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Gravity and averaging |: Black Holes

o Semi-classical gravity averages over UV microstates. This E
is due to black hole solutions, whose horizon area gives the
high energy density of states:

Area(E)

po(E) = exp — =~

Black hole —
threshold

o This density of states is continuous because it is averaged
over a high energy window. In AdS3, it corresponds to the
Cardy density of the dual CFT.
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Gravity and averaging |I: Wormholes

o Gravity also computes ensemble averages. This is because of wormholes.

Zgrav BIO Oﬁ2 ﬁl@ @ﬂ? + ﬁlM B + - -
ZcFr BIO O Bo | = Zcrr(B1)Zerr (B2)

@ The inclusion of wormhole topologies provides a coarse grained description in terms of an
ensemble of quantum systems (see Monday's review talk).

(D Qe+ s(=)# + -z

o These two types of coarse graining are related. For a chaotic system like a black hole,
averaging over a high energy window is indistinguishable from averaging over an ensemble.
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Gravity as a maximum ignorance ensemble

@ Just like in statistical physics, the ensemble interpretation of quantum gravity provides the
“best” description of a system given a set of constraints (de Boer)

@ For instance, the micro-canonical ensemble maximizes entropy subject to the constraint of
fixed energy.

@ A random matrix model, describing a random Hamiltonian H, is the maximum entropy
ensemble for a given average density of states.

ensemble

Z:/dH e~ V(H) V(H) «— p(E),
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JT gravity as a maximum ignorance ensemble

@ Saad, Shenker, Stanford (SSS) showed that two dimensional JT gravity is equivalent to a
double scaled matrix model.

o Inputs:

mdisk =E P(E)P(E')cy/inder = 1)

The cylinder determines the eigenvalue statistics associated to the symmetry class of the
ensemble.

@ This determines the gravity path integral on all 2D geometries via the machinery of
topological recursion

A

[figure from SSS].
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AdS3 gravity as a maximum ignorance ensemble

o We consider a generalization of the SSS model and study an ensemble of CFT2's dual to
AdS3 gravity

o CFT2 data is given by the Dilatation operator As graded by spin, and the OPE coefficients
Cij. Assuming integers spins, we get a set of random matrices and a random tensor:

(As, €), se’
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AdS3 gravity as a maximum ignorance ensemble

o We consider a generalization of the SSS model and study an ensemble of CFT2's dual to
AdS3 gravity

o CFT2 data is given by the Dilatation operator As graded by spin, and the OPE coefficients
Cij. Assuming integers spins, we get a set of random matrices and a random tensor:

(As, €), se’

This random data satisfy locality constraints given by the modular bootstrap. This is
generated by 4 point crossing equation on the sphere

2 3 2 3
> Ci2pCpaa H> H> =Y C3qCan
- 1 2 | 4 P

and torus modular invariance.
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AdS3 gravity as a maximum ignorance ensemble

o We consider a generalization of the SSS model and study an ensemble of CFT2's dual to
AdS3 gravity

o CFT2 data is given by the Dilatation operator As graded by spin, and the OPE coefficients
Cij. Assuming integers spins, we get a set of random matrices and a random tensor:

(As, €), se’

This random data satisfy locality constraints given by the modular bootstrap. This is
generated by 4 point crossing equation on the sphere

2 3 2 3
> Ci2pCpaa H> H> =Y C3qCan
- 1 2 | 4 P

and torus modular invariance.
o We will argue that the sum over topologies in AdS3 gravity produces the maximum
ignorance ensemble consistent with the modular bootstrap.
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Table of Contents

° Ensemble of approximate CFT's
e The tensor potential and Virasoro TQFT
© The matrix potential and SL(2,Z) modular invariance

@ Sum over all manifolds and the Schwinger Dyson equation
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Ensemble of approximate CFT's

@ An ensemble of exact CFT2's would have a potential V defined by the Cardy density, and a
delta function imposing the bootstrap constraints:

20 = Z/D[AS]D[C]FfVO(A5)5(constraints)
SEZL

o For irrational CFT's with only Virasoro symmetry, we don’t know how to impose these
constraints. Following (BdBJNS), we relax the constraints by smearing the delta function with
a parameter h

Z, = Z/D[AS]D[C] exp (—VO(AS) - %V(As, C))

SEZ

o V(As, C) is a “constraint squared” potential that is minimized on solutions of the bootstrap.
This defines an ensemble of approximate CFT's, with i parametrizing the violation of the
bootstrap.

