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Motivation

Question J

How do we describe string backgrounds and physics around them?

o If there is an exact worldsheet CFT description, we can perform ordinary
string perturbation theory which is o/-exact at each order in gs.

@ However, such a description is not always known explicitly. In the NSR
formalism for superstrings, we lack such a description for backgrounds
involving Ramond-Ramond (RR) fluxes, including most of AdS and flux
compactifications (alternative formalisms may be present).

@ In contrast, low energy supergravity description provides the Einstein
equation whose solutions correspond to 'string’ backgrounds. But it comes
with a limitation that observables beyond the protected quantities are
difficult to access.

o It will be great if there is a 'stringy’ version of supergravity.

o String field theory (SFT) comes close at least conceptually (but with some
limitations which we will discuss soon). Today, we discuss how it can be
useful even in practice for some interesting cases.
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String field theory - what it is like as of today

@ By now, SFT is a well-established framekwork for perturbative strings in NSR
formalism. Some helpful references/reviews below:
- Bosonic SFT (9206084, 9705241 Zwiebach)
- NSR Il and heterotic (1508.05387 Sen, 1703.06410 de Lacroix, Erbin,
Kashyap, Sen, Verma)
- NSR open-closed-unoriented (1907.10632 Moosavian, Sen, Verma)

= Waiting for interesting applications!
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String field theory - what it is like as of today

@ By now, SFT is a well-established framekwork for perturbative strings in NSR
formalism. Some helpful references/reviews below:
- Bosonic SFT (9206084, 9705241 Zwiebach)
- NSR II and heterotic (1508.05387 Sen, 1703.06410 de Lacroix, Erbin,
Kashyap, Sen, Verma)
- NSR open-closed-unoriented (1907.10632 Moosavian, Sen, Verma)

= Waiting for interesting applications!

@ But it comes with some limitations. First of all, it requires a 'good starting
point,” described by an exact worldsheet CFT (pure NSNS for
superstrings). Denote such a starting string background Tq.

@ Once we plug To into SFT machinery, it produces a path integral Z
SFT: To — Z= [ dpexp(—9[¢])
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@ Strings fields ¢: The worldsheet CFT Hilbert space of 7g provides the space
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spacetime action (rather than a worldsheet action).
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the presence of dynamical closed strings). Its terms can be computed using
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and punctures.
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String field theory - what it is like as of today

o SFT: Ty — Z= [ dpexp(—S[¢])

@ Strings fields ¢: The worldsheet CFT Hilbert space of 7g provides the space
of string fields. These string fields ¢ are spacetime fields, and S[¢] is the
spacetime action (rather than a worldsheet action).

o Perturbative nature: S[¢] is perturbative in gs and the number of fields (in
the presence of dynamical closed strings). Its terms can be computed using
the worldsheet CFT correlators of Ty on Riemann surfaces of generic genera
and punctures.

o Computability: If one is interested in computing observables up to a specific
order in g5 and ¢, terms in S[¢] beyond some finite order are not relevant.
S[¢] provides the Feynman rules we can use to systematically compute
physical quantities order by order.
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String field theory - what it is like as of today
Question

What can we do with Z and S[¢]?
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String field theory - what it is like as of today

Question
What can we do with Z and S[¢]? J

@ Several interesting things: rigorous string perturbation theory around 7o,
D-instanton perturbation theory, mass renormalization, discovering new 2d
CFT boudary states, tachyons, open-closed duality, ....
= see Ted Erler and Xi Yin's review talk.
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String field theory - what it is like as of today

Question
What can we do with Z and S[¢]? J

@ Several interesting things: rigorous string perturbation theory around 7o,
D-instanton perturbation theory, mass renormalization, discovering new 2d
CFT boudary states, tachyons, open-closed duality, ....
= see Ted Erler and Xi Yin's review talk.

@ This talk: study string backgrounds!
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String backgrounds from SFT

e EOM: §S5[¢] = 0 = solution: ¢.
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String backgrounds from SFT

e EOM: §S5[¢] = 0 = solution: ¢.
- Just as solutions to the Einstein equation describe GR backgrounds around
which we can study the physics, ¢, represents a string background. Due to
the limitation of the current formulation of SFT (oo-many vertices), ¢, can
at best be obtained as some expansion around the original background Ty
(may converge though).
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String backgrounds from SFT

e EOM: §S5[¢] = 0 = solution: ¢.
- Just as solutions to the Einstein equation describe GR backgrounds around
which we can study the physics, ¢, represents a string background. Due to
the limitation of the current formulation of SFT (oo-many vertices), ¢, can
at best be obtained as some expansion around the original background Ty
(may converge though).
- Within this limiation, there are still interesting backgrounds we can study,
such as AdSs with its inverse radius as the expansion parameter around the
flat background.

o S.[¢] := S[¢ = ¢« + ¢] is the action expanded around the solution ¢.. Its
linearized EOM gives free string spectrum of ¢,, and its Feynman rules can
be used to obtain stringy observables of ¢,.

e S.[¢] provides a spacetime description of strings in the background ¢.. It
still computes 'stringy’ physics.
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String fields (bosonic closed string case)

@ Start with an exact worldsheet CFT with Hilbert space Ho. Restrict to the
states |1)) € Ho satisfying (Lo — Lo)|¢)) = (bo — bo)|)) = 0.

