic genera and punctures.
- Computability: If one is interested in computing observables up to a specific order in g_{s} and ϕ, terms in $S[\phi]$ beyond some finite order are not relevant. $S[\phi]$ provides the Feynman rules we can use to systematically compute physical quantities order by order.

String field theory - what it is like as of today

Question

What can we do with Z and $S[\phi]$?

String field theory - what it is like as of today

Question

What can we do with Z and $S[\phi]$?

- Several interesting things: rigorous string perturbation theory around \mathcal{T}_{0}, D-instanton perturbation theory, mass renormalization, discovering new 2d CFT boudary states, tachyons, open-closed duality, \Rightarrow see Ted Erler and Xi Yin's review talk.

String field theory - what it is like as of today

Question

What can we do with Z and $S[\phi]$?

- Several interesting things: rigorous string perturbation theory around \mathcal{T}_{0}, D-instanton perturbation theory, mass renormalization, discovering new 2d CFT boudary states, tachyons, open-closed duality, \Rightarrow see Ted Erler and Xi Yin's review talk.
- This talk: study string backgrounds!

String backgrounds from SFT

- EOM: $\delta S[\phi]=0 \Rightarrow$ solution: ϕ_{*}

String backgrounds from SFT

- EOM: $\delta S[\phi]=0 \Rightarrow$ solution: ϕ_{*}
- Just as solutions to the Einstein equation describe GR backgrounds around which we can study the physics, ϕ_{*} represents a string background. Due to the limitation of the current formulation of SFT (∞-many vertices), ϕ_{*} can at best be obtained as some expansion around the original background \mathcal{T}_{0} (may converge though).

String backgrounds from SFT

- EOM: $\delta S[\phi]=0 \Rightarrow$ solution: ϕ_{*}
- Just as solutions to the Einstein equation describe GR backgrounds around which we can study the physics, ϕ_{*} represents a string background. Due to the limitation of the current formulation of SFT (∞-many vertices), ϕ_{*} can at best be obtained as some expansion around the original background \mathcal{T}_{0} (may converge though).
- Within this limiation, there are still interesting backgrounds we can study, such as $A d S_{5}$ with its inverse radius as the expansion parameter around the flat background.

String backgrounds from SFT

- EOM: $\delta S[\phi]=0 \Rightarrow$ solution: ϕ_{*}
- Just as solutions to the Einstein equation describe GR backgrounds around which we can study the physics, ϕ_{*} represents a string background. Due to the limitation of the current formulation of SFT (∞-many vertices), ϕ_{*} can at best be obtained as some expansion around the original background \mathcal{T}_{0} (may converge though).
- Within this limiation, there are still interesting backgrounds we can study, such as $A d S_{5}$ with its inverse radius as the expansion parameter around the flat background.
- $S_{*}[\varphi]:=S\left[\phi=\phi_{*}+\varphi\right]$ is the action expanded around the solution ϕ_{*}. Its linearized EOM gives free string spectrum of ϕ_{*}, and its Feynman rules can be used to obtain stringy observables of ϕ_{*}.

String backgrounds from SFT

- EOM: $\delta S[\phi]=0 \Rightarrow$ solution: ϕ_{*}
- Just as solutions to the Einstein equation describe GR backgrounds around which we can study the physics, ϕ_{*} represents a string background. Due to the limitation of the current formulation of SFT (∞-many vertices), ϕ_{*} can at best be obtained as some expansion around the original background \mathcal{T}_{0} (may converge though).
- Within this limiation, there are still interesting backgrounds we can study, such as $A d S_{5}$ with its inverse radius as the expansion parameter around the flat background.
- $S_{*}[\varphi]:=S\left[\phi=\phi_{*}+\varphi\right]$ is the action expanded around the solution ϕ_{*}. Its linearized EOM gives free string spectrum of ϕ_{*}, and its Feynman rules can be used to obtain stringy observables of ϕ_{*}.
- $S_{*}[\varphi]$ provides a spacetime description of strings in the background ϕ_{*}. It still computes 'stringy' physics.

String fields (bosonic closed string case)

String fields (bosonic closed string case)

- Start with an exact worldsheet CFT with Hilbert space \mathcal{H}_{0}. Restrict to the states $|\psi\rangle \in \mathcal{H}_{0}$ satisfying $\left(L_{0}-\bar{L}_{0}\right)|\psi\rangle=\left(b_{0}-\bar{b}_{0}\right)|\psi\rangle=0$.

String fields (bosonic closed string case)

- Start with an exact worldsheet CFT with Hilbert space \mathcal{H}_{0}. Restrict to the states $|\psi\rangle \in \mathcal{H}_{0}$ satisfying $\left(L_{0}-\bar{L}_{0}\right)|\psi\rangle=\left(b_{0}-\bar{b}_{0}\right)|\psi\rangle=0$.
- Expand a general state $|\psi\rangle$, which is generically off-shell / not Q_{B}-closed, in a basis $\left|s_{i}\right\rangle:|\psi\rangle=\sum_{i} \phi_{i}\left|s_{i}\right\rangle . \phi_{i}$ are string fields.

String fields (bosonic closed string case)

- Start with an exact worldsheet CFT with Hilbert space \mathcal{H}_{0}. Restrict to the states $|\psi\rangle \in \mathcal{H}_{0}$ satisfying $\left(L_{0}-\bar{L}_{0}\right)|\psi\rangle=\left(b_{0}-\bar{b}_{0}\right)|\psi\rangle=0$.
- Expand a general state $|\psi\rangle$, which is generically off-shell / not Q_{B}-closed, in a basis $\left|s_{i}\right\rangle:|\psi\rangle=\sum_{i} \phi_{i}\left|s_{i}\right\rangle$. ϕ_{i} are string fields.
- For superstrings, NS states should be in -1 picture while R states are in $-\frac{3}{2}$ and $-\frac{1}{2}$ pictures. GSO projections are also imposed. RR fields are also part of the string fields.

Construction of $S[\phi]$

Construction of $S[\phi]$

- We expect the variation of the kinetic term of $S[\phi]$ to produce the free EOM $Q_{B}|\psi\rangle=0$. This leads to $S_{k i n}[\phi]=\frac{1}{2 g_{s}^{2}}\langle\psi| c_{0}^{-} Q_{B}|\psi\rangle\left(c_{0}^{-}=\frac{1}{2}\left(c_{0}-\bar{c}_{0}\right)\right)$. In Siegel gauge, the corresponding propagator is given by $\sim \frac{b_{0}^{+}}{L_{0}^{+}},\left(b_{0}^{+}=b_{0}+\bar{b}_{0}\right.$, $\left.L_{0}^{+}=L_{0}+\bar{L}_{0}\right)$.

Construction of $S[\phi]$

- We expect the variation of the kinetic term of $S[\phi]$ to produce the free EOM $Q_{B}|\psi\rangle=0$. This leads to $S_{k i n}[\phi]=\frac{1}{2 g_{s}^{2}}\langle\psi| c_{0}^{-} Q_{B}|\psi\rangle\left(c_{0}^{-}=\frac{1}{2}\left(c_{0}-\bar{c}_{0}\right)\right)$. In Siegel gauge, the corresponding propagator is given by $\sim \frac{b_{0}^{+}}{L_{0}^{+}},\left(b_{0}^{+}=b_{0}+\bar{b}_{0}\right.$, $\left.L_{0}^{+}=L_{0}+\bar{L}_{0}\right)$.
- The vertices of $S[\phi]$ are obtained in a way similar to the usual amplitude computation $\mathcal{A}^{g, n}=\int d \mathcal{M}_{g, n}\left\langle\psi^{\otimes n}\right\rangle_{\Sigma_{g, n}}^{C F T}$. The key differences are:

Construction of $S[\phi]$

- We expect the variation of the kinetic term of $S[\phi]$ to produce the free EOM $Q_{B}|\psi\rangle=0$. This leads to $S_{k i n}[\phi]=\frac{1}{2 g_{s}^{2}}\langle\psi| c_{0}^{-} Q_{B}|\psi\rangle\left(c_{0}^{-}=\frac{1}{2}\left(c_{0}-\bar{c}_{0}\right)\right)$. In Siegel gauge, the corresponding propagator is given by $\sim \frac{b_{0}^{+}}{L_{0}^{+}},\left(b_{0}^{+}=b_{0}+\bar{b}_{0}\right.$, $\left.L_{0}^{+}=L_{0}+\bar{L}_{0}\right)$.
- The vertices of $S[\phi]$ are obtained in a way similar to the usual amplitude computation $\mathcal{A}^{g, n}=\int d \mathcal{M}_{g, n}\left\langle\psi^{\otimes n}\right\rangle_{\Sigma_{g, n}}^{C F T}$. The key differences are:
- We are integrating over only a part of the moduli space called the vertex region. This is such that the Feynman diagrams built by propagators and vertices cover the moduli space exactly once.

