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Motivation

Question
How do we describe string backgrounds and physics around them?

If there is an exact worldsheet CFT description, we can perform ordinary
string perturbation theory which is α′-exact at each order in gs.
However, such a description is not always known explicitly. In the NSR
formalism for superstrings, we lack such a description for backgrounds
involving Ramond-Ramond (RR) fluxes, including most of AdS and flux
compactifications (alternative formalisms may be present).
In contrast, low energy supergravity description provides the Einstein
equation whose solutions correspond to ’string’ backgrounds. But it comes
with a limitation that observables beyond the protected quantities are
difficult to access.
It will be great if there is a ’stringy’ version of supergravity.
String field theory (SFT) comes close at least conceptually (but with some
limitations which we will discuss soon). Today, we discuss how it can be
useful even in practice for some interesting cases.
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String field theory - what it is like as of today

By now, SFT is a well-established framekwork for perturbative strings in NSR
formalism. Some helpful references/reviews below:
- Bosonic SFT (9206084, 9705241 Zwiebach)
- NSR II and heterotic (1508.05387 Sen, 1703.06410 de Lacroix, Erbin,
Kashyap, Sen, Verma)
- NSR open-closed-unoriented (1907.10632 Moosavian, Sen, Verma)

⇒ Waiting for interesting applications!

But it comes with some limitations. First of all, it requires a ’good starting
point,’ described by an exact worldsheet CFT (pure NSNS for
superstrings). Denote such a starting string background T0.
Once we plug T0 into SFT machinery, it produces a path integral Z.
SFT: T0 → Z =

∫
dϕexp (−S[ϕ])
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String field theory - what it is like as of today
SFT: T0 → Z =

∫
dϕexp (−S[ϕ])

Strings fields ϕ: The worldsheet CFT Hilbert space of T0 provides the space
of string fields. These string fields ϕ are spacetime fields, and S[ϕ] is the
spacetime action (rather than a worldsheet action).
Perturbative nature: S[ϕ] is perturbative in gs and the number of fields (in
the presence of dynamical closed strings). Its terms can be computed using
the worldsheet CFT correlators of T0 on Riemann surfaces of generic genera
and punctures.
Computability: If one is interested in computing observables up to a specific
order in gs and ϕ, terms in S[ϕ] beyond some finite order are not relevant.
S[ϕ] provides the Feynman rules we can use to systematically compute
physical quantities order by order.
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String field theory - what it is like as of today

Question
What can we do with Z and S[ϕ]?

Several interesting things: rigorous string perturbation theory around T0,
D-instanton perturbation theory, mass renormalization, discovering new 2d
CFT boudary states, tachyons, open-closed duality, ....
⇒ see Ted Erler and Xi Yin’s review talk.
This talk: study string backgrounds!
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String backgrounds from SFT
EOM: δS[ϕ] = 0 ⇒ solution: ϕ∗

- Just as solutions to the Einstein equation describe GR backgrounds around
which we can study the physics, ϕ∗ represents a string background. Due to
the limitation of the current formulation of SFT (∞-many vertices), ϕ∗ can
at best be obtained as some expansion around the original background T0
(may converge though).
- Within this limiation, there are still interesting backgrounds we can study,
such as AdS5 with its inverse radius as the expansion parameter around the
flat background.
S∗[φ] := S[ϕ = ϕ∗ + φ] is the action expanded around the solution ϕ∗. Its
linearized EOM gives free string spectrum of ϕ∗, and its Feynman rules can
be used to obtain stringy observables of ϕ∗.
S∗[φ] provides a spacetime description of strings in the background ϕ∗. It
still computes ’stringy’ physics.
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String fields (bosonic closed string case)

Start with an exact worldsheet CFT with Hilbert space H0. Restrict to the
states |ψ⟩ ∈ H0 satisfying (L0 − L̄0)|ψ⟩ = (b0 − b̄0)|ψ⟩ = 0.
Expand a general state |ψ⟩, which is generically off-shell / not QB-closed, in
a basis |si⟩: |ψ⟩ =

∑
i ϕi|si⟩. ϕi are string fields.

For superstrings, NS states should be in -1 picture while R states are in − 3
2

and − 1
2 pictures. GSO projections are also imposed. RR fields are also part

of the string fields.
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Construction of S[ϕ]

We expect the variation of the kinetic term of S[ϕ] to produce the free EOM
QB|ψ⟩ = 0. This leads to Skin[ϕ] =

1
2g2

s
⟨ψ|c−0 QB|ψ⟩

(
c−0 = 1

2 (c0 − c̄0)
)
. In

Siegel gauge, the corresponding propagator is given by ∼ b+
0

L+
0

, (b+
0 = b0 + b̄0,

L+
0 = L0 + L̄0).