@ Expand a general state |¢), which is generically off-shell / not Qg-closed, in
a basis |s)): |¢) =Y. dils). ¢; are string fields.

o For superstrings, NS states should be in -1 picture while R states are in —3

2
and —% pictures. GSO projections are also imposed. RR fields are also part

of the string fields.
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Construction of S[¢]

@ We expect the variation of the kinetic term of S[¢] to produce the free EOM
Qg|Y) = 0. This leads to Skin[¢] = é(dﬁc{ Qslv) (g = 2(co — ). In
Siegel gauge, the corresponding propagator is given by ~ f—i, (bg = bo + bo,

- 0
Lf = Lo+ Lo).
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vertices cover the moduli space exactly once.
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Construction of S[¢]

@ We expect the variation of the kinetic term of S[¢] to produce the free EOM
Qp|v) = 0. This leads to Skin[¢] = é@“c& Qslv) (ca = %(co — EO)). In

L
by

Siegel gauge, the corresponding propagator is given by ~ I (bg = bo + bo,
L = Lo+ Lo).

@ The vertices of S[¢] are obtained in a way similar to the usual amplitude
computation A8" = [ dM,,(*") 5 T. The key differences are:
- We are integrating over only a part of the moduli space called the vertex
region. This is such that the Feynman diagrams built by propagators and
vertices cover the moduli space exactly once.

- One needs to specify the local charts around the punctures since v is
off-shell.

@ It was shown (Hata, Zwiebach 93, Sen 14-15) that different choices of local
charts are related via field redefinitions and thus does not affect the on-shell
quantities.

@ For superstrings, PCO locations also enter the definition of the vertices.
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3-point vertex

Choice of coordinate system

—~—

7

Choice of sections —> Defines a 3-pt vertex

Mos

@ Example: For the insertion at z= 0, take the local chart wy with |wp| <1 to
be z= rwy for some positive r. Similarly, z=1— rw; and z= (rwy) L.

Different r's correspond to different cubic vertices.
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3-point vertex

Choice of coordinate system

—~—

—

Choice of sections —> Defines a 3-pt vertex

Mos

@ Example: For the insertion at z= 0, take the local chart wy with |wp| <1 to
be z= rwy for some positive r. Similarly, z=1— rw; and z= (rwy) L.
Different r's correspond to different cubic vertices.

o {{vF*}} = (W) = 5 XU Ndidjon C &3 5[9].
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4-point diagram with a propagator

Plumbing

@ Can use propagator and two cubic vertices to draw 4pt Feynman diagram with
a propagator. For the Riemann surfaces, we have a plumbing construction of
the four-punctured sphere via wyiy = q := e 5" with 0 < s, 0 < 4 < 2.
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4-point diagram with a propagator

Plumbing

@ Can use propagator and two cubic vertices to draw 4pt Feynman diagram with
a propagator. For the Riemann surfaces, we have a plumbing construction of
the four-punctured sphere via wyiy = q := e 5" with 0 < s, 0 < 4 < 2.

@ This produces two real parameter family of four-punctured sphere, equipped
with local charts around four punctures induced from the cubic vertex.

o



4-point vertex

Mo/'}-

@ Feynman diagrams with a propagator generically cannot cover the full moduli
space My 4. We cover the missing parts with the 4pt vertex.
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@ Feynman diagrams with a propagator generically cannot cover the full moduli
space My 4. We cover the missing parts with the 4pt vertex.

@ 4pt vertex is defined by a choice of local charts around each punctures over
the blue region of Mg 4.
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4-point vertex

M0/4-

@ Feynman diagrams with a propagator generically cannot cover the full moduli
space My 4. We cover the missing parts with the 4pt vertex.

@ 4pt vertex is defined by a choice of local charts around each punctures over
the blue region of Mg 4.

@ Any local chart choices are fine, as long as there are no 'boundaries.” This
guarantees that null-states decouple from the on-shell amplitudes and thus is
intimately related to the gauge invariance.
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4-point vertex

a1 {{1/)@4}} =x f deenL "/’®4>vert - Z,J k! ukl¢ ¢J¢k¢l C 825[¢]
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4-point vertex
4| {{711@4}} — 3 f deert 1/)®4>vert =3 le,k /uuk/¢ ¢J¢k¢l c gES[qS].

