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Why	use	machine	learning?

It	works.
• Automate	tasks
• Solve	hard	problems

Recent	successes driven	by
• better software	(neural	nets, optimizers)
• better hardware	(GPUs)
• more data	(… and	more money/energy for	training)
• user-friendly ML	libraries (TensorFlow,	JAX,	PyTorch,...)		

Label Prediction

Cat 0.98

Dog 0.02

Cow 0.00



Why	use	ML	in	string	theory?

• Build	string	vacuum	with	{Standard	Model,	dS,	scale	separation,	..}
• Can	ML	pick	good	geometries?	Speed	up	hard	computations?	Find	vacua?

• Swampland	program
• Can	ML	help	classify	UV-complete	effective	field	theories?

• Numerics:	ML	for conformal	bootstrap,	ML	of	CY	metrics	
• Learn	mathematical	structures	(perhaps	of	relevance	for	physics)
• Physics-inspired	models	to	explain	how	ML	works

… progress	on	all	of these topics,	driven	by	many researchers	
Reviews:	 Ruehle:20,		Bao,	He,	Heyes,	Hirst:22,	Anderson,	Gray,	ML:23



CY	geometry:	Ricci	flat	metrics

CY	Theorem:	Let	𝑋	be	an	𝑛-dimensional	compact,	complex,	Kähler	
manifold	with	vanishing	first	Chern class.	
Then	in	any	Kähler	class	[𝐽],	𝑋	admits	a	unique	Ricci	flat	metric	𝑔().

• For	n>2,	no	analytical	expression	for	𝑔().	 K3:	Kachru-Tripathy-Zimet:18	

• Solve		𝑅+, 𝑔 = 0 4th order,	non-linear	PDE.	Very	hard.
• Equivalent	to	 2nd order	PDE	for	function	𝜙.

Hard,	but	may	solve	numerically	on	examples
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CY	geometry:	Ricci	flat	metrics

CY	Theorem:	Let	𝑋	be	an	𝑛-dimensional	compact,	complex,	Kähler	
manifold	with	vanishing	first	Chern class.	
Then	in	any	Kähler	class	[𝐽],	𝑋	admits	a	unique	Ricci	flat	metric	𝑔().

Kähler	form	𝐽()satisfies	
• 𝐽() = 𝐽 + 		𝜕𝜕̅𝜙	 same	Kähler class;	𝜙 is	a	function
• 𝐽() ∧ 𝐽() ∧ 𝐽() = 𝜅	Ω ∧ Ω7	 Monge-Ampere	equation	(𝜅	constant)

2nd order	PDE	for	𝜙
• Sample	points	on	CY;	compute	𝐽, Ω, 𝜅;	solve	MA	eq numerically
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Numerical	CY	metrics

Algebraic	CY	metrics

• 𝐾: 𝑧, 𝑧̅ =
<
:
∑ ln𝐻ABC𝑝A𝑝̅B

C�
�

spectral basis	of polynomials
• Solve	for	𝐻ABC using

• Donaldson	algorithm
Donaldson:05,	Douglas-et.al:06,	
Douglas-et.al:08,	Braun-et.al:08,	
Anderson-et.al:10,	...	

• Functional	minimization
Headrick–Nassar:13,	Cui–Gray:20,	
Ashmore–Calmon–He–Ovrut:21

• … or	machine	learning

Machine	Learning	CY	metrics
• Neural	Networks	are	universal	
approximators

Cybenko:89, Hornik:91,
Leshno et.al:93, Pinkus:99

• Train	ML	model to	approximate	
CY	metric,	or	Kähler	potential

Ashmore–He–Ovrut:19,	
Douglas–Lakshminarasimhan–Qi:20,	
Anderson–et.al:20,	
Jejjala–Mayorga–Pena:20	,	
ML-Lukas-Ruehle-Schneider:21,	22
Ashmore–Calmon–He–Ovrut:21,22,	
Berglund-et.al:22	,	
Gerdes–Krippendorf:22,	...
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Machine	Learning	implementation

Point	
sample

ML	model
(neural	net)