Construction of $S[\phi]$

- We expect the variation of the kinetic term of $S[\phi]$ to produce the free EOM $Q_{B}|\psi\rangle=0$. This leads to $S_{k i n}[\phi]=\frac{1}{2 g_{s}^{2}}\langle\psi| c_{0}^{-} Q_{B}|\psi\rangle\left(c_{0}^{-}=\frac{1}{2}\left(c_{0}-\bar{c}_{0}\right)\right)$. In Siegel gauge, the corresponding propagator is given by $\sim \frac{b_{0}^{+}}{L_{0}^{+}},\left(b_{0}^{+}=b_{0}+\bar{b}_{0}\right.$, $\left.L_{0}^{+}=L_{0}+\bar{L}_{0}\right)$.
- The vertices of $S[\phi]$ are obtained in a way similar to the usual amplitude computation $\mathcal{A}^{g, n}=\int d \mathcal{M}_{g, n}\left\langle\psi^{\otimes n}\right\rangle_{\Sigma_{g, n}}^{C F T}$. The key differences are:
- We are integrating over only a part of the moduli space called the vertex region. This is such that the Feynman diagrams built by propagators and vertices cover the moduli space exactly once.
- One needs to specify the local charts around the punctures since ψ is off-shell.

Construction of $S[\phi]$

- We expect the variation of the kinetic term of $S[\phi]$ to produce the free EOM $Q_{B}|\psi\rangle=0$. This leads to $S_{k i n}[\phi]=\frac{1}{2 g_{s}^{2}}\langle\psi| c_{0}^{-} Q_{B}|\psi\rangle\left(c_{0}^{-}=\frac{1}{2}\left(c_{0}-\bar{c}_{0}\right)\right)$. In Siegel gauge, the corresponding propagator is given by $\sim \frac{b_{0}^{+}}{L_{0}^{+}},\left(b_{0}^{+}=b_{0}+\bar{b}_{0}\right.$, $\left.L_{0}^{+}=L_{0}+\bar{L}_{0}\right)$.
- The vertices of $S[\phi]$ are obtained in a way similar to the usual amplitude computation $\mathcal{A}^{g, n}=\int d \mathcal{M}_{g, n}\left\langle\psi^{\otimes n}\right\rangle_{\Sigma_{g, n}}^{C F T}$. The key differences are:
- We are integrating over only a part of the moduli space called the vertex region. This is such that the Feynman diagrams built by propagators and vertices cover the moduli space exactly once.
- One needs to specify the local charts around the punctures since ψ is off-shell.
- It was shown (Hata, Zwiebach 93, Sen 14-15) that different choices of local charts are related via field redefinitions and thus does not affect the on-shell quantities.

Construction of $S[\phi]$

- We expect the variation of the kinetic term of $S[\phi]$ to produce the free EOM $Q_{B}|\psi\rangle=0$. This leads to $S_{k i n}[\phi]=\frac{1}{2 g_{s}^{g}}\langle\psi| c_{0}^{-} Q_{B}|\psi\rangle\left(c_{0}^{-}=\frac{1}{2}\left(c_{0}-\bar{c}_{0}\right)\right)$. In Siegel gauge, the corresponding propagator is given by $\sim \frac{b_{0}^{+}}{L_{0}^{+}},\left(b_{0}^{+}=b_{0}+\bar{b}_{0}\right.$, $\left.L_{0}^{+}=L_{0}+\bar{L}_{0}\right)$.
- The vertices of $S[\phi]$ are obtained in a way similar to the usual amplitude computation $\mathcal{A}^{g, n}=\int d \mathcal{M}_{g, n}\left\langle\psi^{\otimes n}\right\rangle_{\Sigma_{g, n}}^{C F T}$. The key differences are:
- We are integrating over only a part of the moduli space called the vertex region. This is such that the Feynman diagrams built by propagators and vertices cover the moduli space exactly once.
- One needs to specify the local charts around the punctures since ψ is off-shell.
- It was shown (Hata, Zwiebach 93, Sen 14-15) that different choices of local charts are related via field redefinitions and thus does not affect the on-shell quantities.
- For superstrings, PCO locations also enter the definition of the vertices.

3-point vertex

Choice of coordinate system

- Example: For the insertion at $z=0$, take the local chart w_{0} with $\left|w_{0}\right| \leq 1$ to be $z=r w_{0}$ for some positive r. Similarly, $z=1-r w_{1}$ and $z=\left(r w_{\infty}\right)^{-1}$. Different r 's correspond to different cubic vertices.

3-point vertex

Choice of coordinate system

- Example: For the insertion at $z=0$, take the local chart w_{0} with $\left|w_{0}\right| \leq 1$ to be $z=r w_{0}$ for some positive r. Similarly, $z=1-r w_{1}$ and $z=\left(r w_{\infty}\right)^{-1}$.
Different r 's correspond to different cubic vertices.
- $\frac{1}{3!}\left\{\left\{\psi^{\otimes 3}\right\}\right\}=\frac{1}{3!}\left\langle\psi^{\otimes 3}\right\rangle_{r}=\frac{1}{3!} \sum_{i, j, k} \mathcal{U}_{i j k}(r) \phi_{i} \phi_{j} \phi_{k} \subset g_{s}^{2} S[\phi]$.

4-point diagram with a propagator

- Can use propagator and two cubic vertices to draw 4pt Feynman diagram with a propagator. For the Riemann surfaces, we have a plumbing construction of the four-punctured sphere via $w_{0} \tilde{w}_{0}=q:=e^{-s-i \theta}$ with $0 \leq s, 0 \leq \theta<2 \pi$.

4-point diagram with a propagator

- Can use propagator and two cubic vertices to draw 4pt Feynman diagram with a propagator. For the Riemann surfaces, we have a plumbing construction of the four-punctured sphere via $w_{0} \tilde{w}_{0}=q:=e^{-s-i \theta}$ with $0 \leq s, 0 \leq \theta<2 \pi$.
- This produces two real parameter family of four-punctured sphere, equipped with local charts around four punctures induced from the cubic vertex.

4-point vertex

- Feynman diagrams with a propagator generically cannot cover the full moduli space $\mathcal{M}_{0,4}$. We cover the missing parts with the 4 pt vertex.

4-point vertex

- Feynman diagrams with a propagator generically cannot cover the full moduli space $\mathcal{M}_{0,4}$. We cover the missing parts with the 4 pt vertex.
- 4pt vertex is defined by a choice of local charts around each punctures over the blue region of $\mathcal{M}_{0,4}$.

4-point vertex

- Feynman diagrams with a propagator generically cannot cover the full moduli space $\mathcal{M}_{0,4}$. We cover the missing parts with the 4 pt vertex.
- 4pt vertex is defined by a choice of local charts around each punctures over the blue region of $\mathcal{M}_{0,4}$.
- Any local chart choices are fine, as long as there are no 'boundaries.' This guarantees that null-states decouple from the on-shell amplitudes and thus is intimately related to the gauge invariance.

4-point vertex

- $\frac{1}{4!}\left\{\left\{\psi^{\otimes 4}\right\}\right\}=\frac{1}{4!} \int d \mathcal{M}_{0,4}^{\text {vert }}\left\langle\psi^{\otimes 4}\right\rangle_{\text {vert }}=\frac{1}{4!} \sum_{i, j, k, l} \mathcal{U}_{i j k l} \phi_{i} \phi_{j} \phi_{k} \phi_{l} \subset g_{s}^{2} S[\phi]$.

4-point vertex

- $\frac{1}{4!}\left\{\left\{\psi^{\otimes 4}\right\}\right\}=\frac{1}{4!} \int d \mathcal{M}_{0,4}^{\text {vert }}\left\langle\psi^{\otimes 4}\right\rangle_{\text {vert }}=\frac{1}{4!} \sum_{i, j, k, l} \mathcal{U}_{i j k l} \phi_{i} \phi_{j} \phi_{k} \phi_{l} \subset g_{s}^{2} S[\phi]$.
- Can repeat the exercise of plumbing, filling in the missing pieces by vertices, etc. to higher points/genus. No-boundary condition to all orders is called geometric master equation whose solutions are known (e.g. MC 19). It implies that $S_{Q}[\phi]$ thus obtained solves the quantum BV master equation (a technical name for $S_{Q}[\phi]$ being consistent in the sense of gauge invariance).

1 PI action and EOM

- Obtain $S_{Q}[\phi]=\frac{1}{g_{s}^{2}}\left(\frac{1}{2}\langle\psi| c_{0}^{-} Q_{B}|\psi\rangle+\sum_{g, n} \frac{1}{n!}\left\{\left\{\psi^{\otimes n}\right\}\right\}_{\mathcal{L}_{g, n}}\right)$.

1 PI action and EOM

- Obtain $S_{Q}[\phi]=\frac{1}{g_{s}^{2}}\left(\frac{1}{2}\langle\psi| c_{0}^{-} Q_{B}|\psi\rangle+\sum_{g, n} \frac{1}{n!}\left\{\left\{\psi^{\otimes n}\right\}\right\}_{\mathcal{L}_{g, n}}\right)$.
- Collect 1PI diagrams and obtain 1PI effective action $S[\phi]=\frac{1}{g_{s}^{2}}\left(\frac{1}{2}\langle\psi| c_{0}^{-} Q_{B}|\psi\rangle+\sum_{n} \frac{1}{n!}\left\{\psi^{\otimes n}\right\}\right)$.