@ Can repeat the exercise of plumbing, filling in the missing pieces by vertices,
etc. to higher points/genus. No-boundary condition to all orders is called
geometric master equation whose solutions are known (e.g. MC 19). It
implies that Sg[¢] thus obtained solves the quantum BV master equation (a
technical name for Sg[¢] being consistent in the sense of gauge invariance).
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1PI action and EOM
o Obtain Sal] = & (L(b1cy Qel) + X0 H{V="}v,..)-

O «F = = T wace
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1Pl action and EOM
o Obtain Sqld] = & ((vlcy Qelv) + X0 U= M, ).

@ Collect 1PI diagrams and obtain 1Pl effective action

Slol = & (A(vlcy Qele) + 3, & {u®")).

o



1PI action and EOM
e Obtain Sg[#] = glg (%(1/460_ Qelv) + ;. %{{Tﬁ@"}}vg,n)-

@ Collect 1PI diagrams and obtain 1Pl effective action
Slél = & (3(¥ley Qslv) + 32, H{v®").

o EOM: 6S[¢] = 0 = Qgl¢) + 3, %[[%®") = 0, where
<"/}1|C(7|[1/}21/Jn]> = {¢1¢n}
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EOM and solve order by order in L.
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1Pl action and EOM
@ Obtain Sg[¢] = é (%(1/460_ Qelv) + ;. %{{ﬂ’@n}}vg,n)-

@ Collect 1PI diagrams and obtain 1Pl effective action
S161 = & (A0lcy Qale) + 3, & {°™}).

o EOM: 6S[¢] = 0 = Qgl¢) + 3, %[[%®") = 0, where
(P1leg [[$2--Pn]) = {W1--Pn}

@ To find a solution in some perturbative expansion, take the ansatz
[¥) = |ps) = D pe; 1¥|Uk), where p is the expansion parameter. Plug into
EOM and solve order by order in p.

o For classical (sphere) solutions, we have
O(ul): QeUi =0
O(12) : QelUs + 3[U?] = 0 where [U?] is variation of the sphere 3pt
vertex involving two U;'s. It roughly corresponds to the OPE of two U;'s,
but evaluated in some special local charts.

o



1Pl action and EOM

o How do we solve QgU» + 3[UF?] = 0?
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1Pl action and EOM

o How do we solve QgU» + 3[UF?] = 0?

@ Split the equation into 'massless’ and 'massive’ sectors. Introduce Py, which
projects to the Lar—nilpotent sector. (1 — Pg)-projected space is where Qg can
be inverted. Choose Siegel gauge condition for (1 — Py)-projected space.
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1Pl action and EOM

@ How do we solve Qgls + %[U?Q] =07

@ Split the equation into 'massless’ and 'massive’ sectors. Introduce Py, which
projects to the Lar—nilpotent sector. (1 — Pg)-projected space is where Qg can

be inverted. Choose Siegel gauge condition for (1 — Py)-projected space.
+
o Uy =wp — %[Z—&(l — Po)[US?], where the 'massless’ part w; satisfies
0

PQWQ = Wy and QBW2 = —%PO[U?Q].
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1Pl action and EOM

@ How do we solve Qgl> + %[Uﬁm] =07

@ Split the equation into 'massless’ and 'massive’ sectors. Introduce Py, which
projects to the Lar—nilpotent sector. (1 — Py)-projected space is where Qg can
be inverted. Choose Siegel gauge condition for (1 — Py)-projected space.

o lh=w—3 L+(1 — Po)[U®2] where the 'massless’ part w, satisfies
PQWQ = Wp and QBW2 = —§P0[U?2].

o If Po[U] is NOT Qp-exact, it means that the EOM cannot be solved. This
corresponds to the possible existence of massless tadpoles.

T
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Linearized EOM for the spectrum

o S.[¢] := S[¢« + ¢] is the action describing the physics around the vacuum ¢,
(equivalently |¢.)). Its terms are organized order by order in p.
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Linearized EOM for the spectrum

@ S.[¢] := S|é« + ¢] is the action describing the physics around the vacuum ¢,
(equivalently |¢.)). Its terms are organized order by order in p.

@ By varying the quadratic term of S.[¢], we obtain the linearized EOM

o0

(Qs+ K)l¢) = Qeli) =0, where KIA) = 3 |92 A]).

n=1
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Linearized EOM for the spectrum

@ S.[¢] := S|é« + ¢] is the action describing the physics around the vacuum ¢,
(equivalently |1.)). Its terms are organized order by order in p.

@ By varying the quadratic term of S.[y], we obtain the linearized EOM

(Qs+ K)l¢) = Qeli) =0, where KIA) = 3 |92 A]).

n=1
e Using that ¢, is a background solution, it is straightward to show that

Q% = 0. Therefore, the free string spectrum of the background ¢, is given by
CAQB—cohomology.
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Linearized EOM for the spectrum

@ S.[¢] := S|é« + ¢] is the action describing the physics around the vacuum ¢,
(equivalently |1.)). Its terms are organized order by order in p.