Metric	
prediction

Loss	functions Error	measures

Training	algorithm	

Moduli
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1.	Generating	a	point	sample	
On	example	CY	need	random	set	of	points,		sampled	w.r.t.	known	measure

Leading	algorithm:	CY	is	hypersurface	in	ℙG Douglas	et.	al:	06		
• Sample	2	pts	on	ℙG,	connect	with	line	&	intersect	à 𝑛 + 1 pts
• Shiffman-Zelditch theorem:	distributed	w.r.t.		𝑑𝑣𝑜𝑙MN

Generalizes to	CICYs and	CYs	from	Kreuzer-Skarke	list
Douglas	et.al:	07,			ML,	Lukas,	Ruehle,	Schneider:	21,22

• Fast	point	generators	of	ML	packages
MLgeometry,	cymetric,	cyjax
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2.	Setting	up	the	ML	model

Architectural	choices
• What	to	predict?
• Encode	constraints	in	NN	or	loss?
(global,	complex,	Kähler…)
• Flexibility vs.	precision
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Moduli
Point	sample 𝐽(), 𝜙

input
layer

hidden layer

output
layer

𝑧: = 𝜎(𝐴:𝑧:R< + 𝐵:)



ML	models		- choice	of	architecture

1. Learn	metric
Anderson-et.al.:20,
Jejjala–Mayorga–Pena:20	
ML-Lukas-Ruehle-Schneider:21,	22

2. Learn	Kähler	potential	(𝜙)
Anderson-et.al.:20,	
Douglas–Lakshminarasimhan–Qi:20,
Ashmore–Calmon–He–Ovrut:21,22,
ML-Lukas-Ruehle-Schneider:21,	22,	
Berglund-et.al.:22	

3. Learn	Donaldson’s	H	matrix	
Anderson-et.al.:20,	
Gerdes–Krippendorf:22
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Figure 1: Schematic overview of how models predicting the Hermitian matrix H (left) and
the metric gab̄ (right) are designed. The respective models are neural networks of different
complexity.

same ansatz for the Kähler potential, but utilize the �-accuracy measure to directly opti-
mize the output of our neural network. While Donaldson’s algorithm is guaranteed to con-
verge for k ! 1, for finite, fixed k there exist better approximations (as quantified by the
flatness measure �) than the ones obtained from Donaldson’s algorithm. We also demon-
strate that using the more expensive Ricci scalar as a loss is feasible (cf. Appendix C.3).
Although this is similar to the approach in [9], our approach takes into account the moduli
dependence of the H-matrix as an input to our neural network (cf. Section 2.6.2). We stress
that altering the setup to include multiple complex structure moduli is straightforward in
terms of the architecture. In principle, one can also start with a different ansatz for the
Kähler potential in the neural network, which we do not pursue further in this article.
Instead, we learn the metric directly which we discuss in Section 2.7.

The advantage of learning the Kähler potential is that it automatically satisfies dJ = 0
and in the case of the algebraic metric ansatz the overlap conditions are guaranteed. The
advantage of learning the metric g directly is that it is more general, for instance allowing
for larger functional flexibility (e.g. ability to capture solutions with dJ 6= 0). Moreover,
learning the metric directly requires only learning the independent components of the
hermitian d ⇥ d metric, while the ansatz for the Kähler potential requires dealing with
matrices whose number of components N2

k grows rapidly.

The feed-forward neural networks are implemented with standard packages. However, the
loss functions associated to the accuracy measures are custom implementations. It is also
worth noting that, when learning the metrics directly, we are not dealing with a supervised
learning approach. Indeed, we do not know the CY metrics and hence cannot provide labels
for supervised learning. Instead, the loss functions encode the continuous optimization task
needed to solve the equations that ensure that the resulting metric is CY. In particular,
we implemented the transition function computations as well as the matrix multiplication
and the complex derivatives in terms of real and imaginary parts of the NN output g and
the inputs zi in order to be able to back-propagate in the optimization step through the
respective losses. This splitting into real and imaginary parts is required in Tensorflow and
PyTorch but can be avoided by using JAX.