The vertices of S[ϕ] are obtained in a way similar to the usual amplitude
computation Ag,n =

∫
dMg,n⟨ψ⊗n⟩CFT

Σg,n
. The key differences are:

- We are integrating over only a part of the moduli space called the vertex
region. This is such that the Feynman diagrams built by propagators and
vertices cover the moduli space exactly once.
- One needs to specify the local charts around the punctures since ψ is
off-shell.
It was shown (Hata, Zwiebach 93, Sen 14-15) that different choices of local
charts are related via field redefinitions and thus does not affect the on-shell
quantities.
For superstrings, PCO locations also enter the definition of the vertices.
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3-point vertex

Example: For the insertion at z = 0, take the local chart w0 with |w0| ≤ 1 to
be z = rw0 for some positive r. Similarly, z = 1 − rw1 and z = (rw∞)−1.
Different r’s correspond to different cubic vertices.

1
3!{{ψ

⊗3}} = 1
3! ⟨ψ

⊗3⟩r =
1
3!
∑

i,j,k Uijk(r)ϕiϕjϕk ⊂ g2
s S[ϕ].
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4-point diagram with a propagator

Can use propagator and two cubic vertices to draw 4pt Feynman diagram with
a propagator. For the Riemann surfaces, we have a plumbing construction of
the four-punctured sphere via w0w̃0 = q := e−s−iθ with 0 ≤ s, 0 ≤ θ < 2π.

This produces two real parameter family of four-punctured sphere, equipped
with local charts around four punctures induced from the cubic vertex.
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4-point vertex

Feynman diagrams with a propagator generically cannot cover the full moduli
space M0,4. We cover the missing parts with the 4pt vertex.

4pt vertex is defined by a choice of local charts around each punctures over
the blue region of M0,4.
Any local chart choices are fine, as long as there are no ’boundaries.’ This
guarantees that null-states decouple from the on-shell amplitudes and thus is
intimately related to the gauge invariance.
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4-point vertex
1
4!{{ψ

⊗4}} = 1
4!
∫

dMvert
0,4 ⟨ψ⊗4⟩vert =

1
4!
∑

i,j,k,l Uijklϕiϕjϕkϕl ⊂ g2
s S[ϕ].

Can repeat the exercise of plumbing, filling in the missing pieces by vertices,
etc. to higher points/genus. No-boundary condition to all orders is called
geometric master equation whose solutions are known (e.g. MC 19). It
implies that SQ[ϕ] thus obtained solves the quantum BV master equation (a
technical name for SQ[ϕ] being consistent in the sense of gauge invariance).
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1PI action and EOM
Obtain SQ[ϕ] =

1
g2

s

(
1
2 ⟨ψ|c

−
0 QB|ψ⟩+

∑
g,n

1
n!{{ψ

⊗n}}Vg,n

)
.

Collect 1PI diagrams and obtain 1PI effective action
S[ϕ] = 1

g2
s

( 1
2 ⟨ψ|c

−
0 QB|ψ⟩+

∑
n

1
n!{ψ

⊗n}
)
.

EOM: δS[ϕ] = 0 ⇒ QB|ψ⟩+
∑

n
1
n! |[ψ

⊗n]⟩ = 0, where
⟨ψ1|c−0 |[ψ2...ψn]⟩ = {ψ1...ψn}.
To find a solution in some perturbative expansion, take the ansatz
|ψ⟩ = |ϕ∗⟩ =

∑∞
k=1 µ

k|Uk⟩, where µ is the expansion parameter. Plug into
EOM and solve order by order in µ.
For classical (sphere) solutions, we have
O(µ1) : QBU1 = 0
O(µ2) : QBU2 +

1
2 [U

⊗2
1 ] = 0 where [U⊗2

1 ] is variation of the sphere 3pt
vertex involving two U1’s. It roughly corresponds to the OPE of two U1’s,
but evaluated in some special local charts.
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1PI action and EOM
How do we solve QBU2 +

1
2 [U

⊗2
1 ] = 0?