@ By varying the quadratic term of S.[y], we obtain the linearized EOM

(Qs+ K)l¢) = Qeli) =0, where KIA) = 3 |92 A]).

n=1

e Using that ¢, is a background solution, it is straightward to show that
Q% = 0. Therefore, the free string spectrum of the background ¢, is given by
CAQB—cohomology.

@ One can solve for the spectrum order by order in p.

B



Example: Ad55 X 55 (unpublished, w/ Agmon, Collier, Yin)
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Example: Ad55 X 55 (unpublished, w/ Agmon, Collier, Yin)

@ Reverse-engineer the statement that AdS at large radius is flat. We start with
IIB on R'?, and find background solution for AdS order by order in y = R
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Example: Ad55 X 55 (unpublished, w/ Agmon, Collier, Yin)

@ Reverse-engineer the statement that AdS at large radius is flat. We start with
IIB on R'?, and find background solution for AdS order by order in y = R

@ At order u, we turn on F5. EOM was QgU; = 0. We take
U; = Ng (701234)04/3 cce %/25%e=%/25P for some normalization Ng.
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Example: Ad55 X 55 (unpublished, w/ Agmon, Collier, Yin)

@ Reverse-engineer the statement that AdS at large radius is flat. We start with
IIB on R'?, and find background solution for AdS order by order in y = R

@ At order u, we turn on F5. EOM was QgU; = 0. We take

U; = Ng (701234)04/3 cce %/25%e=%/25P for some normalization Ng.
o At order i, the EOM reads

(Rﬂﬁ = (nab, —5,1)”47“ n = O, 1, ceny 97 a—= O7 veey 4, I_:_ 5, ceay 9)
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Example: Ad55 X 55 (unpublished, w/ Agmon, Collier, Yin)

@ Reverse-engineer the statement that AdS at large radius is flat. We start with
IIB on R'?, and find background solution for AdS order by order in y = R

@ At order u, we turn on F5. EOM was QgU; = 0. We take

Uy = Ng (701234)04/3 cce %/25%e=%/25P for some normalization Ng.
e At order 2, the EOM reads

(Rﬂﬁ = (nab, _5U)Mﬂ7 n = O7 1, ceny 97 a= O7 veey 4, I_:_ 5, <eey 9)

QwWy = —%Po[Ufm] = 327rl\/%?ca’R#ﬁcEe*¢1/ﬂ‘e’¢1/Jﬂ.
@ The solution can be obtained straightforwardly

wy = Npyscc (quﬁeﬂﬁ?//“eﬂglzﬁ - 3G5u(7755_872¢_s - 35672¢77)) ;
1 1

, Ng = —.

Goun(X) = 5783X:Xa — 005X, Nis = =~ -
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Example: Ad55 X 55 (unpublished, w/ Agmon, Collier, Yin)

@ Reverse-engineer the statement that AdS at large radius is flat. We start with
IIB on R'?, and find background solution for AdS order by order in y = R

@ At order u, we turn on F5. EOM was QgU; = 0. We take

Uy = Ng (701234)04/3 cce %/25%e=%/25P for some normalization Ng.
o At order i, the EOM reads

(Rui = (Mabs =0)pas 1= 0,1,...,9,2 =0, ..., 4, =5,....9)

Qew,r = —%Po[Ui@] = 32w Ncy R, zcce Ppre 2ok,

@ The solution can be obtained straightforwardly

wy = Npyscc (Gzpﬁeﬂﬁ?//”e*d;lzﬁ - 3Ggu(7755_672¢_s - 35672%7)) ;

1 1
, Ng = —.

Goun(X) = 5783X:Xa — 005X, Nis = =~ -

o Gpua(X) is just the O(R™2) part of the AdSs x S° metric expanded in R™1.

T



Example: AdSs x S°

@ We can also solve for the spectrum using the linearized EOM e.g. axion field
Pop = fopcce™?/25%e=9/258 + O(u®), where
f=fo+ph +p2h+..= fy“fﬂ(l) is the 1-form field strength.

T



Example: AdSs x S°
@ We can also solve for the spectrum using the linearized EOM e.g. axion field
Pop = fopcce™?/25%e=9/258 + O(u®), where
f=fo+ph +p2h+..= fy“fﬂ(l) is the 1-form field strength.
@ Solution is given by:
ﬂ)u = 6MC0 with 8M8#Co =0, 1 =0, fzu = 6MC2 + kH(X),
where k,(X) is determined by ¢y, and ¢, satisfies

90"y + (X°XP0,0 + 5X°0, — X'X0,0; — 5X9;) ¢ = 0.

This equation is nothing but V3¢ ¢ = 0 expanded to order R2.