1 PI action and EOM

- Obtain $S_{Q}[\phi]=\frac{1}{g_{s}^{2}}\left(\frac{1}{2}\langle\psi| c_{0}^{-} Q_{B}|\psi\rangle+\sum_{g, n} \frac{1}{n!}\left\{\left\{\psi^{\otimes n}\right\}\right\}_{\mathcal{L}_{g, n}}\right)$.
- Collect 1PI diagrams and obtain 1PI effective action $S[\phi]=\frac{1}{g_{s}^{2}}\left(\frac{1}{2}\langle\psi| c_{0}^{-} Q_{B}|\psi\rangle+\sum_{n} \frac{1}{n!}\left\{\psi^{\otimes n}\right\}\right)$.
- EOM: $\delta S[\phi]=0 \Rightarrow Q_{B}|\psi\rangle+\sum_{n} \frac{1}{n!}\left|\left[\psi^{\otimes n}\right]\right\rangle=0$, where $\left\langle\psi_{1}\right| c_{0}^{-}\left|\left[\psi_{2} \ldots \psi_{n}\right]\right\rangle=\left\{\psi_{1} \ldots \psi_{n}\right\}$.

1 PI action and EOM

- Obtain $S_{Q}[\phi]=\frac{1}{g_{s}^{2}}\left(\frac{1}{2}\langle\psi| c_{0}^{-} Q_{B}|\psi\rangle+\sum_{g, n} \frac{1}{n!}\left\{\left\{\psi^{\otimes n}\right\}\right\}_{\mathcal{V}_{g, n}}\right)$.
- Collect 1PI diagrams and obtain 1PI effective action $S[\phi]=\frac{1}{g_{s}^{2}}\left(\frac{1}{2}\langle\psi| c_{0}^{-} Q_{B}|\psi\rangle+\sum_{n} \frac{1}{n!}\left\{\psi^{\otimes n}\right\}\right)$.
- EOM: $\delta S[\phi]=0 \Rightarrow Q_{B}|\psi\rangle+\sum_{n} \frac{1}{n!}\left|\left[\psi^{\otimes n}\right]\right\rangle=0$, where $\left\langle\psi_{1}\right| c_{0}^{-}\left|\left[\psi_{2} \ldots \psi_{n}\right]\right\rangle=\left\{\psi_{1} \ldots \psi_{n}\right\}$.
- To find a solution in some perturbative expansion, take the ansatz $|\psi\rangle=\left|\phi_{*}\right\rangle=\sum_{k=1}^{\infty} \mu^{k}\left|U_{k}\right\rangle$, where μ is the expansion parameter. Plug into EOM and solve order by order in μ.

1 PI action and EOM

- Obtain $S_{Q}[\phi]=\frac{1}{g_{s}^{2}}\left(\frac{1}{2}\langle\psi| c_{0}^{-} Q_{B}|\psi\rangle+\sum_{g, n} \frac{1}{n!}\left\{\left\{\psi^{\otimes n}\right\}\right\} \mathcal{\nu}_{g, n}\right)$.
- Collect 1PI diagrams and obtain 1PI effective action
$S[\phi]=\frac{1}{g_{s}^{2}}\left(\frac{1}{2}\langle\psi| c_{0}^{-} Q_{B}|\psi\rangle+\sum_{n} \frac{1}{n!}\left\{\psi^{\otimes n}\right\}\right)$.
- EOM: $\delta S[\phi]=0 \Rightarrow Q_{B}|\psi\rangle+\sum_{n} \frac{1}{n!}\left|\left[\psi^{\otimes n}\right]\right\rangle=0$, where $\left\langle\psi_{1}\right| c_{0}^{-}\left|\left[\psi_{2} \ldots \psi_{n}\right]\right\rangle=\left\{\psi_{1} \ldots \psi_{n}\right\}$.
- To find a solution in some perturbative expansion, take the ansatz $|\psi\rangle=\left|\phi_{*}\right\rangle=\sum_{k=1}^{\infty} \mu^{k}\left|U_{k}\right\rangle$, where μ is the expansion parameter. Plug into EOM and solve order by order in μ.
- For classical (sphere) solutions, we have $\mathcal{O}\left(\mu^{1}\right): Q_{B} U_{1}=0$ $\mathcal{O}\left(\mu^{2}\right): Q_{B} U_{2}+\frac{1}{2}\left[U_{1}^{\otimes 2}\right]=0$ where $\left[U_{1}^{\otimes 2}\right]$ is variation of the sphere 3 pt vertex involving two U_{1} 's. It roughly corresponds to the OPE of two U_{1} 's, but evaluated in some special local charts.

1 PI action and EOM

- How do we solve $Q_{B} U_{2}+\frac{1}{2}\left[U_{1}^{\otimes 2}\right]=0$?

1 PI action and EOM

- How do we solve $Q_{B} U_{2}+\frac{1}{2}\left[U_{1}^{\otimes 2}\right]=0$?
- Split the equation into 'massless' and 'massive' sectors. Introduce P_{0}, which projects to the L_{0}^{+}-nilpotent sector. $\left(1-P_{0}\right)$-projected space is where Q_{B} can be inverted. Choose Siegel gauge condition for ($1-P_{0}$)-projected space.

1 PI action and EOM

- How do we solve $Q_{B} U_{2}+\frac{1}{2}\left[U_{1}^{\otimes 2}\right]=0$?
- Split the equation into 'massless' and 'massive' sectors. Introduce P_{0}, which projects to the L_{0}^{+}-nilpotent sector. $\left(1-P_{0}\right)$-projected space is where Q_{B} can be inverted. Choose Siegel gauge condition for ($1-P_{0}$)-projected space.
- $U_{2}=w_{2}-\frac{1}{2} \frac{b_{0}^{+}}{L_{0}^{+}}\left(1-P_{0}\right)\left[U_{1}^{\otimes 2}\right]$, where the 'massless' part w_{2} satisfies $P_{0} w_{2}=w_{2}$ and $Q_{B} w_{2}=-\frac{1}{2} P_{0}\left[U_{1}^{\otimes 2}\right]$.

1 PI action and EOM

- How do we solve $Q_{B} U_{2}+\frac{1}{2}\left[U_{1}^{\otimes 2}\right]=0$?
- Split the equation into 'massless' and 'massive' sectors. Introduce P_{0}, which projects to the L_{0}^{+}-nilpotent sector. $\left(1-P_{0}\right)$-projected space is where Q_{B} can be inverted. Choose Siegel gauge condition for ($1-P_{0}$)-projected space.
- $U_{2}=w_{2}-\frac{1}{2} \frac{b_{0}^{+}}{L_{0}^{+}}\left(1-P_{0}\right)\left[U_{1}^{\otimes 2}\right]$, where the 'massless' part w_{2} satisfies $P_{0} w_{2}=w_{2}$ and $Q_{B} w_{2}=-\frac{1}{2} P_{0}\left[U_{1}^{\otimes 2}\right]$.
- If $P_{0}\left[U_{1}^{\otimes 2}\right]$ is NOT Q_{B}-exact, it means that the EOM cannot be solved. This corresponds to the possible existence of massless tadpoles.

Linearized EOM for the spectrum

Linearized EOM for the spectrum

- $S_{*}[\varphi]:=S\left[\phi_{*}+\varphi\right]$ is the action describing the physics around the vacuum ϕ_{*} (equivalently $\left|\psi_{*}\right\rangle$). Its terms are organized order by order in μ.

Linearized EOM for the spectrum

- $S_{*}[\varphi]:=S\left[\phi_{*}+\varphi\right]$ is the action describing the physics around the vacuum ϕ_{*} (equivalently $\left|\psi_{*}\right\rangle$). Its terms are organized order by order in μ.
- By varying the quadratic term of $S_{*}[\varphi]$, we obtain the linearized EOM

$$
\left(Q_{B}+K\right)|\varphi\rangle=: \hat{Q}_{B}|\varphi\rangle=0, \text { where } K|A\rangle=\sum_{n=1}^{\infty} \frac{1}{n!}\left|\left[\phi_{*}^{\otimes n} A\right]\right\rangle .
$$

Linearized EOM for the spectrum

- $S_{*}[\varphi]:=S\left[\phi_{*}+\varphi\right]$ is the action describing the physics around the vacuum ϕ_{*} (equivalently $\left|\psi_{*}\right\rangle$). Its terms are organized order by order in μ.
- By varying the quadratic term of $S_{*}[\varphi]$, we obtain the linearized EOM

$$
\left(Q_{B}+K\right)|\varphi\rangle=: \hat{Q}_{B}|\varphi\rangle=0, \text { where } K|A\rangle=\sum_{n=1}^{\infty} \frac{1}{n!}\left|\left[\phi_{*}^{\otimes n} A\right]\right\rangle .
$$

- Using that ϕ_{*} is a background solution, it is straightward to show that $\hat{Q}_{B}^{2}=0$. Therefore, the free string spectrum of the background ϕ_{*} is given by \hat{Q}_{B}-cohomology.

Linearized EOM for the spectrum

- $S_{*}[\varphi]:=S\left[\phi_{*}+\varphi\right]$ is the action describing the physics around the vacuum ϕ_{*} (equivalently $\left|\psi_{*}\right\rangle$). Its terms are organized order by order in μ.
- By varying the quadratic term of $S_{*}[\varphi]$, we obtain the linearized EOM

$$
\left(Q_{B}+K\right)|\varphi\rangle=: \hat{Q}_{B}|\varphi\rangle=0, \text { where } K|A\rangle=\sum_{n=1}^{\infty} \frac{1}{n!}\left|\left[\phi_{*}^{\otimes n} A\right]\right\rangle
$$

- Using that ϕ_{*} is a background solution, it is straightward to show that $\hat{Q}_{B}^{2}=0$. Therefore, the free string spectrum of the background ϕ_{*} is given by \hat{Q}_{B}-cohomology.
- One can solve for the spectrum order by order in μ.