@ Since /i = 0 localizes to exact CFT's, computing Zj; and then taking i — 0 should teach us
something about the space of CFT's
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3d gravity from the ensemble of approximate CFT's

@ We first define the ensemble as an integral over a finite tensor and matrices by truncating to
N primaries. Then take a double scaling limit of As that sends N — oo

@ Apriori, we want i — 0 at fixed central charge c. However, we will first re-organize the
Feynman diagrams of the ensemble into an e~ ¢ expansion, then take i — 0

@ We will argue that the e~ ¢ expansion of the ensemble reproduces the topological expansion

of 3d gravity.
B = O\Q +O©+.-.
=0 G- =D

Z Cijk Ckji — surgery on the manifolds above

i

Ciik Cyji

@ Unifies many recent works on 3d gravity and random ensembles: Mertens/Turiaci,Collier/Maloney
Maxfield/Tsaires, Cotler/Jensen, Belin/de Boer, Anous/Belin/de Boer/ Liska, Chandra/Collier/Hartman/
Maloney, Jafferis/Kolchmeyer/Mukhametzhanov/Sonner, Yan...
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A flow chart

Tensor model Inner product for the square
input of 4 point sphere crossing
i > Maximum ignorance Gravity path integral
ppcyhnder ensemble of CFT’s

Matrix Model Pdisk
input

Inner product for

the square of torus | ——

modular invariance
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Verlinde inner product and 4 point crossing

@ 4 point crossing = the vanishing of a vector.

2 3 2 3
Z C12pCp3a H H - Z C23¢ Cqa1
- i 2 f 2 P

We want an inner product to take its square.
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Verlinde inner product and 4 point crossing

@ 4 point crossing = the vanishing of a vector.

2 3 23
Z Ci2pCpza H> H> - Z C23¢Cqa1
- i 2 f 2 P

We want an inner product to take its square.

@ The space of Virasoro conformal blocks forms a Hilbert space equipped with the Verlinde
inner product and a representation of crossing transformations.
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Verlinde inner product and 4 point crossing

@ 4 point crossing = the vanishing of a vector.

2 3 23
Z Ci2pCpza H> H> - Z C23¢Cqa1
- i 2 f 2 P

We want an inner product to take its square.

@ The space of Virasoro conformal blocks forms a Hilbert space equipped with the Verlinde
inner product and a representation of crossing transformations.
3
_Jg 4 1
a {P 2 3}
4

<Y , /N 7>6<2>(Pq—Pq) < .
Virasoro 6J symbol

/ \ / x S1p,

Modular S matrix

@ This is the Hilbert space structure of Virasoro TQFT (Verlinde/Collier/Eberhardt/Mengyang).
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Constraint squared potential

@ The square of 4 point crossing defines a quartic potential

Vy = Z Z (Ci1i2PCPi3i4 Cairiy C"Aiaq)

ipeeeig PyA

Pillow 1 3 1 3 6J
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Constraint squared potential

@ The square of 4 point crossing defines a quartic potential

2
Vy = Z Z (Ci1i2PCPi3i4 Cairiy C"Aiaq)
iteeig Pyd
2
2 3
P
il 4
P 2
P q
Pillow 1 3 1 3 6J
7 4
@ The kinetic term comes from a special case of the 6J:
i
)
Gin=1— Vo==>" CuCju i | A |k theta
ijk 1/,
k
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Triple line Feynman diagrams and theirgravity interpretation

@ The triple line Feynman rules are defined by removing the vertices from the graphs

;—;755.5.5 >\\:/\/< 16(Pp — Pq) Pq) q 4 3}
O iI9jmO9kp, /A 7 Squ p 2 2

o We interpret these diagrams as multiboundary wormholes with Wilson lines inserted:

Pillow

@ They come from Wilson line networks in the three sphere, with solid balls removed around
the junctions.