T



Example: AdS; x S x T* (1811.00032 w/ Collier, Yin)
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Example: AdS; x S x T* (1811.00032 w/ Coliier, Yin)
o |IB supergravity background:

H; = 2qR2(WAd53 + Wgs), F3=2y1— q2R2(WAd53 + W53),

where g =1 — “72 +0O(u3), gR? = o'k, ke N.

o



Example: AdS; x S x T* (1811.00032 w/ Coliier, Yin)
o |IB supergravity background:
ds® = R*(dshys, + dsz:) + dsTs
Hs = 2qR%(Wads, + wss), F3 =2v/1— 2R3 (wags, + wss),

where g =1 — “72 +0O(u3), gR? = o'k, ke N.
@ g = 1: pure NSNS background with exact worldsheet CFT

SL(2,R)kt2 & SU(2)k—2 @ U(1)* & 10 free fermions (Maldacena, Ooguri
00-01). We take this background as Tp.

o



Example: AdS; x S x T* (1811.00032 w/ Coliier, Yin)
o |IB supergravity background:

H; = 2qR2(WAd53 + wess), F3 =2y1—-gq R2 (wads, + wss),

where g =1 — “72 +0O(u3), gR? = o'k, ke N.
@ g = 1: pure NSNS background with exact worldsheet CFT

SL(2,R)kt2 & SU(2)k—2 @ U(1)* & 10 free fermions (Maldacena, Ooguri
00-01). We take this background as 7o.

@ We study the mixed flux solution. Turn on F3 profile at the leading order:
Uy ~ cee #2550 0, =9/2557' &, (vs’ ;) ] (\ﬁ“ ) .
2/ « ‘B’

=3

o



Example: AdS; x S x T* (1811.00032 w/ Coliier, Yin)
o |IB supergravity background:
ds® = R*(dshys, + dsz:) + dsTs
Hs = 2qR% (Wads, + ws:), F3 =2\/1— @R (wags, + ws),

where g =1 — “72 +0O(u3), gR? = o'k, ke N.

@ g = 1: pure NSNS background with exact worldsheet CFT
SL(2,R)ky2 & SU(2)k—2 @ U(1)* & 10 free fermions (Maldacena, Ooguri
00-01). We take this background as 7o.

@ We study the mixed flux solution. Turn on F3 profile at the leading order:
Uy ~ cee #2550 0, =9/2557' &, (vs’ ;) ] (\ﬁ“ ) o

1
=3 =3

o At order 2, we have U, = —%IZ—‘_’t(l — Po)[UF2].

o



Spectrum of pulsating strings

@ Study spectrum of pulsating strings in mixed flux. At the pure NSNS point,
the corresponding vertex operator is

Yo = CEe_¢_¢\/jo,j/,n7 Jo.J'\n '(/) 770 ( ) (J— ) Jo,jo,Jo VS/7J " VT4

Jo is SL(2) quantum number for discrete representations, while j is SU(2)
quantum number which is a nonnegative half integer.

B



Spectrum of pulsating strings

@ Study spectrum of pulsating strings in mixed flux. At the pure NSNS point,
the corresponding vertex operator is

Yo = Chéei(bi(z)vjo,j/,m fioj'on ~ T ¢ (J-1)" (J— )"V; Jo,Jo,Jo VS/vJ " V.

Jo is SL(2) quantum number for discrete representations, while j is SU(2)
quantum number which is a nonnegative half integer.

@ On-shell condition Qgyo = 0 leads to —j°(j°k_1) +n—+ j/(j/,:rl) + hrs = 0. We
study how this dispersion relation gets deformed as F3 is turned on. Since J

and n are discrete labels, only jo will change: j = jo + §j. This corresponds to
change in AdS; mass/energy.
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Spectrum of pulsating strings

@ Study spectrum of pulsating strings in mixed flux. At the pure NSNS point,
the corresponding vertex operator is

Yo = Chéei(bi(’bvjo,j/,m fioj'on ~ T ¢ (J-1)" (J— )"V; Jo,Jo,Jo VS/vJ " V.

Jo is SL(2) quantum number for discrete representations, while j is SU(2)
quantum number which is a nonnegative half integer.

@ On-shell condition Qgyo = 0 leads to —j°(j°k_1) +n—+ j/(j/,:rl) + hrs = 0. We
study how this dispersion relation gets deformed as F3 is turned on. Since J
and n are discrete labels, only jo will change: j = jo + §j. This corresponds to
change in AdS; mass/energy.

o At order p, due to Po[Uipo] = 0, we take the same solution as the zeroth
order solution.

B



Spectrum of pulsating strings (non-BPS)

e To order y?, we take the solution of the form

Yo = e %y,

fo+12j.7,n 1 (ghosts, descendants).

Plugging this into the linearized EOM, we obtain

2j>(2jo — 1)

k :A(90079007U17U1)7

where the RHS is the usual on-shell 4pt amplitude.

e



Spectrum of pulsating strings (non-BPS)
@ To order u2, we take the solution of the form
Y2 = e ? Vio+12j.7,n 1+ (ghosts, descendants).