2.6 Learning the Kähler potential

As mentioned above, learning the H-matrix as a parametrization of Kähler potentials has
several advantages:

• The CY metric is guaranteed to be complex Kähler.

• The CY metric is by construction globally defined, i.e. it glues nicely across different
patches of 4.
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3.	Train	the	ML	model

Architectural	choices
• What	to	predict?
• Encode	constraints	in	NN	or	loss?

Then	train	
• Adapt	layer	weights	to	minimize	
loss	functions
• Stochastic	gradient	descent

11

Moduli
Point	sample 𝐽(), 𝜙

input
layer

hidden layer

output
layer

𝑧: = 𝜎(𝐴:𝑧:R< + 𝐵:)



Loss	functions	encode	math	constraints

• Train	the	network	to	get	unknown	Ricci-flat	metric	(in	given	Kähler	class)
• Use	semi-supervised	learning

1. Encode	mathematical	constraints	as	custom	loss	functions
2. Train	network	(adapt	layer	weights)	to	minimize	loss	functions

• Satisfy	Monge-Ampere	eqàminimize	Monge-Ampere	loss

• Less	rigid	metric	ansatz	àmore	loss	functions	(Kähler,	transition)

Learning CY metrics with cymetric

Custom loss terms controls learning - user chooses ↵i

L = ↵1LMA + ↵2LdJ + ↵3Ltransition + ↵4LRicci + ↵5LK-class.

LMA =

����

����1�
1

det gpr
⌦ ^ ⌦̄

����

����
n

,

LdJ =
X

ijk

||<cijk ||n + ||=cijk ||n , with cijk = gi j̄,k � gkj̄,i and gi j̄,k = @kgi j̄

Ltransition =
1
d

X

(s,t)

���
���g (t)
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(Jpr)
n�1Fi
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.

Magdalena Larfors Learning CY metrics 4 May 2022 13 / 32
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4.	Check	accuracy

• After	training,	check	that	MA	eq holds	and	Ricci	tensor	is	zero

• For	CY	manifolds	with	more	than	one	Kähler	class,	checks	of	volume	
and	line	bundle	slopes	ensures	this	stays	fixed.
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Error Measures

After training, evaluate performance (on separate test set):

does the MA equation hold? is the metric Ricci flat?

Check via established benchmarks:

� =
1

VolCY

Z

X

����1 � 
⌦ ^ ⌦

(Jpr)3

���� , R =
1

VolCY

Z

X
|Rpr| .

using Monte Carlo integration for any function f

Z

X
dVolCYf =

Z

X

dVolCY

dA
dA f =

1

N

X

i

wi f |pi with wi =
dVolCY

dA
|pi
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Experiments:	Fermat	vs.	generic	quintic

Monge-Ampere	loss Error	measures
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Fermat Generic GenericFermat

Cymetric,	100	000	points,	𝜙 model,	3	64-node	layers,	
GELU,	default	loss	parameters,	Adam,		batch	(64,	50000)

Anderson,	Gray,	ML:23

ML	methods	are	less	sensitive	to	symmetry



Experiments:	KS	CY	example

• ℎ<,< = 2,	ℎW,< = 80	hypersurface	from	Kreuzer-Skarke database

Toric 𝜙-model,	default	loss,	200	000	points

NN	width	256,	depth	3,	GELU,	batch	(128,	10000),	SGD	w.	momentum
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ML,Lukas,	Ruehle,Schneider:22

ML	methods	work	on	
both	CICY	and	KS	CYs



Accuracy	and	benchmarks

Improve	accuracy
• Larger	point	sample
• Wider/deeper	NN
• Train	longer

• Benchmark	cymetric
cubic	CY	in	ℙW (a.k.a.	the	torus)
• Spectrum	of	Δ()
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Ahmed	&	Ruehle:23
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Figure 4: The first 36 massive eigenmodes (averaged per multiplet with error bars corresponding to one
standard deviation) as we vary the number of points for the FS and the exact CY metric, compared to
the analytic result.

