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Gravity and averaging I: Black Holes

Semi-classical gravity averages over UV microstates. This
is due to black hole solutions, whose horizon area gives the
high energy density of states:

This density of states is continuous because it is averaged
over a high energy window. In AdS3, it corresponds to the
Cardy density of the dual CFT.
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Gravity and averaging II: Wormholes

Gravity also computes ensemble averages. This is because of wormholes.

Zgrav

0

@

1

A =

ZCFT

0

@

1

A = ZCFT (�1)ZCFT (�2)

The inclusion of wormhole topologies provides a coarse grained description in terms of an
ensemble of quantum systems (see Monday’s review talk).

= ZCFT (�1)ZCFT (�2)

These two types of coarse graining are related. For a chaotic system like a black hole,
averaging over a high energy window is indistinguishable from averaging over an ensemble.
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Gravity as a maximum ignorance ensemble

Just like in statistical physics, the ensemble interpretation of quantum gravity provides the
“best” description of a system given a set of constraints (de Boer)

For instance, the micro-canonical ensemble maximizes entropy subject to the constraint of
fixed energy.

A random matrix model, describing a random Hamiltonian H, is the maximum entropy
ensemble for a given average density of states.

Z =

Z
dH e

�V (H)
V (H) ! ⇢(E)ensemble
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JT gravity as a maximum ignorance ensemble

Saad, Shenker, Stanford (SSS) showed that two dimensional JT gravity is equivalent to a
double scaled matrix model.

Inputs:

⇢(E)disk = E ⇢(E)⇢(E 0)
cylinder

= E E
0 (1)

The cylinder determines the eigenvalue statistics associated to the symmetry class of the
ensemble.

This determines the gravity path integral on all 2D geometries via the machinery of
topological recursion

[figure from SSS].
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AdS3 gravity as a maximum ignorance ensemble

We consider a generalization of the SSS model and study an ensemble of CFT2’s dual to
AdS3 gravity

CFT2 data is given by the Dilatation operator �s graded by spin, and the OPE coe�cients
Cijk . Assuming integers spins, we get a set of random matrices and a random tensor:

(�s ,C), s 2 Z

This random data satisfy locality constraints given by the modular bootstrap. This is
generated by 4 point crossing equation on the sphere

X

p

C12pCp34

������

+ �����

+
�

X

q

C23qCq41

�����

+ �����

+
= 0,

and torus modular invariance.

We will argue that the sum over topologies in AdS3 gravity produces the maximum
ignorance ensemble consistent with the modular bootstrap.
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Ensemble of approximate CFT’s

An ensemble of exact CFT2’s would have a potential V0 defined by the Cardy density, and a
delta function imposing the bootstrap constraints:

Z0 ⌘
X

s2Z

Z
D[�s ]D[C ]e�V0(�s )�(constraints)

For irrational CFT’s with only Virasoro symmetry, we don’t know how to impose these
constraints. Following (BdBJNS), we relax the constraints by smearing the delta function with
a parameter ~

Z~ ⌘
X

s2Z

Z
D[�s ]D[C ] exp

✓
�V0(�s)�

1

~
V (�s ,C)

◆

V (�s ,C) is a “constraint squared” potential that is minimized on solutions of the bootstrap.
This defines an ensemble of approximate CFT’s, with ~ parametrizing the violation of the
bootstrap.

Since ~ = 0 localizes to exact CFT’s, computing Z~ and then taking ~! 0 should teach us
something about the space of CFT’s
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3d gravity from the ensemble of approximate CFT’s

We first define the ensemble as an integral over a finite tensor and matrices by truncating to
N primaries. Then take a double scaling limit of �s that sends N !1

Apriori, we want ~! 0 at fixed central charge c. However, we will first re-organize the
Feynman diagrams of the ensemble into an e

�c expansion, then take ~! 0

We will argue that the e
�c expansion of the ensemble reproduces the topological expansion

of 3d gravity.