Plugging this into the linearized EOM, we obtain

2j2(2jo — 1
% = A(po, ¥o, U1, U1),
where the RHS is the usual on-shell 4pt amplitude.
@ Sample results for 6h = 70‘,‘3’"2 = ”21‘2(2,;'.071) with n=1,hp =0:
7 3

B 0 3 1 3 2

7 451353 | 7.7253

8 2.61214 | 3.18173 | 5.03926 | 38.0435

9 1.97318 | 2.21068 | 2.76008 | 4.25035 | 15.9923

e



Example: Flux compactification (2311.04950 + W.1.P, w/ Kim)
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Example: Flux compactification (2311.04959 + W.I.P, w/ Kim)

e GKP (Giddings, Kachru, Polchinski 01): use fluxes, D-branes, and O-planes
to obtain |IB supergravity backgrounds with less SUSY and moduli
stabilization.

e



Example: Flux compactification (2311.04959 + W.I.P, w/ Kim)

o GKP (Giddings, Kachru, Polchinski 01): use fluxes, D-branes, and O-planes
to obtain |IB supergravity backgrounds with less SUSY and moduli
stabilization.

@ Due to RR fluxes, stringy observables in GKP backgrounds have been
considered very tough to study e.g. stringy corrections to Kahler potential.

e



Example: Flux compactification (2311.04959 + W.I.P, w/ Kim)

o GKP (Giddings, Kachru, Polchinski 01): use fluxes, D-branes, and O-planes
to obtain |IB supergravity backgrounds with less SUSY and moduli
stabilization.

@ Due to RR fluxes, stringy observables in GKP backgrounds have been
considered very tough to study e.g. stringy corrections to Kahler potential.

@ Maybe SFT can help? The relevant open-closed-unoriented super-SFT has
recently been constructed (Moosavian, Sen, Verma 19).

e



Example: Flux compactification
o Consider |IB flux compactification:

ds® = GapdX dXB = AW dx, dxt + e 22 gii(y)dy/ dy,
Fs = (1 + 10)da(y)dxdxt dxPdx’.

1 =0,...,3 are non-compact flat directions while i=1,...,6 are along the
compact CY 3-fold X. Consider the orientifold X'/Z with 72 = 1.
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Example: Flux compactification
o Consider |IB flux compactification:
ds® = GagdX'dXE = AW dx, dx* + e AW g;(y)dy/dy,
Fs = (1 + *10)da(y)dxldxt dxPdx®.

1 =0,...,3 are non-compact flat directions while i=1,...,6 are along the
compact CY 3-fold X. Consider the orientifold X'/Z with 72 = 1.

@ Hsz and F3 fluxes only have i, j components, and D3-branes and O3-planes are
spacetime-filling along x* (no D7/07 for simplicity).

e



Example: Flux compactification
o Consider |IB flux compactification:

ds? = GapdX*dXB = AW dx,, dx + e~V g(y)dydy,
Fs = (1 + #10)da(y)dxdxt dxPdx.

1 =0,...,3 are non-compact flat directions while i=1,...,6 are along the
compact CY 3-fold X. Consider the orientifold X'/Z with 72 = 1.

@ Hsz and F3 fluxes only have i, j components, and D3-branes and O3-planes are
spacetime-filling along x* (no D7/07 for simplicity).
o Plug the ansatz into 1IB supergravity EOM:
ISD : *6 G3 = iG3, G3 = F3 - TH3,
Bianchi: dH; = dFs =0, dFs = H3 A F3 + 2u3k3ap85dVoly z,
1
where PIDog = yz: 5(6)()’— ¥p3) — 2 yz: 5(6)()’— Y03),
D3 03

1
and €40 =q(y) = V2 (a7t) = W|G3|2 + H3kToP -

e



Example: Flux compactification

@ For O(1) quantized fluxes, ISD condition requires gj(y) to be correlated with
&s- This may be achieved by having special choices of 3-form fluxes and large
complex structure moduli (~ g5't) (Demirtas, Kim, McAllister, Moritz 19),
where perturbative 4d A" = 1 SUSY is preserved simultaneously.
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Example: Flux compactification

@ For O(1) quantized fluxes, ISD condition requires gj(y) to be correlated with
&s- This may be achieved by having special choices of 3-form fluxes and large
complex structure moduli (~ g5't) (Demirtas, Kim, McAllister, Moritz 19),
where perturbative 4d A" = 1 SUSY is preserved simultaneously.