@ These Feynman rules generate a sum over 3- manifolds. On a fixed manifold they agree with
3d gravity as defined by 2 copies of Virasoro TQFT .

Ztensor(M) = |ZVir(Iw)|2
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A flow chart

PP cylinder

Matrix Model ﬁ disk - Maximum ignorance Gravity path integral

input ensemble of CFT’s

Square of torus
modular invariance
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Random matrix statistics and the torus wormhole

@ The random Hamiltonians As belong to the GOE ensemble (Yan). The GOE measure
exponentiates to the Vandermonde potential

K(A1,s1; A2, 55) = 8(s1 — s2)Log|Ar — Ag|!

@ The “cylinder” contribution to pp is the inverse of the Vandermonde kernel. It is the
propagator for p.

p(Aly Sl)p(A27 52)cylinder = Kil(Ah s1; Ao, 52) =

A17'51 A2752

It agrees with the 3d gravity path integral on the torus wormhole computed in (Cotler/Jensen
20), up to an extra factor of 2 due to extra wormholes needed to get agreement with the
GOE ensemble (Yan, Jensen) .
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Cardy density and the BTZ black hole

@ The disk density for A is given by the Cardy formula. This is a product of Virasoro S matrix
elements in the left and right moving sector.

- )

P(h7 E)disk = S]th]lE = -
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Cardy density and the BTZ black hole

@ The disk density for A is given by the Cardy formula. This is a product of Virasoro S matrix
elements in the left and right moving sector.

- )

P(h7 E)disk = S]th]lE = ‘

c—1
A>s+ ——
’ o -

_ 1 1 o0 oo _ _
Zg77(T.T) = X1 (—;) X1 (—;) = /C_1 /C_1 dhdh S14S15 xn(T)x5(7)

2% 24
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Cardy density and the BTZ black hole

@ The disk density for A is given by the Cardy formula. This is a product of Virasoro S matrix
elements in the left and right moving sector.

P(h7 E)disk = S]th]lE = -

Zg72(7,7) = x1 (—%) X1 (—:) / / dhdh S14S, 5 xa(T)x5(7)

o To get all spins, write Y- ., = Jds> g2mins

n——oo

> / " ds / DA:D[C]exp(~ Vo(As))

n=—oo

T transform
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Constraint squared potential for S-modular invariance I:

@ The (approximate) CFT partition function is a vector on the Hilbert space H 2 ® Hy2 of
Virasoro characters

1Z(7,7)) = > |hi) |hi)
i
@ Given an inner product, we can define a double trace potential for modular invariance

Vs = (1 —S)[Z(r,7))[> =D (hi, hil Vs| by, By)
o We then expand in powers of the potential %Vsz

oo 0o i
z= > / ds e2’”"5/DAsD[C] exp(—Vo(As) — lvs)

n=—o00

oy

Gabriel Wong (Oxford Math Institute)



Gravity inner product: Torus wormhole

@ The GOE Vandermonde K is the gravity inner product on Hy2 @ H 2
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Gravity inner product: Torus wormhole

@ The GOE Vandermonde K is the gravity inner product on Hy2 @ H 2

Time

p(h17 F’l)p(h27 F'Q)cylinder = <h17 E1|R71|h27 I_'12> = -

hi, b ha, ho

o Because 3d gravity is topological, this propagator is the identity on Hy2 ® H 2.
K~ gives the resolution of identity in an non-orthogonal basis of Virasoro characters
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Gravity inner product: Torus wormhole

@ The GOE Vandermonde K is the gravity inner product on Hy2 @ H 2

Time

p(h, l_"l)p(h% F'Q)cylinder = (h, Ellkillh% 772> = -

hi, b ha, ho

o Because 3d gravity is topological, this propagator is the identity on Hy2 ® H 2.
K~ gives the resolution of identity in an non-orthogonal basis of Virasoro characters

@ The non orthogonality comes from the the gauging of the bulk mapping class group.