⇢(�, s) = + + · · ·

CijkCkji = + + + · · ·

X

i

CijkCkji �! surgery on the manifolds above

Unifies many recent works on 3d gravity and random ensembles: Mertens/Turiaci,Collier/Maloney

Maxfield/Tsaires, Cotler/Jensen, Belin/de Boer, Anous/Belin/de Boer/ Liska, Chandra/Collier/Hartman/

Maloney,Ja↵eris/Kolchmeyer/Mukhametzhanov/Sonner,Yan...
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A flow chart
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Verlinde inner product and 4 point crossing

4 point crossing = the vanishing of a vector.

X

p

C12pCp34

������

+ �����

+
�

X

q

C23qCq41

�����

+ �����

+
= 0

We want an inner product to take its square.

The space of Virasoro conformal blocks forms a Hilbert space equipped with the Verlinde
inner product and a representation of crossing transformations.

* ������

+
=

�(2)(Pq � Pq)

S Pq

* ������

+
=

⇢
q 4 1
p 2 3

�

This is the Hilbert space structure of Virasoro TQFT (Verlinde/Collier/Eberhardt/Mengyang).
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Constraint squared potential

The square of 4 point crossing defines a quartic potential

V4 =
X

i1···i4

X

p,q

�
Ci1 i2pCpi3 i4Cqi2 i1Ci4 i3q

�
������

* ������

+������

2

�
�
Ci1 i2pCpi3 i4Ci1 i4qCi3 i2q

�

��������

* ������

+
��������

2

Pillow 6J

The kinetic term comes from a special case of the 6J:

Cii = 1 �! V2 = �
X

ijk

CijkCjik theta
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Triple line Feynman diagrams and theirgravity interpretation

The triple line Feynman rules are defined by removing the vertices from the graphs

= ~�il�jm�kp , =
1

~
�(Pp � Pq)

S Pq

, =
1

~

⇢
q 4 3
p 2 2

�

We interpret these diagrams as multiboundary wormholes with Wilson lines inserted:

Theta Pillow 6J

They come from Wilson line networks in the three sphere, with solid balls removed around
the junctions.

These Feynman rules generate a sum over 3- manifolds. On a fixed manifold they agree with
3d gravity as defined by 2 copies of Virasoro TQFT .

Ztensor(M) = |ZVir(M)|2
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A flow chart
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Random matrix statistics and the torus wormhole

The random Hamiltonians �s belong to the GOE ensemble (Yan). The GOE measure
exponentiates to the Vandermonde potential

K(�1, s1;�2, s2) = �(s1 � s2)Log|�1 ��2|
1

The “cylinder” contribution to ⇢⇢ is the inverse of the Vandermonde kernel. It is the
propagator for ⇢.

⇢(�1, s1)⇢(�2, s2)cylinder = K
�1(�1, s1;�2, s2) =

It agrees with the 3d gravity path integral on the torus wormhole computed in (Cotler/Jensen

20), up to an extra factor of 2 due to extra wormholes needed to get agreement with the
GOE ensemble (Yan, Jensen) .
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Cardy density and the BTZ black hole

The disk density for �s is given by the Cardy formula. This is a product of Virasoro S matrix
elements in the left and right moving sector.

⇢(h, h̄)disk = S hS h̄
=

� = h + h̄, s = h � h̄ 2 Z

� � s +
c � 1

12

ZBTZ(⌧, ⌧̄) = �

✓
�

1

⌧

◆
�

✓
�

1

⌧̄

◆
=

Z 1

c�1
24

Z 1

c�1
24

dhdh̄ S hS h̄
�h(⌧)�h̄

(⌧̄)

To get all spins, write
P

s2Z =
R
ds

P1
n=�1 e

2⇡ins

Z0 ⌘

1X

n=�1

Z 1

�1
ds e

2⇡ins

Z
D�sD[C ] exp(�V0(�s))

T transform
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Constraint squared potential for S-modular invariance I:

The (approximate) CFT partition function is a vector on the Hilbert space H
T 2 ⌦H