@ An explicit example of toroidal orientifold T°/Z (Cicoli, Licheri, Mahanta,
Maharana 22):
T Z~nZ+1~Z+u, Z=y" +uy?, i=1,2,3,
T: (2228~ —(Z22,22) = 6403,
1
W% = 4dy’dy>dy® — 2dytdy*dy® — 2dytdy dyP,
)

ﬁf'ﬁ = 4dy1dy4dy6 — 2dy2dy3dy6 _ 2dy2dy4dy5

e



Example: Flux compactification

@ At string tree-level, 4d N' = 1 superpotential is given by Wi.ee = fX/I G A
(Gukov, Vafa, Witten 99). Non-renormalization theorem states that this is

perturbatively exact in o’ and gs: Wyerr = Wiree (Burgess, Escoda, Quevedo
05).
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Example: Flux compactification

@ At string tree-level, 4d N' = 1 superpotential is given by Wi.ee = fX/I G3 A Q
(Gukov, Vafa, Witten 99). Non-renormalization theorem states that this is

perturbatively exact in o’ and gs: Wyerr = Wiree (Burgess, Escoda, Quevedo
05).

@ For the specific case of interest,

Woert = —2upus + urus + urup — 7(2u1 — up — u3),
= u; = Up = uz = T solves F-term equations.
In particular, Wpe =0 = N =1 SUSY perturbatively preserved.

Integrated Bianchi identity = number of spacetime-filling D3 = 4.
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Example: Flux compactification

@ At string tree-level, 4d N' = 1 superpotential is given by Wi.ee = fX/I G3 A Q
(Gukov, Vafa, Witten 99). Non-renormalization theorem states that this is
perturbatively exact in o’ and gs: Wyerr = Wiree (Burgess, Escoda, Quevedo
05).

@ For the specific case of interest,

Woert = —2upuz + uyuz + uyup — 7(2u1 — up — u3),
= u; = Up = uz = T solves F-term equations.
In particular, Wpe =0 = N =1 SUSY perturbatively preserved.

Integrated Bianchi identity = number of spacetime-filling D3 = 4.

@ Complex structure moduli u; are inversely proportional to the string coupling
gs- Therefore, string perturbation theory should treat ufl on the same
footing as gs.

e



Example: Flux compactification
@ How do we perform the string perturbation theory / SFT for this case? We

start with open-closed-unoriented 11B on RY:3 x T°/Z with 4 D3 and 64 O3
as To.
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Example: Flux compactification

@ How do we perform the string perturbation theory / SFT for this case? We
start with open-closed-unoriented 11B on RY:3 x T°/Z with 4 D3 and 64 O3
as To.

@ Worldsheet CFT correlators on T°/T explicitly depend on u; ~ g=1. In order
to systematically count (u;)~! ~ g5, we introduce vielbein: A" = el 4’ such

that A" (2)A'(0) ~ 6 /z. Then, &2 ~ g /%, &/~1 ~ g/?.
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Example: Flux compactification

@ How do we perform the string perturbation theory / SFT for this case? We
start with open-closed-unoriented 11B on RY:3 x T°/Z with 4 D3 and 64 O3

as 7o.

@ Worldsheet CFT correlators on T°/T explicitly depend on u; ~ g=1. In order
to systematically count (u;)~! ~ gs, we introduce vielbein: A" = e/ )/ such
that A" (2)A'(0) ~ 6 /z. Then, &2 ~ g /%, &/~1 ~ g/?.

@ For example, consider B-field vertex operator (H; = dB):
ﬁcEB,-je*%/)"e*d_’i/_}f. Acting with a holomorphic PCO, we get
~ CEH,-jki/J"wfe"Zz/_Jk + .~ gi/z for the explicit flux choices we had before

(H,'jk is of O(gg))
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Example: Flux compactification

@ How do we perform the string perturbation theory / SFT for this case? We
start with open-closed-unoriented 11B on RY:3 x T°/Z with 4 D3 and 64 O3
as 7o.

@ Worldsheet CFT correlators on T°/T explicitly depend on u; ~ g=1. In order
to systematically count (u;)~! ~ g, we introduce vielbein: \" = el 1) such
that A" (2)\'(0) ~ 6"/ /z. Then, & ~ gz /2, &i=1 ~ g2,

@ For example, consider B-field vertex operator (Hz = dB):
ﬁcEB,-je*%/)"e*d’q/_}f. Acting with a holomorphic PCO, we get
~ CEH,-jk1/J"1/)fe’¢z/_Jk + .~ gi/z for the explicit flux choices we had before
(H,'jk is of O(gg))

@ Similarly for F3, the corresponding vertex operator is given by
~ goCTFije /25, (Mk)oBe=4/25, ~ gl/?.

e



Example: Flux compactification

@ How do we perform the string perturbation theory / SFT for this case? We
start with open-closed-unoriented 11B on RY:3 x T°/Z with 4 D3 and 64 O3
as 7o.

@ Worldsheet CFT correlators on T°/T explicitly depend on u; ~ g=1. In order
to systematically count (u;)~! ~ gs, we introduce vielbein: A" = e/ )/ such
that A" (2)A'(0) ~ 6 /z. Then, &2 ~ g /%, &/~1 ~ g/?.

