How the Hilbert space of two-sides black holes factorise?

Guanda Lin
UC Berkeley
Gong Show Talk, Strings2024

Based on an upcoming work with Jan Boruch, Luca Iliesiu and Cynthia Yan

Motivation

What is the Hilbert space of a two-sided black hole?

- In AdS/CFT, how does gravity know factorisation?

- More broadly, what is the algebra type for one-sided observables?

QFT
Type-III
Pert. Grav.
Type-II

Full Quant. Grav.
Type I?

Main result

- "Puzzle" mostly at the perturbative level

$$
\mathcal{H}_{\text {pert. }} \sim \mathcal{H}_{\text {grav. }} \times \mathcal{H}_{\text {mat }}
$$

- We prove that non-perturbative corrections will provide resolutions

$$
\begin{array}{cc}
\text { [non-pert.] } & \operatorname{Tr}_{\mathcal{H}_{\text {bulk }}}\left(k_{L} k_{R}\right)=\operatorname{Tr}_{\mathcal{H}_{L}}\left(k_{L}\right) \times \operatorname{Tr}_{\mathcal{H}_{R}}\left(k_{R}\right) \\
& \sqrt{ } \text { [non-pert.] } \\
\stackrel{\mathcal{H}_{\text {bulk }}}{=} \mathcal{H}_{L} \otimes \mathcal{H}_{R}
\end{array}
$$

- In particular, Wormhole contributions to gravitational path integral are crucial

Set-up

- JT+matter

$$
I=-S_{0} \chi(\mathcal{M})-\frac{1}{2}\left(\int_{\mathcal{M}} \phi(R+2)+2 \int_{\partial \mathcal{M}} \phi_{b}(K-1)\right)+I_{\text {matter }}
$$

- Basis of Hilbert space

$$
\mathcal{H}_{\text {bulk }}=\operatorname{Span}\left\{\left|q_{i}\right\rangle, i=1, \ldots, K\right\}
$$

- The bulk trace and replica wormholes

$$
\operatorname{Tr}_{\mathcal{H}_{\text {bulk }}}\left(k_{L} k_{R}\right)=\lim _{n \rightarrow-1}\left\langle q_{i} \mid q_{j}\right\rangle^{n}\left\langle q_{i}\right| k_{L} k_{R}\left|q_{j}\right\rangle
$$

Probing factorisation

- Bulk trace $\operatorname{Tr}_{\mathcal{H}_{\text {bulk }}}\left(k_{L} k_{R}\right)=\operatorname{Tr}_{\mathcal{H}_{L}}\left(k_{L}\right) \times \operatorname{Tr}_{\mathcal{H}_{R}}\left(k_{R}\right)$ more precisely $Z_{\text {bulk }}\left(\beta_{L}, \beta_{R}\right)=\operatorname{Tr}_{\mathcal{H}_{\text {bulk }}}\left(e^{-\beta_{L} H_{L}} e^{-\beta_{R} H_{R}}\right)$

Probing factorisation

- Differential equation $\overline{d\left(\beta_{L}, \beta_{R}\right)}=\overline{d\left(\beta_{L}, \beta_{R}\right)^{2}}=0$

$$
\begin{aligned}
& \log \left[1+d\left(\beta_{L}, \beta_{R}\right)\right] \\
& 40 \beta_{L}=\beta_{R}=2: \\
& 30 \beta_{L}=\beta_{R}=4 \\
& \hline
\end{aligned}
$$

Thank you!

Extra slides

Barred v.s. unbarred

Leading order in K

$$
\overline{\operatorname{Tr}_{\mathcal{H}_{\text {bulk }}(K)}\left(k_{L} k_{R}\right)}=\overline{\operatorname{Tr}_{\mathcal{H}_{L}}\left(k_{L}\right) \operatorname{Tr}_{\mathcal{H}_{R}}\left(k_{R}\right)} \Leftrightarrow \operatorname{Tr}_{\mathcal{H}_{\text {bulk }}(K)}\left(k_{L} k_{R}\right)=\operatorname{Tr}_{\mathcal{H}_{L}}\left(k_{L}\right) \operatorname{Tr}_{\mathcal{H}_{R}}\left(k_{R}\right)
$$

In general, the barred one is correct because of the non-trivial statistics of energy levels
Dimension of the Hilbert Space

$$
\operatorname{dim}_{\mathcal{H}_{\text {bulk }}}=\overline{d^{2}}=\int_{\mathcal{E}} \rho\left(E_{L}\right) \rho\left(E_{R}\right) \quad \text { with } \mathcal{E} \text { energy cut-off }
$$

Note that even with a cut-off, $\mathcal{H}_{\text {pert. }}$ is infinite dimensional Irrelevance of UV divergence and higher dimensional generalization
(1) very general symmetry property argument for diff. eq.
(2) the matter supported wormholes are saddles and not the ones causing UV div. In JT+matter K independence
K is a parameter in the technique, irrelevant to the property of the actual $\mathcal{H}_{\text {hrilk }}$ checked $1 / K$ expansions, no effect; expect exp. small \# of outliers in which $\mathcal{H}_{\text {bulk }}$ is not spanned Basis independence
checked using operators with different conformal dimensions, length basis, etc
About gauge symmetry
Want no energy degeneracy so that the bulk trace factorisation tells about factorised basis No boundary global symmetry and no bulk gauge symmetry

The end of talk brane