4.2 Spectrum

Next, we compute the spectrum numerically, varying the number of points np, the complex structure
parameter  and the number k� of the basis functions in which we expand the Laplacian eigenfunctions.
We perform all computations for the pullback of the FS metric (which is the lowest-order approximation
to the CY metric in the sense of Donaldson’s algorithm [18]) and for the exact CY metric (obtained
from |⌦|

2, which is proportional to the determinant of the metric, and hence to the metric itself for
one-folds) to see the influence of choosing various qualities of approximations to the CY metric. In all
cases, we can compare the approximate result to the analytic result (18) to quantify the error of the
approximation.

Varying the number of points

To study the influence of the number of points, we choose np 2 {1, 000, 10, 000, 100, 000}. We present the
results for each of the first 36 massive eigenmodes (the single massless mode is omitted from the plot)
in Figure 4. These 36 eigenmodes fall into various irreps under the symmetry group, such that there
are 11 distinct eigenvalues. For each eigenvalue, we plot the spectrum as computed with respect to the
exact CY metric obtained from |⌦|

2 (labeled CY in the plot), the analytic result computed from (18),
and the spectrum computed on the CY hypersurface when using the pullback of the ambient space FS
metric as a proxy for the exact CY metric. For the plot, we fix the other parameters like k� = 3 and
 = �1. The error bars represent 95 percent confidence intervals for multiplets with multiplicity larger
1. The di↵erent colors represent the three di↵erent choices for the number of points used to compute
the spectrum.

From the plot, we can make the following two observations. First, the metric dependence is rather weak.
In particular, the error we get from using the FS metric is often comparable to the error we get for the
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Accuracy,	performance	and	architecture

• Is	the	control	by	loss	functions	enough?

ML	models	which	always	give	global	𝜙
• Algebraic	metric,	using	spectral	basis
Anderson	et	al	:	20,	Douglas	et	al	:	20,	Gerdes	&	
Krippendorf:22,	...

• Combining	cymetric with	“spectral	layer”
improves	accuracy	and	performance
Berglund	et	al:22
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Figure 29: Numerical values of (2.24) along the Cefalú pencil near � = 1. The plot markers

are the same as in Figure 4. The value of �CY using fully-connected network at � = 0.99 is

o↵ the chart: �CY
⇡ 85510.

.

Figure 30: Convergence plot for c2(X�) around � = 1; the spectral network results (green,

“s” subscript) show significant improvement.

Computation of topological quantities is a crucial fitness check for numerical Calabi–

Yau metrics. At first one might think that these relatively straightforward computations

automatically work out as they are metric independent. However, one has to bear in mind

that the possible neural network approximations constitute a far broader set of solutions

than that of globally defined Kähler metrics. Choosing smooth activation functions for the

neural network ensures that the metric is smooth over each of the patches. Similarly, if the

metric is obtained from the so-called PhiModel, over each patch one has dJ = 0, satisfying

some local form of Kählerity. In the matching of patches, however, it is not guaranteed

a priori that the perturbation �NN respects the Kähler transformation rules of the seed

Kähler potential (in our case, the Fubini–Study potential). That is an inherent issue with

these numerical approximations and for the cases in which this situation is non-negligible we

expect significant deviations when computing topological quantities.
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Figure 30: Convergence plot for c2(X�) around � = 1; the spectral network results (green,

“s” subscript) show significant improvement.

Computation of topological quantities is a crucial fitness check for numerical Calabi–

Yau metrics. At first one might think that these relatively straightforward computations

automatically work out as they are metric independent. However, one has to bear in mind

that the possible neural network approximations constitute a far broader set of solutions

than that of globally defined Kähler metrics. Choosing smooth activation functions for the

neural network ensures that the metric is smooth over each of the patches. Similarly, if the

metric is obtained from the so-called PhiModel, over each patch one has dJ = 0, satisfying

some local form of Kählerity. In the matching of patches, however, it is not guaranteed

a priori that the perturbation �NN respects the Kähler transformation rules of the seed

Kähler potential (in our case, the Fubini–Study potential). That is an inherent issue with

these numerical approximations and for the cases in which this situation is non-negligible we

expect significant deviations when computing topological quantities.
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where k·k1 denotes the L1 norm.
Furthermore, we want to ensure that � is a global function. Hence we define the transition loss