@ For example, consider B-field vertex operator (H; = dB):
ﬁcEB,-je*%/)"e’d_’q/_}f'. Acting with a holomorphic PCO, we get
~ CEH;jkwiil)fe"Zz/_Jk + .~ gi/z for the explicit flux choices we had before
(H,’jk is of O(gg))

@ Similarly for F3, the corresponding vertex operator is given by
~ gscEF,-jke"i’/25a(FUk)“ﬁe*5/235 ~ g2

@ We can take these H3 and F3 as the leading order (gi/2) perturbative

solution of SFT, and subsequently build higher order solutions

/2

= SFT solution in p = gi expansion.

e



Example: Flux compactification
e O(p) solution
pUy = L ceBjePipie 9 + 3',5;565

ceFje ?/2S,(Tik)*fe ‘5/255

o =3 = E Dae



Example: Flux compactification

o O(p) solution:

pUs = & ceBjeple P + 3';";56} CCF ke /25, (TTK)2B e~ /25,

o O(1?) = O(gs): D? and RP? boundary states also contribute:
QslUs> + %[U‘iﬂ]sz + []perp2 = 0. The solution is given by:

PoUs ~ CE(BUBU(nége_z‘Z’ — Otije2%) — 2By BHe Pypie Py,

—iv2a/ BjH*(dc + Jt) (e_%)ke_zqgéf_—i— e—%ke—%’ag) )

e



Example: Flux compactification

@ O(u) solution:

pUs = & ceBjeple P + %cEFUke*¢/2Sa(F"fk)aﬁe*“;mgg.

o O(1?) = O(gs): D? and RP? boundary states also contribute:
QeUs + %[Uﬁm]sz + [1p24rpz = 0. The solution is given by:

PoUs ~ cz(B,-jB"f'(néée—2<f3 — 9¢fje29) — 2By BlePpie Py,
—iv2a/ BjjH"(Oc + 0%) (e‘¢wke_2‘55§_+ e‘d_’ﬁke_zd’@{) )

o If we started with some generic choice of u; ~ g;l, quantized H; and F3,
then the requirement that RHS of QgPolUs> = ... is Qp-exact leads to the
integrated Bianchi identity and ISD conditions that GKP had in IIB
supergravity analysis.

e



Example: Flux compactification

@ O(u) solution:

pUs = & ceBjeple P + %cEFUke*¢/25a(F"fk)aﬁe*“;mgg.

o O(1?) = O(gs): D? and RP? boundary states also contribute:
QeUs + %[Uﬁm]sz + [|p24rpz = 0. The solution is given by:

PoUs ~ cz(B,-jB"J'(néée—2¢3 — 9¢fje29) — 2By BlePpie Py,
—iv2a/ BjjH"(Oc + 0%) (e‘¢wke_2‘55§_+ e‘d_’ﬁke_zd’@f) )

o If we started with some generic choice of u; ~ g;l, quantized H; and F3,
then the requirement that RHS of QgPolUs> = ... is Qp-exact leads to the
integrated Bianchi identity and ISD conditions that GKP had in IIB
supergravity analysis.

o Linearized EOM at ghost number one in (R,NS)/(NS,R) sector leads to the
expected Killing spinor equations, where nontrivial spinor solutions exist only
if G is (2,1)-form so that W, vanishes.

e
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Discussion

@ SFT provides a systematic framework for studying interesting backgrounds
such as AdS and flux compactifications. Observables such as AdS
Virasoro-Shapiro amplitude (Alday, Hansen, Silva 22, Alday, Hansen 23) and
gs-corrections to Kahler potential in GKP should be computable in this
framework.
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Discussion

@ SFT provides a systematic framework for studying interesting backgrounds
such as AdS and flux compactifications. Observables such as AdS
Virasoro-Shapiro amplitude (Alday, Hansen, Silva 22, Alday, Hansen 23) and
gs-corrections to Kahler potential in GKP should be computable in this
framework.

@ SFT can also accomodate nonperturbative D-instanton contributions using
the recently developed D-instanton perturbation theory. In GKP, whether
there are CY3's with large/small complex structure moduli still allowing for
suppressed (non-BPS) D-instanton contributions is an important question
that should be investigated more thoroughly.
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Discussion

@ SFT provides a systematic framework for studying interesting backgrounds
such as AdS and flux compactifications. Observables such as AdS
Virasoro-Shapiro amplitude (Alday, Hansen, Silva 22, Alday, Hansen 23) and
gs-corrections to Kahler potential in GKP should be computable in this
framework.

@ SFT can also accomodate nonperturbative D-instanton contributions using
the recently developed D-instanton perturbation theory. In GKP, whether
there are CY3's with large/small complex structure moduli still allowing for
suppressed (non-BPS) D-instanton contributions is an important question
that should be investigated more thoroughly.

@ In principle, SFT knows how to deal with time-dependent backgrounds. An
example which was studied intensively in the past is the open string rolling
tachyon (Sen 02). Can we address closed string cosmology (Rodriguez 23)?

e
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