Example: $A d S_{5} \times S^{5}$ (unpublished, w/ Agmon, Collier, Yin)

Example: $\operatorname{AdS}_{5} \times S^{5}$ (unpublished, w/ Agmon, Collier, Yin)

- Reverse-engineer the statement that AdS at large radius is flat. We start with IIB on $\mathbb{R}^{1,9}$, and find background solution for AdS order by order in $\mu=R^{-1}$.

Example: $\operatorname{AdS} S_{5} \times S^{5}$ (unpublished, w/ Agmon, Collier, Yin)

- Reverse-engineer the statement that AdS at large radius is flat. We start with IIB on $\mathbb{R}^{1,9}$, and find background solution for $A d S$ order by order in $\mu=R^{-1}$.
- At order μ, we turn on F_{5}. EOM was $Q_{B} U_{1}=0$. We take $U_{1}=N_{R}\left(\gamma^{01234}\right)_{\alpha \beta} c \bar{c} e^{-\phi / 2} S^{\alpha} e^{-\bar{\phi} / 2} \bar{S}^{\beta}$ for some normalization N_{R}.

Example: $\operatorname{AdS}_{5} \times S^{5}$ (unpublished, w/ Agmon, Collier, Yin)

- Reverse-engineer the statement that AdS at large radius is flat. We start with IIB on $\mathbb{R}^{1,9}$, and find background solution for $A d S$ order by order in $\mu=R^{-1}$.
- At order μ, we turn on F_{5}. EOM was $Q_{B} U_{1}=0$. We take $U_{1}=N_{R}\left(\gamma^{01234}\right)_{\alpha \beta} c \bar{c} e^{-\phi / 2} S^{\alpha} e^{-\bar{\phi} / 2} \bar{S}^{\beta}$ for some normalization N_{R}.
- At order μ^{2}, the EOM reads
$\left(R_{\mu \bar{\mu}}=\left(\eta_{a b},-\delta_{i j}\right)_{\mu \bar{\mu}}, \mu=0,1, \ldots, 9, a=0, \ldots, 4, i=5, \ldots, 9\right)$
$Q_{B} w_{2}=-\frac{1}{2} P_{0}\left[U_{1}^{\otimes 2}\right]=32 \pi N_{R}^{2} C_{0}^{+} R_{\mu \bar{\mu}} c \bar{c} e^{-\phi} \psi^{\mu} e^{-\bar{\phi}} \bar{\psi}^{\bar{\mu}}$.

Example: $A d S_{5} \times S^{5}$ (unpublished, w/ Agmon, Collier, Yin)

- Reverse-engineer the statement that AdS at large radius is flat. We start with IIB on $\mathbb{R}^{1,9}$, and find background solution for AdS order by order in $\mu=R^{-1}$.
- At order μ, we turn on F_{5}. EOM was $Q_{B} U_{1}=0$. We take $U_{1}=N_{R}\left(\gamma^{01234}\right)_{\alpha \beta} c \bar{c} e^{-\phi / 2} S^{\alpha} e^{-\bar{\phi} / 2} \bar{S}^{\beta}$ for some normalization N_{R}.
- At order μ^{2}, the EOM reads
$\left(R_{\mu \bar{\mu}}=\left(\eta_{a b},-\delta_{i j}\right)_{\mu \bar{\mu}}, \mu=0,1, \ldots, 9, a=0, \ldots, 4, i=5, \ldots, 9\right)$
$Q_{B} w_{2}=-\frac{1}{2} P_{0}\left[U_{1}^{\otimes 2}\right]=32 \pi N_{R}^{2} C_{0}^{+} R_{\mu \bar{\mu}} c \bar{c} e^{-\phi} \psi^{\mu} e^{-\bar{\phi}} \bar{\psi}^{\bar{\mu}}$.
- The solution can be obtained straightforwardly

$$
\begin{aligned}
& w_{2}=N_{N S} C \bar{c}\left(G_{2 \mu \bar{\mu}} e^{-\phi} \psi^{\mu} e^{-\bar{\phi}} \bar{\psi}^{\bar{\mu}}-3 G_{2 \nu}^{\nu}\left(\eta \bar{\partial} \bar{\xi} e^{-2 \bar{\phi}}-\partial \xi e^{-2 \phi} \bar{\eta}\right)\right), \\
& G_{2 \mu \bar{\mu}}(X)=\delta_{\mu}^{a} \delta_{\bar{\mu}}^{\bar{a}} X_{a} X_{\bar{a}}-\delta_{\mu}^{i} \delta_{\bar{i}}^{\bar{i}} X_{i} X_{\bar{i}}, \quad N_{N S}=-\frac{1}{4 \pi}, \quad N_{R}=\frac{1}{8 \pi} .
\end{aligned}
$$

Example: $\operatorname{AdS}_{5} \times S^{5}$ (unpublished, w/ Agmon, Collier, Yin)

- Reverse-engineer the statement that AdS at large radius is flat. We start with IIB on $\mathbb{R}^{1,9}$, and find background solution for $A d S$ order by order in $\mu=R^{-1}$.
- At order μ, we turn on F_{5}. EOM was $Q_{B} U_{1}=0$. We take $U_{1}=N_{R}\left(\gamma^{01234}\right)_{\alpha \beta} c \bar{c} e^{-\phi / 2} S^{\alpha} e^{-\bar{\phi} / 2} \bar{S}^{\beta}$ for some normalization N_{R}.
- At order μ^{2}, the EOM reads
$\left(R_{\mu \bar{\mu}}=\left(\eta_{a b},-\delta_{i j}\right)_{\mu \bar{\mu}}, \mu=0,1, \ldots, 9, a=0, \ldots, 4, i=5, \ldots, 9\right)$
$Q_{B} w_{2}=-\frac{1}{2} P_{0}\left[U_{1}^{\otimes 2}\right]=32 \pi N_{R}^{2} c_{0}^{+} R_{\mu \bar{\mu}} c \bar{c} e^{-\phi} \psi^{\mu} e^{-\bar{\phi}} \bar{\psi}^{\bar{\mu}}$.
- The solution can be obtained straightforwardly

$$
\begin{aligned}
& w_{2}=N_{N S} c \bar{c}\left(G_{2 \mu \bar{\mu}} e^{-\phi} \psi^{\mu} e^{-\bar{\phi}} \bar{\psi}^{\bar{\mu}}-3 G_{2 \nu}^{\nu}\left(\eta \bar{\partial} \bar{\xi} e^{-2 \bar{\phi}}-\partial \xi e^{-2 \phi} \bar{\eta}\right)\right), \\
& G_{2 \mu \bar{\mu}}(X)=\delta_{\mu}^{a} \delta_{\bar{\mu}}^{\bar{a}} X_{a} X_{\bar{a}}-\delta_{\mu}^{i} \delta_{\bar{i}}^{\bar{i}} X_{i} X_{\bar{i}}, \quad N_{N S}=-\frac{1}{4 \pi}, \quad N_{R}=\frac{1}{8 \pi} .
\end{aligned}
$$

- $G_{2 \mu \bar{\mu}}(X)$ is just the $\mathcal{O}\left(R^{-2}\right)$ part of the $A d S_{5} \times S^{5}$ metric expanded in R^{-1}.

Example: $A d S_{5} \times S^{5}$

- We can also solve for the spectrum using the linearized EOM e.g. axion field $P_{0} \varphi=f_{\alpha \beta} c \bar{c} e^{-\phi / 2} S^{\alpha} e^{-\bar{\phi} / 2} \bar{S}^{\beta}+\mathcal{O}\left(\mu^{3}\right)$, where $f=f_{0}+\mu f_{1}+\mu^{2} f_{2}+\ldots=\gamma^{\mu} f_{\mu}^{(1)}$ is the 1-form field strength.

Example: $\operatorname{AdS}_{5} \times S^{5}$

- We can also solve for the spectrum using the linearized EOM e.g. axion field $P_{0} \varphi=f_{\alpha \beta} c \bar{c} e^{-\phi / 2} S^{\alpha} e^{-\bar{\phi} / 2} \bar{S}^{\beta}+\mathcal{O}\left(\mu^{3}\right)$, where $f=f_{0}+\mu f_{1}+\mu^{2} f_{2}+\ldots=\gamma^{\mu} f_{\mu}^{(1)}$ is the 1-form field strength.
- Solution is given by: $f_{0 \mu}=\partial_{\mu} c_{0}$ with $\partial_{\mu} \partial^{\mu} c_{0}=0, \quad f_{1}=0, \quad f_{2 \mu}=\partial_{\mu} c_{2}+k_{\mu}(X)$, where $k_{\mu}(X)$ is determined by c_{0}, and c_{2} satisfies

$$
\partial_{\mu} \partial^{\mu} c_{2}+\left(X^{a} X^{b} \partial_{a} \partial_{b}+5 X^{a} \partial_{a}-X^{i} X^{j} \partial_{i} \partial_{j}-5 X^{i} \partial_{i}\right) c_{0}=0 .
$$

This equation is nothing but $\nabla_{A d S_{5} \times S_{5}}^{2} c=0$ expanded to order R^{-2}.