Ltransition =
1

d

X

(s,t)

����(t) � �(s)
���
1
, (6)

where s, t denote di↵erent patches and d denotes the number of patch transitions.
In the cymetric package, three more constraints are encoded as custom loss functions Li: the

Kähler constraint dJ = 0 gives LdJ, preserving the Kähler class is enforced by LKclass, and direct
encoding of the Ricci-flatness condition gives LRicci. Thus, in total, the loss function that the
network is trained to minimize is given by

L = ↵1LMA + ↵2LdJ + ↵3Ltransition + ↵4LRicci + ↵5LKclass . (7)

Here ↵i are tuneable hyperparameters of the model (default value ↵i = 1.0) that are set by the
user. In our experiments, we use the default values for ↵, and will also disable the Ricci loss, as
it is expensive to compute and encodes the same condition as the MA-loss. We refer the reader
to [22, 23] for more discussions of the loss functions.

As a final comment, it may appear counter-intuitive to enforce the Kähler loss on the �-model,
which automatically encodes a Kähler metric (provided that the prediction � is a globally defined
function). Simularly, it appears unnecessary to train against the transition loss function once
the network is invariant under homogeneous rescalings, due to the non-trainable layers we will
introduce below. However, keeping these loss functions active does not seem to negatively a↵ect
performance. It may also be that the losses act as regulators for the model, and helps to keep the
prediction globally defined. Also, we can detect the invariance of the model by the vanishing of
the loss function.

3.3 Spectral layers

The spectral network, introduced in [25], repackages the input data of the �-model of the cymetric
package in a form that is manifestly invariant under homogeneous rescalings of the ambient space
coordinates. The motivation for this feature engineering step is to ensure that the learned function
� is globally well defined. Recall that this is only enforced ”softly”, by a loss function, in the
cymetric package. As a consequence, the network may predict line bundle sections rather than
globally defined functions. An observed ill consequence of this is the discrepancy of topological
quantities computed with the predicted Ricci flat metric [25], which becomes particularly noticeable
for singular, or nearly singular, CY spaces.

It may nevertheless appear surprising that such feature engineering is needed. The homogeneous
rescaling is not a symmetry of the CY manifold; this is a complex, n-dimensional space with n
holomorphic coordinates. However, as we have described in the previous section, the input data
of the cymetric models is not an n-dimensional complex tuple. Rather, for a CICY with ambient
space CPn1 ⇥ ..⇥CPnk , the point generators of cymetric produces

P
i 2(ni + 1)-dimensional real

input data tuples (with entries in the range [0, 1]). In this preprocessing the points on the CY
space are separated in to coordinate patches (that overlap but for zero measure sets). The training
is then done locally, using the transition loss function to impose that the function match on patch
overlaps. It is an empirical fact that the transition loss function is around 10�3 for standard �-
models (trained for 10 epochs on the Fermat quintic). As we will see in section 5, with the addition
of a spectral layer in the network, the transition loss function is of the order 10�9, which indicates
the prediction of � is indeed a function.

I’ve reread the Berglund paper, and I now think what we describe is basically their implemen-
tation, so I say so in this paragraph The e↵ect of the spectral layer is thus to impose invariance
under homogeneous rescalings. Following Ref. [25] (see also [39]), we have encoded the layer as
follows.11 For a CY with ambient space CPn, the spectral layer is a map

SpectralLayer : (z0, . . . , zn) 7!

0

BBBBB@

z0z̄0
|z|2

z0z̄1
|z|2 . . . z0z̄n

|z|2
z1z̄0
|z|2

z1z̄1
|z|2 . . . z1z̄n

|z|2
...

...
. . .

...
znz̄0
|z|2

znz̄1
|z|2 . . . znz̄n

|z|2

1

CCCCCA

11
This encoding shows the relation between the spectral layers and the bihomogeneous layers of [19]; they are

essentially related by a division by the norm. However, the bihomogenous layers have trainable weights, whereas

the spectral layer is non-trainable.
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ML	𝐺-invariant	CY	metrics

• Let	𝑋 be	smooth	CY,	 𝐺 discrete	symmetry	w.o fixed	points
Want:	Ricci-flat	metric	on	𝑋/𝐺
• Traditional	approach:	restrict	spectral	basis	to	invariant	polynomials

Douglas	et	al:08,	… Butbaia et	al:24

Alternative:	design	𝐺-invariant	ML	model		𝜙 𝑔 ⋅ 𝑧 = 𝜙(𝑧)
• Geometric	Deep	Learning:	symmetry	& performance	

Bronstein	et	al:17,21,..