Split the equation into ’massless’ and ’massive’ sectors. Introduce P0, which
projects to the L+

0 -nilpotent sector. (1 − P0)-projected space is where QB can
be inverted. Choose Siegel gauge condition for (1 − P0)-projected space.
U2 = w2 − 1

2
b+

0
L+

0
(1 − P0)[U⊗2

1 ], where the ’massless’ part w2 satisfies
P0w2 = w2 and QBw2 = − 1

2 P0[U⊗2
1 ].

If P0[U⊗2
1 ] is NOT QB-exact, it means that the EOM cannot be solved. This

corresponds to the possible existence of massless tadpoles.
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Linearized EOM for the spectrum

S∗[φ] := S[ϕ∗ + φ] is the action describing the physics around the vacuum ϕ∗
(equivalently |ψ∗⟩). Its terms are organized order by order in µ.
By varying the quadratic term of S∗[φ], we obtain the linearized EOM

(QB + K)|φ⟩ =: Q̂B|φ⟩ = 0, where K|A⟩ =
∞∑

n=1

1
n! |[ϕ

⊗n
∗ A]⟩.

Using that ϕ∗ is a background solution, it is straightward to show that
Q̂2

B = 0. Therefore, the free string spectrum of the background ϕ∗ is given by
Q̂B-cohomology.
One can solve for the spectrum order by order in µ.
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Example: AdS5 × S5 (unpublished, w/ Agmon, Collier, Yin)

Reverse-engineer the statement that AdS at large radius is flat. We start with
IIB on R1,9, and find background solution for AdS order by order in µ = R−1.
At order µ, we turn on F5. EOM was QBU1 = 0. We take
U1 = NR

(
γ01234)

αβ
cc̄e−ϕ/2Sαe−ϕ̄/2S̄β for some normalization NR.

At order µ2, the EOM reads
(Rµµ̄ = (ηab,−δij)µµ̄, µ = 0, 1, ..., 9, a = 0, ..., 4, i = 5, ..., 9)
QBw2 = − 1

2 P0[U⊗2
1 ] = 32πN2

Rc+0 Rµµ̄cc̄e−ϕψµe−ϕ̄ψ̄µ̄.
The solution can be obtained straightforwardly

w2 = NNScc̄
(

G2µµ̄e−ϕψµe−ϕ̄ψ̄µ̄ − 3Gν
2ν(η∂̄ξ̄e−2ϕ̄ − ∂ξe−2ϕη̄)

)
,

G2µµ̄(X) = δa
µδ

ā
µ̄XaXā − δi

µδ
ī
µ̄XiXī, NNS = − 1

4π , NR =
1

8π .

G2µµ̄(X) is just the O(R−2) part of the AdS5 × S5 metric expanded in R−1.
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µ̄XaXā − δi

µδ
ī
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µ̄XiXī, NNS = − 1

4π , NR =
1

8π .

G2µµ̄(X) is just the O(R−2) part of the AdS5 × S5 metric expanded in R−1.

Minjae Cho 16 / 28



Example: AdS5 × S5

We can also solve for the spectrum using the linearized EOM e.g. axion field
P0φ = fαβcc̄e−ϕ/2Sαe−ϕ̄/2S̄β +O(µ3), where
f = f0 + µf1 + µ2f2 + ... = γµf (1)

µ is the 1-form field strength.

Solution is given by:
f0µ = ∂µc0 with ∂µ∂µc0 = 0, f1 = 0, f2µ = ∂µc2 + kµ(X),
where kµ(X) is determined by c0, and c2 satisfies

∂µ∂
µc2 +

(
XaXb∂a∂b + 5Xa∂a − XiXj∂i∂j − 5Xi∂i

)
c0 = 0.

This equation is nothing but ∇2
AdS5×S5c = 0 expanded to order R−2.
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Example: AdS3 × S3 × T4 (1811.00032 w/ Collier, Yin)

IIB supergravity background:

ds2 = R2(ds2
AdS3 + ds2

S3) + ds2
T4

H3 = 2qR2(wAdS3 + wS3), F3 = 2
√

1 − q2R2(wAdS3 + wS3),

where q = 1 − µ2

2 +O(µ3), qR2 = α′k, k ∈ N.
q = 1: pure NSNS background with exact worldsheet CFT
SL(2,R)k+2 ⊕ SU(2)k−2 ⊕ U(1)4 ⊕ 10 free fermions (Maldacena, Ooguri
00-01). We take this background as T0.
We study the mixed flux solution. Turn on F3 profile at the leading order:
U1 ∼ cc̄e−ϕ/2Sαα′

+ Θ+e−ϕ̄/2S̃ββ′

+ Θ̃+

(
Vsl

j=− 1
2

)
αβ

(
Vsu

j′= 1
2

)
α′β′

.