Example: $\operatorname{AdS}_{3} \times S^{3} \times T^{4}(1811.00032 \mathrm{w} /$ Collier, Yin $)$

Example: $\operatorname{AdS}_{3} \times S^{3} \times T_{(1811.00032}$ w/ Collier, Yin $)$

- IIB supergravity background:

$$
\begin{aligned}
& d s^{2}=R^{2}\left(d s_{A d S_{3}}^{2}+d s_{S^{3}}^{2}\right)+d s_{T^{4}}^{2} \\
& H_{3}=2 q R^{2}\left(w_{A d S_{3}}+w_{S^{3}}\right), \quad F_{3}=2 \sqrt{1-q^{2}} R^{2}\left(w_{A d S_{3}}+w_{S^{3}}\right),
\end{aligned}
$$

where $q=1-\frac{\mu^{2}}{2}+\mathcal{O}\left(\mu^{3}\right), q R^{2}=\alpha^{\prime} k, k \in \mathbb{N}$.

Example: $\operatorname{AdS}_{3} \times S^{3} \times T^{4}(1811.00032 \mathrm{w} /$ Collier, Yin $)$

- IIB supergravity background:

$$
\begin{aligned}
& d s^{2}=R^{2}\left(d s_{A d S_{3}}^{2}+d S_{S^{3}}^{2}\right)+d s_{T^{4}}^{2} \\
& H_{3}=2 q R^{2}\left(w_{A d S_{3}}+w_{S^{3}}\right), \quad F_{3}=2 \sqrt{1-q^{2}} R^{2}\left(w_{A d S_{3}}+w_{S^{3}}\right),
\end{aligned}
$$

where $q=1-\frac{\mu^{2}}{2}+\mathcal{O}\left(\mu^{3}\right), q R^{2}=\alpha^{\prime} k, k \in \mathbb{N}$.

- $q=1$: pure NSNS background with exact worldsheet CFT $S L(2, \mathbb{R})_{k+2} \oplus S U(2)_{k-2} \oplus U(1)^{4} \oplus 10$ free fermions (Maldacena, Ooguri $00-01)$. We take this background as \mathcal{T}_{0}.

Example: $\operatorname{AdS}_{3} \times S^{3} \times T_{(1811.00032}$ w/ Collier, Yin $)$

- IIB supergravity background:

$$
\begin{aligned}
& d s^{2}=R^{2}\left(d s_{A d S_{3}}^{2}+d S_{S^{3}}^{2}\right)+d s_{T^{4}}^{2} \\
& H_{3}=2 q R^{2}\left(w_{A d S_{3}}+w_{S^{3}}\right), \quad F_{3}=2 \sqrt{1-q^{2}} R^{2}\left(w_{A d S_{3}}+w_{S^{3}}\right),
\end{aligned}
$$

where $q=1-\frac{\mu^{2}}{2}+\mathcal{O}\left(\mu^{3}\right), q R^{2}=\alpha^{\prime} k, k \in \mathbb{N}$.

- $q=1$: pure NSNS background with exact worldsheet CFT $S L(2, \mathbb{R})_{k+2} \oplus S U(2)_{k-2} \oplus U(1)^{4} \oplus 10$ free fermions (Maldacena, Ooguri $00-01)$. We take this background as \mathcal{T}_{0}.
- We study the mixed flux solution. Turn on F_{3} profile at the leading order: $U_{1} \sim c \bar{c} e^{-\phi / 2} S_{+}^{\alpha \alpha^{\prime}} \Theta_{+} e^{-\bar{\phi} / 2} \tilde{S}_{+}^{\beta \beta^{\prime}} \tilde{\Theta}_{+}\left(V_{j=-\frac{1}{2}}^{s l}\right)_{\alpha \beta}\left(V_{j^{\prime}=\frac{1}{2}}^{s u}\right)_{\alpha^{\prime} \beta^{\prime}}$.

Example: $\operatorname{AdS}_{3} \times S^{3} \times T_{(1811.00032}$ w/ Collier, Yin $)$

- IIB supergravity background:

$$
\begin{aligned}
& d s^{2}=R^{2}\left(d s_{A d S_{3}}^{2}+d s_{S^{3}}^{2}\right)+d s_{T^{4}}^{2} \\
& H_{3}=2 q R^{2}\left(w_{A d S_{3}}+w_{S^{3}}\right), \quad F_{3}=2 \sqrt{1-q^{2}} R^{2}\left(w_{A d S_{3}}+w_{S^{3}}\right),
\end{aligned}
$$

where $q=1-\frac{\mu^{2}}{2}+\mathcal{O}\left(\mu^{3}\right), q R^{2}=\alpha^{\prime} k, k \in \mathbb{N}$.

- $q=1$: pure NSNS background with exact worldsheet CFT $S L(2, \mathbb{R})_{k+2} \oplus S U(2)_{k-2} \oplus U(1)^{4} \oplus 10$ free fermions (Maldacena, Ooguri $00-01)$. We take this background as \mathcal{T}_{0}.
- We study the mixed flux solution. Turn on F_{3} profile at the leading order: $U_{1} \sim c \bar{c} e^{-\phi / 2} S_{+}^{\alpha \alpha^{\prime}} \Theta_{+} e^{-\bar{\phi} / 2} \tilde{S}_{+}^{\beta \beta^{\prime}} \tilde{\Theta}_{+}\left(V_{j=-\frac{1}{2}}^{s l}\right)_{\alpha \beta}\left(V_{j^{\prime}=\frac{1}{2}}^{s u}\right)_{\alpha^{\prime} \beta^{\prime}}$,
- At order μ^{2}, we have $U_{2}=-\frac{1}{2} \frac{b_{0}^{+}}{L_{0}^{+}}\left(1-P_{0}\right)\left[U_{1}^{\otimes 2}\right]$.

Spectrum of pulsating strings

- Study spectrum of pulsating strings in mixed flux. At the pure NSNS point, the corresponding vertex operator is

$$
\varphi_{0}=c \tilde{c} e^{-\phi-\tilde{\phi}} V_{j_{0, j}, n}, n, \quad V_{j_{0}, j^{\prime}, n} \sim \psi^{-} \tilde{\psi}^{-}\left(J_{-1}\right)^{n}\left(\tilde{J}_{-1}\right)^{n} V_{j_{0}, j_{0}, j_{0}}^{s l} V_{j^{\prime}, j^{\prime}, j^{\prime}}^{s u} V_{T^{4}} .
$$

j_{0} is $S L(2)$ quantum number for discrete representations, while j^{\prime} is $S U(2)$ quantum number which is a nonnegative half integer.

Spectrum of pulsating strings

- Study spectrum of pulsating strings in mixed flux. At the pure NSNS point, the corresponding vertex operator is

$$
\varphi_{0}=c \tilde{c} e^{-\phi-\tilde{\phi}} V_{j_{0}, j^{\prime}, n}, \quad V_{j_{0}, j^{\prime}, n} \sim \psi^{-} \tilde{\psi}^{-}\left(J_{-1}\right)^{n}\left(\tilde{J} \tilde{J}_{-1}\right)^{n} V_{j_{0}, j_{0}, j_{0}}^{s l} V_{j^{\prime}, j^{\prime}, j^{\prime}}^{s u} V_{T^{4}} .
$$

j_{0} is $S L(2)$ quantum number for discrete representations, while j^{\prime} is $S U(2)$ quantum number which is a nonnegative half integer.

- On-shell condition $Q_{B} \varphi_{0}=0$ leads to $-\frac{j_{0}\left(j_{0}-1\right)}{k}+n+\frac{j^{\prime}\left(j^{\prime}+1\right)}{k}+h_{T^{4}}=0$. We study how this dispersion relation gets deformed as F_{3} is turned on. Since j^{\prime} and n are discrete labels, only j_{0} will change: $j=j_{0}+\delta j$. This corresponds to change in AdS_{3} mass/energy.

Spectrum of pulsating strings

- Study spectrum of pulsating strings in mixed flux. At the pure NSNS point, the corresponding vertex operator is

$$
\varphi_{0}=c \tilde{c} e^{-\phi-\tilde{\phi}} V_{j_{0}, j^{\prime}, n}, \quad V_{j_{0}, j^{\prime}, n} \sim \psi^{-} \tilde{\psi}^{-}\left(J_{-1}\right)^{n}\left(\tilde{J}_{-1}\right)^{n} V_{j_{0}, j_{0}, j_{0}}^{s l} V_{j^{\prime}, j^{\prime}, j^{\prime}}^{s^{\prime}} V_{T^{4}} .
$$

j_{0} is $S L(2)$ quantum number for discrete representations, while j^{\prime} is $S U(2)$ quantum number which is a nonnegative half integer.