T 2 of
Virasoro characters

|Z(⌧, ⌧̄)i =
X

i

|hi i |h̄i i

Given an inner product, we can define a double trace potential for modular invariance

VS ⌘ |( � S) |Z(⌧, ⌧̄)i|2 =
X

i,j

hhi , h̄i |V̂S |hj , h̄j i

We then expand in powers of the potential 1
~VS :

Z ⌘

1X

n=�1

Z 1

�1
ds e

2⇡ins

Z
D�sD[C ] exp(�V0(�s)�

1

~
VS )

�!

We need to find the gravitational inner product: it is not the one defined by VTQFT.
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Gravity inner product:Torus wormhole

The GOE Vandermonde K is the gravity inner product on H
T 2 ⌦H

T 2

⇢(h1, h̄1)⇢(h2, h̄2)cylinder ⌘ hh1, h̄1|K̂
�1

|h2, h̄2i =

Because 3d gravity is topological, this propagator is the identity on H
T 2 ⌦H

T 2 .
K

�1 gives the resolution of identity in an non-orthogonal basis of Virasoro characters

The non orthogonality comes from the the gauging of the bulk mapping class group.

The VTQFT inner product �! orthogonal Virasoro characters. VTQFT has di↵erent
random matrix statistics than gravity.
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SL(2,Z) modular invariance from sum over topologies

Before adding VS , we have a simple set of 3 manifolds obtained from the genus expansion of
the double scaled matrices �s . The expansion parameter the level spacing e

�c .

+ + · · ·

Introducing VS using the gravity inner product inserts S transforms into the propagation of a
bulk toriodal slice

=
1

~

In the ~! 0 limit this produces a projector onto the S = 1 states ) S modular invariance.

Full SL(2,Z) modular invariance is achieved when combined with the sum over T transforms.

These new wormholes produces Seifert manifolds that are needed to cure the negative density
of states that would arise from the SL(2,Z) sum over BTZ black holes (Maxfield-Turiaci).
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Surgery = averaging over tensor model Loops

Loops in the tensor model diagrams $ insertion of the Cardy density

=

Z
d
2
pS pS p

This implements toroidal surgery, which is equivalent to Moore-Seiberg identities

= l k

Gluing 6J’s with a relative rotation creates arbitrary braids

This allows us to build all 3 manifolds (Lickorish)
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Schwinger Dyson and the sum over topologies

Due to surgery relations, we obtain many tensor model diagrams with the same topology,
weighted by di↵erent powers of ~.

hC · · ·Ci =
X

M

Zgrav(M, c)f (M, ~). Zgrav(M, c) ⇠ e
�cVolM

To match with 3d gravity, we want f (M, ~)! 1 as ~! 0

We can check this conjecture using the ~! 0 limit of the Schwinger Dyson equation, e.g.

For a single manifold on the LHS, we have a finite counting problem
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Summary and final thoughts

We showed how the topological expansion of 3d gravity arises from a random ensemble of
approximate CFT’s.

The sum over topologies implements the bootstrap constraints order by order in the e
�c

expansion

A successful non-perturbative completion of the sum would solve the bootstrap equations
exactly, and land us in the space of exact CFT’s. We expect this is a e

�e
c

question.

The matrix model sums over a simpler class of 3 manifolds: perhaps we should start by
understanding the non-perturbative completion of this sum.
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Outlook

A matrix model prediction: 3 boundary torus wormhole

Some loose ends:
Solve the Schwinger-Dyson equation : generalization of topological recursion?
renormalization /cancellation of S2 handle divergences
Regularization of the SL(2,Z) accumulation point = hyperbolic cusp

Future work:
Random BCFT and EOW branes
Adding matter
Random ensemble for dS3?
Random ensemble of RCFT’s

Gabriel Wong (Oxford Math Institute) 3d gravity as a random ensemble To appear soon with Dan Ja↵eris and Liza Rozenberg 27 / 27