At order µ2, we have U2 = − 1
2

b+
0

L+
0
(1 − P0)[U⊗2

1 ].
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Spectrum of pulsating strings
Study spectrum of pulsating strings in mixed flux. At the pure NSNS point,
the corresponding vertex operator is

φ0 = cc̃e−ϕ−ϕ̃Vj0,j′,n, Vj0,j′,n ∼ ψ−ψ̃−(J−1)
n(J̃−1)

nVsl
j0,j0,j0V

su
j′,j′,j′VT4 .

j0 is SL(2) quantum number for discrete representations, while j′ is SU(2)
quantum number which is a nonnegative half integer.

On-shell condition QBφ0 = 0 leads to − j0(j0−1)
k + n + j′(j′+1)

k + hT4 = 0. We
study how this dispersion relation gets deformed as F3 is turned on. Since j′
and n are discrete labels, only j0 will change: j = j0 + δj. This corresponds to
change in AdS3 mass/energy.
At order µ, due to P0[U1φ0] = 0, we take the same solution as the zeroth
order solution.
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Spectrum of pulsating strings (non-BPS)
To order µ2, we take the solution of the form

φ2 = cc̃e−ϕ−ϕ̃Vj0+µ2j2,j′,n + (ghosts, descendants).

Plugging this into the linearized EOM, we obtain

2j2(2j0 − 1)
k = A(φ0, φ0,U1,U1),

where the RHS is the usual on-shell 4pt amplitude.

Sample results for δh = −α′δm2

4 = µ2j2(2j0−1)
k with n = 1, hT4 = 0:

HHHHHk
j′ 0 1

2 1 3
2 2

7 4.51353 7.7253
8 2.61214 3.18173 5.03926 38.0435
9 1.97318 2.21068 2.76008 4.25035 15.9923
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Example: Flux compactification (2311.04959 + W.I.P, w/ Kim)

GKP (Giddings, Kachru, Polchinski 01): use fluxes, D-branes, and O-planes
to obtain IIB supergravity backgrounds with less SUSY and moduli
stabilization.
Due to RR fluxes, stringy observables in GKP backgrounds have been
considered very tough to study e.g. stringy corrections to Kahler potential.
Maybe SFT can help? The relevant open-closed-unoriented super-SFT has
recently been constructed (Moosavian, Sen, Verma 19).
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Example: Flux compactification
Consider IIB flux compactification:

ds2 = GABdXAdXB = e2A(y)dxµdxµ + e−2A(y)gij(y)dyidyj,

F̃5 = (1 + ∗10)dα(y)dx0dx1dx2dx3.

µ = 0, ..., 3 are non-compact flat directions while i = 1, ..., 6 are along the
compact CY 3-fold X . Consider the orientifold X/I with I2 = 1.

H3 and F3 fluxes only have i, j components, and D3-branes and O3-planes are
spacetime-filling along xµ (no D7/O7 for simplicity).
Plug the ansatz into IIB supergravity EOM:

ISD : ∗6 G3 = iG3, G3 = F3 − τH3,

Bianchi : dH3 = dF3 = 0, dF̃5 = H3 ∧ F3 + 2µ3κ
2
10ρ

loc
D3dVolX/I ,

where ρloc
D3 =

∑
yD3

δ(6)(y − yD3)−
1
4
∑
yO3

δ(6)(y − yO3),

and e4A(y) = α(y) ⇒ ∇2 (α−1) = 1
3Imτ |G3|2 + µ3κ

2
10ρ

loc
D3.
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Example: Flux compactification
For O(1) quantized fluxes, ISD condition requires gij(y) to be correlated with
gs. This may be achieved by having special choices of 3-form fluxes and large
complex structure moduli (∼ g−1

s ) (Demirtas, Kim, McAllister, Moritz 19),
where perturbative 4d N = 1 SUSY is preserved simultaneously.

An explicit example of toroidal orientifold T6/I (Cicoli, Licheri, Mahanta,
Maharana 22):

T6 : Zi ∼ Zi + 1 ∼ Zi + ui, Zi = y2i−1 + uiy2i, i = 1, 2, 3,
I : (Z1,Z2,Z3) → −(Z1,Z2,Z3) ⇒ 64 O3,

1
(2π)2α′ F3 = 4dy2dy3dy5 − 2dy1dy4dy5 − 2dy1dy3dy6,

1
(2π)2α′ H3 = 4dy1dy4dy6 − 2dy2dy3dy6 − 2dy2dy4dy5.
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Example: Flux compactification
At string tree-level, 4d N = 1 superpotential is given by Wtree =

∫
X/I G3 ∧Ω

(Gukov, Vafa, Witten 99). Non-renormalization theorem states that this is
perturbatively exact in α′ and gs: Wpert = Wtree (Burgess, Escoda, Quevedo
05).