- On-shell condition $Q_{B} \varphi_{0}=0$ leads to $-\frac{j_{0}\left(j_{0}-1\right)}{k}+n+\frac{j^{\prime}\left(j^{\prime}+1\right)}{k}+h_{T^{4}}=0$. We study how this dispersion relation gets deformed as F_{3} is turned on. Since j^{\prime} and n are discrete labels, only j_{0} will change: $j=j_{0}+\delta j$. This corresponds to change in AdS_{3} mass/energy.
- At order μ, due to $P_{0}\left[U_{1} \varphi_{0}\right]=0$, we take the same solution as the zeroth order solution.

Spectrum of pulsating strings (non-BPS)

- To order μ^{2}, we take the solution of the form

$$
\varphi_{2}=c \tilde{c} \tilde{c}^{-\phi-\tilde{\phi}} V_{j_{0}+\mu^{2} j_{2}, j^{\prime}, n}+\text { (ghosts, descendants). }
$$

Plugging this into the linearized EOM, we obtain

$$
\frac{2 j_{2}\left(2 j_{0}-1\right)}{k}=\mathcal{A}\left(\varphi_{0}, \varphi_{0}, U_{1}, U_{1}\right)
$$

where the RHS is the usual on-shell 4 pt amplitude.

Spectrum of pulsating strings (non-BPS)

- To order μ^{2}, we take the solution of the form

$$
\varphi_{2}=c \tilde{c} e^{-\phi-\tilde{\phi}} V_{j_{0}+\mu^{2} j_{2}, j^{\prime}, n}+\text { (ghosts, descendants) }
$$

Plugging this into the linearized EOM, we obtain

$$
\frac{2 j_{2}\left(2 j_{0}-1\right)}{k}=\mathcal{A}\left(\varphi_{0}, \varphi_{0}, U_{1}, U_{1}\right),
$$

where the RHS is the usual on-shell 4 pt amplitude.

- Sample results for $\delta h=-\frac{\alpha^{\prime} \delta m^{2}}{4}=\frac{\mu^{2} j_{2}\left(2 j_{j}-1\right)}{k}$ with $n=1, h_{T^{4}}=0$:

	j^{\prime}	0	$\frac{1}{2}$	1	$\frac{3}{2}$
2	4.51353	7.7253			
7	2.61214	3.18173	5.03926	38.0435	
8	1.97318	2.21068	2.76008	4.25035	15.9923

Example: Flux compactification (2311.04959 + W.I.P, w/ Kim)

Example: Flux compactification (2311.04959 + W.I.P, w/ Kim)

- GKP (Giddings, Kachru, Polchinski 01): use fluxes, D-branes, and O-planes to obtain IIB supergravity backgrounds with less SUSY and moduli stabilization.

Example: Flux compactification (2311.04959 + W.I.P, w/ Kim)

- GKP (Giddings, Kachru, Polchinski 01): use fluxes, D-branes, and O-planes to obtain IIB supergravity backgrounds with less SUSY and moduli stabilization.
- Due to RR fluxes, stringy observables in GKP backgrounds have been considered very tough to study e.g. stringy corrections to Kahler potential.

Example: Flux compactification (2311.04959 + W.I.P, w/ Kim)

- GKP (Giddings, Kachru, Polchinski 01): use fluxes, D-branes, and O-planes to obtain IIB supergravity backgrounds with less SUSY and moduli stabilization.
- Due to RR fluxes, stringy observables in GKP backgrounds have been considered very tough to study e.g. stringy corrections to Kahler potential.
- Maybe SFT can help? The relevant open-closed-unoriented super-SFT has recently been constructed (Moosavian, Sen, Verma 19).

Example: Flux compactification

- Consider IIB flux compactification:

$$
\begin{aligned}
& d s^{2}=G_{A B} d X^{A} d X^{B}=e^{2 A(y)} d x_{\mu} d x^{\mu}+e^{-2 A(y)} g_{i j}(y) d y^{i} d y^{j}, \\
& \tilde{F}_{5}=\left(1+*_{10}\right) d \alpha(y) d x^{0} d x^{1} d x^{2} d x^{3} .
\end{aligned}
$$

$\mu=0, \ldots, 3$ are non-compact flat directions while $i=1, \ldots, 6$ are along the compact CY 3 -fold \mathcal{X}. Consider the orientifold $\mathcal{X} / \mathcal{I}$ with $\mathcal{I}^{2}=1$.

Example: Flux compactification

- Consider IIB flux compactification:

$$
\begin{aligned}
& d s^{2}=G_{A B} d X^{A} d X^{B}=e^{2 A(y)} d x_{\mu} d x^{\mu}+e^{-2 A(y)} g_{i j}(y) d y^{i} d y^{j} \\
& \tilde{F}_{5}=\left(1+*_{10}\right) d \alpha(y) d x^{0} d x^{1} d x^{2} d x^{3} .
\end{aligned}
$$

$\mu=0, \ldots, 3$ are non-compact flat directions while $i=1, \ldots, 6$ are along the compact CY 3 -fold \mathcal{X}. Consider the orientifold $\mathcal{X} / \mathcal{I}$ with $\mathcal{I}^{2}=1$.

- H_{3} and F_{3} fluxes only have i, j components, and D3-branes and O3-planes are spacetime-filling along x^{μ} (no D7/O7 for simplicity).

Example: Flux compactification

- Consider IIB flux compactification:

$$
\begin{aligned}
& d s^{2}=G_{A B} d X^{A} d X^{B}=e^{2 A(y)} d x_{\mu} d x^{\mu}+e^{-2 A(y)} g_{i j}(y) d y^{i} d y^{j} \\
& \tilde{F}_{5}=\left(1+*_{10}\right) d \alpha(y) d x^{0} d x^{1} d x^{2} d x^{3} .
\end{aligned}
$$

$\mu=0, \ldots, 3$ are non-compact flat directions while $i=1, \ldots, 6$ are along the compact CY 3 -fold \mathcal{X}. Consider the orientifold $\mathcal{X} / \mathcal{I}$ with $\mathcal{I}^{2}=1$.

- H_{3} and F_{3} fluxes only have i, j components, and D3-branes and O3-planes are spacetime-filling along x^{μ} (no D7/O7 for simplicity).
- Plug the ansatz into IIB supergravity EOM:

$$
\begin{aligned}
& \text { ISD: } *_{6} G_{3}=i G_{3}, \quad G_{3}=F_{3}-\tau H_{3}, \\
& \text { Bianchi : } d H_{3}=d F_{3}=0, d \tilde{F}_{5}=H_{3} \wedge F_{3}+2 \mu_{3} \kappa_{10}^{2} \rho_{D 3}^{l o c} d V o l_{\mathcal{X} / \mathcal{I}}, \\
& \text { where } \rho_{D 3}^{\text {oc }}=\sum_{y_{D 3}} \delta^{(6)}\left(y-y_{D 3}\right)-\frac{1}{4} \sum_{y_{O 3}} \delta^{(6)}\left(y-y_{O 3}\right), \\
& \text { and } e^{4 A(y)}=\alpha(y) \Rightarrow \nabla^{2}\left(\alpha^{-1}\right)=\frac{1}{31 \mathrm{~m} \tau}\left|G_{3}\right|^{2}+\mu_{3} \kappa_{10}^{2} \rho_{D 3}^{\text {Ioc. } .}
\end{aligned}
$$

Example: Flux compactification

- For $\mathcal{O}(1)$ quantized fluxes, ISD condition requires $g_{i j}(y)$ to be correlated with g_{s}. This may be achieved by having special choices of 3 -form fluxes and large complex structure moduli ($\sim g_{s}^{-1}$) (Demirtas, Kim, McAllister, Moritz 19), where perturbative $4 \mathrm{~d} \mathcal{N}=1$ SUSY is preserved simultaneously.

Example: Flux compactification

- For $\mathcal{O}(1)$ quantized fluxes, ISD condition requires $g_{i j}(y)$ to be correlated with g_{s}. This may be achieved by having special choices of 3-form fluxes and large complex structure moduli ($\sim g_{s}^{-1}$) (Demirtas, Kim, McAllister, Moritz 19), where perturbative $4 \mathrm{~d} \mathcal{N}=1$ SUSY is preserved simultaneously.
- An explicit example of toroidal orientifold T^{6} / \mathcal{I} (Cicoli, Licheri, Mahanta, Maharana 22):

$$
\begin{aligned}
& T^{6}: Z^{i} \sim Z^{i}+1 \sim Z^{i}+u_{i}, \quad Z^{i}=y^{2 i-1}+u_{i} y^{2 i}, \quad i=1,2,3, \\
& \mathcal{I}:\left(Z^{1}, Z^{2}, Z^{3}\right) \rightarrow-\left(Z^{1}, Z^{2}, Z^{3}\right) \Rightarrow 64 \mathrm{O}, \\
& \frac{1}{(2 \pi)^{2} \alpha^{\prime}} F_{3}=4 d y^{2} d y^{3} d y^{5}-2 d y^{1} d y^{4} d y^{5}-2 d y^{1} d y^{3} d y^{6}, \\
& \frac{1}{(2 \pi)^{2} \alpha^{\prime}} H_{3}=4 d y^{1} d y^{4} d y^{6}-2 d y^{2} d y^{3} d y^{6}-2 d y^{2} d y^{4} d y^{5} .
\end{aligned}
$$

Example: Flux compactification

- At string tree-level, $4 \mathrm{~d} \mathcal{N}=1$ superpotential is given by $W_{\text {tree }}=\int_{\mathcal{X} / \mathcal{I}} G_{3} \wedge \Omega$ (Gukov, Vafa, Witten 99). Non-renormalization theorem states that this is perturbatively exact in α^{\prime} and $g_{s}: W_{\text {pert }}=W_{\text {tree }}$ (Burgess, Escoda, Quevedo 05).