@ The VTQFT inner product — orthogonal Virasoro characters. VTQFT has different
random matrix statistics than gravity.
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SL(2,7Z) modular invariance from sum over topologies

o Before adding Vs, we have a simple set of 3 manifolds obtained from the genus expansion of

the double scaled matrices As. The expansion parameter the level spacing e~ €.

‘- @
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SL(2,7Z) modular invariance from sum over topologies

o Before adding Vs, we have a simple set of 3 manifolds obtained from the genus expansion of

the double scaled matrices As. The expansion parameter the level spacing e~ €.

‘- @

@ Introducing Vs using the gravity inner product inserts S transforms into the propagation of a
bulk toriodal slice

In the & — 0 limit this produces a projector onto the S = 1 states = S modular invariance.
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SL(2,7Z) modular invariance from sum over topologies

o Before adding Vs, we have a simple set of 3 manifolds obtained from the genus expansion of
the double scaled matrices As. The expansion parameter the level spacing e~ €.

‘- @

@ Introducing Vs using the gravity inner product inserts S transforms into the propagation of a
bulk toriodal slice

In the & — 0 limit this produces a projector onto the S = 1 states = S modular invariance.
e Full SL(2,Z) modular invariance is achieved when combined with the sum over T transforms.

@ These new wormholes produces Seifert manifolds that are needed to cure the negative density
of states that would arise from the SL(2,7Z) sum over BTZ black holes (Maxfield-Turiaci).
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Surgery = averaging over tensor model Loops

@ Loops in the tensor model diagrams < insertion of the Cardy density

This allows us to build all 3 manifolds (Lickorish)
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Schwinger Dyson and the sum over topologies

@ Due to surgery relations, we obtain many tensor model diagrams with the same topology,
weighted by different powers of .

(C---C) =" Zgau(M, c)f (M, ). Zgav(M, c) ~ e VelM
M

@ To match with 3d gravity, we want f(M,h) = 1as h —0
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Schwinger Dyson and the sum over topologies

@ Due to surgery relations, we obtain many tensor model diagrams with the same topology,
weighted by different powers of .

(C---C) =" Zgau(M, c)f (M, ). Zgrav(M, €) ~ e VoM
M

@ To match with 3d gravity, we want f(M,h) = 1as h —0
@ We can check this conjecture using the i — 0 limit of the Schwinger Dyson equation, e.g.

Pillow

o For a single manifold on the LHS, we have a finite counting problem

N 2
-
/] \
T MeMp NeMﬁJ
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Summary and final thoughts

@ We showed how the topological expansion of 3d gravity arises from a random ensemble of
approximate CFT's.

@ The sum over topologies implements the bootstrap constraints order by order in the e™¢
expansion

@ A successful non-perturbative completion of the sum would solve the bootstrap equations
exactly, and land us in the space of exact CFT's. We expect this is a e —e question.

@ The matrix model sums over a simpler class of 3 manifolds: perhaps we should start by
understanding the non-perturbative completion of this sum.
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Outlook

@ A matrix model prediction: 3 boundary torus wormhole

o Some loose ends:
o Solve the Schwinger-Dyson equation : generalization of topological recursion?
o renormalization /cancellation of S? handle divergences
o Regularization of the SL(2,Z) accumulation point = hyperbolic cusp

o Future work:
o Random BCFT and EOW branes
o Adding matter
o Random ensemble for dS37
o Random ensemble of RCFT's
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