For the specific case of interest,

Wpert = −2u2u3 + u1u3 + u1u2 − τ(2u1 − u2 − u3),

⇒ u1 = u2 = u3 = τ solves F-term equations.
In particular, Wpert = 0 ⇒ N = 1 SUSY perturbatively preserved.

Integrated Bianchi identity ⇒ number of spacetime-filling D3 = 4.
Complex structure moduli ui are inversely proportional to the string coupling
gs. Therefore, string perturbation theory should treat u−1

i on the same
footing as gs.
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Example: Flux compactification
How do we perform the string perturbation theory / SFT for this case? We
start with open-closed-unoriented IIB on R1,3 × T6/I with 4 D3 and 64 O3
as T0.

Worldsheet CFT correlators on T6/I explicitly depend on ui ∼ g−1
s . In order

to systematically count (ui)−1 ∼ gs, we introduce vielbein: λi′ = ei′
i ψ

i such
that λi′(z)λj′(0) ∼ δi′j′/z. Then, e2i′

2i ∼ g−1/2
s , e2i′−1

2i′−1 ∼ g1/2
s .

For example, consider B-field vertex operator (H3 = dB):
1

4π cc̄Bije−ϕψie−ϕ̄ψ̄j. Acting with a holomorphic PCO, we get
∼ cc̄Hijkψiψje−ϕ̄ψ̄k + ... ∼ g1/2

s for the explicit flux choices we had before
(Hijk is of O(g0

s )).
Similarly for F3, the corresponding vertex operator is given by
∼ gscc̄Fijke−ϕ/2Sα(Γ

ijk)αβe−ϕ̄/2S̄β ∼ g1/2
s .

We can take these H3 and F3 as the leading order (g1/2
s ) perturbative

solution of SFT, and subsequently build higher order solutions
⇒ SFT solution in µ = g1/2

s expansion.
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We can take these H3 and F3 as the leading order (g1/2
s ) perturbative

solution of SFT, and subsequently build higher order solutions
⇒ SFT solution in µ = g1/2

s expansion.
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Example: Flux compactification
O(µ) solution:
µU1 = 1

4π cc̄Bije−ϕψie−ϕ̄ψ̄j + igs
√
α′

3!16
√

2π cc̄Fijke−ϕ/2Sα(Γ
ijk)αβe−ϕ̄/2S̄β .

O(µ2) = O(gs): D2 and RP2 boundary states also contribute:
QBU2 +

1
2 [U

⊗2
1 ]S2 + []D2+RP2 = 0. The solution is given by:

P0U2 ∼ cc̄
(

BijBij(η∂̄ξ̄e−2ϕ̄ − ∂ξη̄e−2ϕ)− 2BikBkje−ϕψie−ϕ̄ψ̄j

−i
√

2α′BijHijk(∂c + ∂̄c̄)
(

e−ϕψke−2ϕ̄∂̄ξ̄ + e−ϕ̄ψ̄ke−2ϕ∂ξ
))

.

If we started with some generic choice of ui ∼ g−1
s , quantized H3 and F3,

then the requirement that RHS of QBP0U2 = ... is QB-exact leads to the
integrated Bianchi identity and ISD conditions that GKP had in IIB
supergravity analysis.
Linearized EOM at ghost number one in (R,NS)/(NS,R) sector leads to the
expected Killing spinor equations, where nontrivial spinor solutions exist only
if G3 is (2,1)-form so that Wpert vanishes.
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Discussion

SFT provides a systematic framework for studying interesting backgrounds
such as AdS and flux compactifications. Observables such as AdS
Virasoro-Shapiro amplitude (Alday, Hansen, Silva 22, Alday, Hansen 23) and
gs-corrections to Kahler potential in GKP should be computable in this
framework.
SFT can also accomodate nonperturbative D-instanton contributions using
the recently developed D-instanton perturbation theory. In GKP, whether
there are CY3’s with large/small complex structure moduli still allowing for
suppressed (non-BPS) D-instanton contributions is an important question
that should be investigated more thoroughly.
In principle, SFT knows how to deal with time-dependent backgrounds. An
example which was studied intensively in the past is the open string rolling
tachyon (Sen 02). Can we address closed string cosmology (Rodriguez 23)?
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