Example: Flux compactification

- At string tree-level, $4 \mathrm{~d} \mathcal{N}=1$ superpotential is given by $W_{\text {tree }}=\int_{\mathcal{X} / \mathcal{I}} G_{3} \wedge \Omega$ (Gukov, Vafa, Witten 99). Non-renormalization theorem states that this is perturbatively exact in α^{\prime} and $g_{s}: W_{\text {pert }}=W_{\text {tree }}$ (Burgess, Escoda, Quevedo 05).
- For the specific case of interest,

$$
\begin{aligned}
& W_{\text {pert }}=-2 u_{2} u_{3}+u_{1} u_{3}+u_{1} u_{2}-\tau\left(2 u_{1}-u_{2}-u_{3}\right), \\
& \Rightarrow u_{1}=u_{2}=u_{3}=\tau \text { solves F-term equations. }
\end{aligned}
$$

In particular, $W_{\text {pert }}=0 \Rightarrow \mathcal{N}=1$ SUSY perturbatively preserved.
Integrated Bianchi identity \Rightarrow number of spacetime-filling D3 $=4$.

Example: Flux compactification

- At string tree-level, $4 \mathrm{~d} \mathcal{N}=1$ superpotential is given by $W_{\text {tree }}=\int_{\mathcal{X} / \mathcal{I}} G_{3} \wedge \Omega$ (Gukov, Vafa, Witten 99). Non-renormalization theorem states that this is perturbatively exact in α^{\prime} and $g_{s}: W_{\text {pert }}=W_{\text {tree }}$ (Burgess, Escoda, Quevedo 05).
- For the specific case of interest,

$$
\begin{aligned}
& W_{\text {pert }}=-2 u_{2} u_{3}+u_{1} u_{3}+u_{1} u_{2}-\tau\left(2 u_{1}-u_{2}-u_{3}\right), \\
& \Rightarrow u_{1}=u_{2}=u_{3}=\tau \text { solves F-term equations. }
\end{aligned}
$$

In particular, $W_{\text {pert }}=0 \Rightarrow \mathcal{N}=1$ SUSY perturbatively preserved.
Integrated Bianchi identity \Rightarrow number of spacetime-filling D3 $=4$.

- Complex structure moduli u_{i} are inversely proportional to the string coupling g_{s}. Therefore, string perturbation theory should treat u_{i}^{-1} on the same footing as g_{s}.

Example: Flux compactification

- How do we perform the string perturbation theory / SFT for this case? We start with open-closed-unoriented IIB on $\mathbb{R}^{1,3} \times T^{6} / \mathcal{I}$ with 4 D 3 and 64 O 3 as \mathcal{T}_{0}.

Example: Flux compactification

- How do we perform the string perturbation theory / SFT for this case? We start with open-closed-unoriented IIB on $\mathbb{R}^{1,3} \times T^{6} / \mathcal{I}$ with 4 D 3 and 64 O 3 as \mathcal{T}_{0}.
- Worldsheet CFT correlators on T^{6} / \mathcal{I} explicitly depend on $u_{i} \sim g_{s}^{-1}$. In order to systematically count $\left(u_{i}\right)^{-1} \sim g_{s}$, we introduce vielbein: $\lambda^{i^{\prime}}=e_{i}^{i^{\prime}} \psi^{i}$ such that $\lambda^{i^{\prime}}(z) \lambda^{\lambda^{\prime}}(0) \sim \delta^{\prime} j^{\prime} / z$. Then, $e_{2 i}^{2 i^{\prime}} \sim g_{s}^{-1 / 2}, e_{2 i^{\prime}-1}^{2 i^{\prime}-1} \sim g_{s}^{1 / 2}$.

Example: Flux compactification

- How do we perform the string perturbation theory / SFT for this case? We start with open-closed-unoriented IIB on $\mathbb{R}^{1,3} \times T^{6} / \mathcal{I}$ with 4 D 3 and 64 O 3 as \mathcal{T}_{0}.
- Worldsheet CFT correlators on T^{6} / \mathcal{I} explicitly depend on $u_{i} \sim g_{s}^{-1}$. In order to systematically count $\left(u_{i}\right)^{-1} \sim g_{s}$, we introduce vielbein: $\lambda^{i^{\prime}}=e_{i}^{i} \psi^{i}$ such that $\lambda^{\lambda^{\prime}}(z) \lambda^{\prime}(0) \sim \delta^{\prime j^{\prime}} / z$. Then, $e_{2 i}^{2 \prime^{\prime}} \sim g_{s}^{-1 / 2}, e_{2 i^{\prime}-1}^{2 i^{\prime}-1} \sim g_{s}^{1 / 2}$.
- For example, consider B-field vertex operator $\left(H_{3}=d B\right)$:
$\frac{1}{4 \pi} c \bar{c} B_{i j} e^{-\phi} \psi^{i} e^{-\bar{\phi}} \bar{\psi}^{j}$. Acting with a holomorphic PCO, we get $\sim c \bar{c} H_{i j k} \psi^{i} \psi^{j} e^{-\bar{\phi}} \bar{\psi}^{k}+\ldots \sim g_{s}^{1 / 2}$ for the explicit flux choices we had before ($H_{i j k}$ is of $\mathcal{O}\left(g_{s}^{0}\right)$).

Example: Flux compactification

- How do we perform the string perturbation theory / SFT for this case? We start with open-closed-unoriented IIB on $\mathbb{R}^{1,3} \times T^{6} / \mathcal{I}$ with 4 D 3 and 64 O 3 as \mathcal{T}_{0}.
- Worldsheet CFT correlators on T^{6} / \mathcal{I} explicitly depend on $u_{i} \sim g_{s}^{-1}$. In order to systematically count $\left(u_{i}\right)^{-1} \sim g_{s}$, we introduce vielbein: $\lambda^{i^{\prime}}=e_{i}^{i} \psi^{i}$ such that $\lambda^{\lambda^{\prime}}(z) \lambda^{\prime}(0) \sim \delta^{\prime j^{\prime}} / z$. Then, $e_{2 i}^{2 \prime^{\prime}} \sim g_{s}^{-1 / 2}, e_{2 i^{\prime}-1}^{2 i^{\prime}-1} \sim g_{s}^{1 / 2}$.
- For example, consider B-field vertex operator $\left(H_{3}=d B\right)$:
$\frac{1}{4 \pi} c \bar{c} B_{i j} e^{-\phi} \psi^{i} e^{-\bar{\phi}} \bar{\psi}^{j}$. Acting with a holomorphic PCO, we get
$\sim c \bar{c} H_{i j k} \psi^{i} \psi^{j} e^{-\bar{\phi}} \bar{\psi}^{k}+\ldots \sim g_{s}^{1 / 2}$ for the explicit flux choices we had before ($H_{i j k}$ is of $\mathcal{O}\left(g_{s}^{0}\right)$).
- Similarly for F_{3}, the corresponding vertex operator is given by
$\sim g_{s} c \bar{c} F_{i j k} e^{-\phi / 2} S_{\alpha}\left(\Gamma^{i j k}\right)^{\alpha \beta} e^{-\bar{\phi} / 2} \bar{S}_{\beta} \sim g_{s}^{1 / 2}$.

Example: Flux compactification

- How do we perform the string perturbation theory / SFT for this case? We start with open-closed-unoriented IIB on $\mathbb{R}^{1,3} \times T^{6} / \mathcal{I}$ with 4 D 3 and 64 O3 as \mathcal{T}_{0}.
- Worldsheet CFT correlators on T^{6} / \mathcal{I} explicitly depend on $u_{i} \sim g_{s}^{-1}$. In order to systematically count $\left(u_{i}\right)^{-1} \sim g_{s}$, we introduce vielbein: $\lambda^{i^{\prime}}=e_{i}^{i} \psi^{i}$ such that $\lambda^{\prime \prime}(z) \lambda^{\prime}(0) \sim \delta^{\prime j^{\prime}} / z$. Then, $e_{2 i}^{2 i^{\prime}} \sim g_{s}^{-1 / 2}, e_{2 i^{\prime}-1}^{2 i^{\prime}-1} \sim g_{s}^{1 / 2}$.
- For example, consider B-field vertex operator $\left(H_{3}=d B\right)$:
$\frac{1}{4 \pi} c \bar{c} B_{i j} e^{-\phi} \psi^{i} e^{-\bar{\phi}} \bar{\psi}^{j}$. Acting with a holomorphic PCO, we get $\sim c \bar{c} H_{i j k} \psi^{i} \psi^{j} e^{-\bar{\phi}} \bar{\psi}^{k}+\ldots \sim g_{s}^{1 / 2}$ for the explicit flux choices we had before ($H_{i j k}$ is of $\mathcal{O}\left(g_{s}^{0}\right)$).
- Similarly for F_{3}, the corresponding vertex operator is given by
$\sim g_{s} c \bar{c} F_{i j k} e^{-\phi / 2} S_{\alpha}\left(\Gamma^{i j k}\right)^{\alpha \beta} e^{-\bar{\phi} / 2} \bar{S}_{\beta} \sim g_{s}^{1 / 2}$.
- We can take these H_{3} and F_{3} as the leading order $\left(g_{s}^{1 / 2}\right)$ perturbative solution of SFT, and subsequently build higher order solutions
$\Rightarrow \underline{\text { SFT solution in } \mu=g_{s}^{1 / 2} \text { expansion. }}$

Example: Flux compactification

- $\mathcal{O}(\mu)$ solution:

$$
\mu U_{1}=\frac{1}{4 \pi} c \bar{c} B_{i j} e^{-\phi} \psi^{i} e^{-\bar{\phi}} \bar{\psi}^{j}+\frac{i g_{s} \sqrt{\alpha^{\prime}}}{3!16 \sqrt{2} \pi} c \bar{c} F_{i j k} e^{-\phi / 2} S_{\alpha}\left(\Gamma^{i j k}\right)^{\alpha \beta} e^{-\bar{\phi} / 2} \bar{S}_{\beta} .
$$

Example: Flux compactification

- $\mathcal{O}(\mu)$ solution:

$$
\mu U_{1}=\frac{1}{4 \pi} c \bar{c} B_{i j} e^{-\phi} \psi^{i} e^{-\bar{\phi}} \bar{\psi}^{j}+\frac{i g_{s} \sqrt{\alpha^{\prime}}}{3!16 \sqrt{2} \pi} c \bar{c} F_{i j k} e^{-\phi / 2} S_{\alpha}\left(\Gamma^{i j k}\right)^{\alpha \beta} e^{-\bar{\phi} / 2} \bar{S}_{\beta} .
$$

- $\mathcal{O}\left(\mu^{2}\right)=\mathcal{O}\left(g_{s}\right): D^{2}$ and $\mathbb{R P}^{2}$ boundary states also contribute: $Q_{B} U_{2}+\frac{1}{2}\left[U_{1}^{\otimes 2}\right]_{S^{2}}+[]_{D^{2}+\mathbb{R}^{P^{2}}}=0$. The solution is given by:

$$
\begin{aligned}
P_{0} U_{2} & \sim c \bar{c}\left(B_{i j} B^{i j}\left(\eta \bar{\partial} \bar{\xi} e^{-2 \bar{\phi}}-\partial \xi \bar{\eta} e^{-2 \phi}\right)-2 B_{i k} B^{k j} e^{-\phi} \psi^{i} e^{-\bar{\phi}} \bar{\psi}_{j}\right. \\
& \left.-i \sqrt{2 \alpha^{\prime}} B_{i j} H^{i j k}(\partial c+\bar{\partial} \bar{c})\left(e^{-\phi} \psi_{k} e^{-2 \bar{\phi}} \bar{\partial} \bar{\xi}+e^{-\bar{\phi}} \bar{\psi}_{k} e^{-2 \phi} \partial \xi\right)\right) .
\end{aligned}
$$

Example: Flux compactification

- $\mathcal{O}(\mu)$ solution:

$$
\mu U_{1}=\frac{1}{4 \pi} c \bar{c} B_{i j} e^{-\phi} \psi^{i} e^{-\bar{\phi}} \bar{\psi}^{j}+\frac{i g_{s} \sqrt{\alpha^{\prime}}}{3!16 \sqrt{2} \pi} c \bar{c} F_{i j k} e^{-\phi / 2} S_{\alpha}\left(\Gamma^{i j k}\right)^{\alpha \beta} e^{-\bar{\phi} / 2} \bar{S}_{\beta} .
$$

- $\mathcal{O}\left(\mu^{2}\right)=\mathcal{O}\left(g_{s}\right): D^{2}$ and $\mathbb{R P}^{2}$ boundary states also contribute:
$Q_{B} U_{2}+\frac{1}{2}\left[U_{1}^{\otimes 2}\right]_{S^{2}}+[]_{D^{2}+\mathbb{R}^{P^{2}}}=0$. The solution is given by:

$$
\begin{aligned}
P_{0} U_{2} & \sim c \bar{c}\left(B_{i j} B^{i j}\left(\eta \bar{\partial} \bar{\xi} e^{-2 \bar{\phi}}-\partial \xi \bar{\eta} e^{-2 \phi}\right)-2 B_{i k} B^{k j} e^{-\phi} \psi^{i} e^{-\bar{\phi}} \bar{\psi}_{j}\right. \\
& \left.-i \sqrt{2 \alpha^{\prime}} B_{i j} H^{i j k}(\partial c+\bar{\partial} \bar{c})\left(e^{-\phi} \psi_{k} e^{-2 \bar{\phi}} \bar{\partial} \bar{\xi}+e^{-\bar{\phi}} \bar{\psi}_{k} e^{-2 \phi} \partial \xi\right)\right) .
\end{aligned}
$$

- If we started with some generic choice of $u_{i} \sim g_{s}^{-1}$, quantized H_{3} and F_{3}, then the requirement that RHS of $Q_{B} P_{0} U_{2}=\ldots$ is Q_{B}-exact leads to the integrated Bianchi identity and ISD conditions that GKP had in IIB supergravity analysis.

Example: Flux compactification

- $\mathcal{O}(\mu)$ solution:

$$
\mu U_{1}=\frac{1}{4 \pi} c \bar{c} B_{i j} e^{-\phi} \psi^{i} e^{-\bar{\phi}} \bar{\psi}^{j}+\frac{i g_{s} \sqrt{\alpha^{\prime}}}{3!16 \sqrt{2} \pi} c \bar{c} F_{i j k} e^{-\phi / 2} S_{\alpha}\left(\Gamma^{i j k}\right)^{\alpha \beta} e^{-\bar{\phi} / 2} \bar{S}_{\beta} .
$$

- $\mathcal{O}\left(\mu^{2}\right)=\mathcal{O}\left(g_{s}\right): D^{2}$ and $\mathbb{R P}^{2}$ boundary states also contribute:
$Q_{B} U_{2}+\frac{1}{2}\left[U_{1}^{\otimes 2}\right]_{S^{2}}+[]_{D^{2}+\mathbb{R}^{2}}=0$. The solution is given by:

$$
\begin{aligned}
P_{0} U_{2} & \sim c \bar{c}\left(B_{i j} B^{i j}\left(\eta \bar{\partial} \bar{\xi} e^{-2 \bar{\phi}}-\partial \xi \bar{\eta} e^{-2 \phi}\right)-2 B_{i k} B^{k j} e^{-\phi} \psi^{i} e^{-\bar{\phi}} \bar{\psi}_{j}\right. \\
& \left.-i \sqrt{2 \alpha^{\prime}} B_{i j} H^{i j k}(\partial c+\bar{\partial} \bar{c})\left(e^{-\phi} \psi_{k} e^{-2 \bar{\phi}} \bar{\partial} \bar{\xi}+e^{-\bar{\phi}} \bar{\psi}_{k} e^{-2 \phi} \partial \xi\right)\right) .
\end{aligned}
$$

- If we started with some generic choice of $u_{i} \sim g_{s}^{-1}$, quantized H_{3} and F_{3}, then the requirement that RHS of $Q_{B} P_{0} U_{2}=\ldots$ is Q_{B}-exact leads to the integrated Bianchi identity and ISD conditions that GKP had in IIB supergravity analysis.
- Linearized EOM at ghost number one in (R,NS)/(NS,R) sector leads to the expected Killing spinor equations, where nontrivial spinor solutions exist only if G_{3} is $(2,1)$-form so that $W_{\text {pert }}$ vanishes.

Discussion

Discussion

- SFT provides a systematic framework for studying interesting backgrounds such as $A d S$ and flux compactifications. Observables such as $A d S$ Virasoro-Shapiro amplitude (Alday, Hansen, Silva 22, Alday, Hansen 23) and g_{s}-corrections to Kahler potential in GKP should be computable in this framework.

Discussion

- SFT provides a systematic framework for studying interesting backgrounds such as $A d S$ and flux compactifications. Observables such as $A d S$ Virasoro-Shapiro amplitude (Alday, Hansen, Silva 22, Alday, Hansen 23) and g_{s}-corrections to Kahler potential in GKP should be computable in this framework.
- SFT can also accomodate nonperturbative D-instanton contributions using the recently developed D-instanton perturbation theory. In GKP, whether there are CY3's with large/small complex structure moduli still allowing for suppressed (non-BPS) D-instanton contributions is an important question that should be investigated more thoroughly.

Discussion

- SFT provides a systematic framework for studying interesting backgrounds such as $A d S$ and flux compactifications. Observables such as $A d S$ Virasoro-Shapiro amplitude (Alday, Hansen, Silva 22, Alday, Hansen 23) and g_{s}-corrections to Kahler potential in GKP should be computable in this framework.
- SFT can also accomodate nonperturbative D-instanton contributions using the recently developed D-instanton perturbation theory. In GKP, whether there are CY3's with large/small complex structure moduli still allowing for suppressed (non-BPS) D-instanton contributions is an important question that should be investigated more thoroughly.
- In principle, SFT knows how to deal with time-dependent backgrounds. An example which was studied intensively in the past is the open string rolling tachyon (Sen 02). Can we address closed string cosmology (Rodriguez 23)?

THANK YOU