• Universal	approximator theorem	for	invariant	NNs	Yarotsky:22,..
• Invariance	can	be	imposed	in	several	ways	in	ML

In	NN,	just	need	one	invariant	layer	
𝜙(𝑧) =	𝜙(𝜎(𝐴:(…𝜎(𝐴<(𝐼𝑛𝑣𝐿𝑎𝑦 𝑧 … )

18

Hendi,	ML,	Walden:24	(work	in	progress)



CY	metric	on	smooth	quintic quotient

• Ricci-flat	metric	on	b
c

• 𝜙-model	of	cymetric with	
non-trainable	layer	
input
layer invariant layer

hidden layers

output
layer

19

Hendi,	ML,	Walden:	24	(work	in	progress)

• Invariant	layer	projects	data	to	
fundamental	domain	of	𝐺
Aslan,	Platt,	Sheard:22,	Kaba et.al.	23

•

Figure 16: Validation data - 4-generation quintic. In some runs we had negative values for Ricci
val which distorted the plots. Here I have removed these values.

27

Figure 16: Validation data - 4-generation quintic. In some runs we had negative values for Ricci
val which distorted the plots. Here I have removed these values.
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Applications
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Physical	Yukawa	couplings	
Butbaia,	Mayorga-Pena,	Tan,	Berglund,	Hubsch,	
Jejjala,	Mishra	:24
Constantin,	Fraser-Taliente,	Harvey,	Lukas,	
Ovrut:24

• Heterotic	string:	matter	fields	come	
from	gauge	bundle
• In	“standard	embedding”	models,	
physical	Yukawa	couplings	known	
Strominger:85,Greene,et.al.86,87,	Candelas:88,	
Distler,	Greene:88,…

• Not	true	for	other	gauge	choices
• Use	ML	to	compute

• Ricci-flat	CY	metric
• HYM	connection
• Harmonic	representatives
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Family Monomial F Comment

1 Z
2
i
Z

3
j

i 6= j

2 ZiZjZ
3
k

i 6= j 6= k

3 ZiZ
2
j
Z

2
k

i 6= j 6= k

4 ZiZjZkZ
2
l

i 6= j 6= k 6= l

5 Z0Z1Z2Z3Z4 –

Table 1: Monomial representatives of H
1(TX/G) under identification (3.19).

Figure 3: Numerical values of the normalization matrix Nij = hbi, bjiWP.

Using numerical integration techniques, we compute the 95% confidence intervals of the

values for the normalized Yukawa couplings for the quintic quotient model. In Figure 4 we

contrast our results with those of [29].

Y1,1,2 Y1,2,3 Y1,3,4 Y2,2,2 Y2,2,3 Y2,3,3 Y2,3,4 Y2,4,4 Y3,3,4 Y3,3,5 Y3,4,4 Y4,4,4 Y4,4,5 Y5,5,5

1.0

1.2

1.4

1.6

Numerical Yijk

Expected Yijk

1.190

1.195

Y2,4,4

Figure 4: Comparison of the numerical normalized Yukawa couplings of quintic with the exact

results in [29]. The error bars indicate the 95% confidence interval.

– 16 –
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Figure 5. A typical Laplacian loss, L�, as in Eq. (III.20),
for the neural network approximating the section � defined in
Eq. (III.19), for the case of the up-Higgs. For this example,
we have chosen  0 = 2 and  = 1.

Figure 6. A typical transition loss, Ltr., as given in
Eq. (III.20), for the neural network approximating the sec-
tion � defined in Eq. (III.19), for the case of the up-Higgs.
For this example, we have chosen  0 = 2 and  = 1.

IV. YUKAWA COUPLINGS AND MASSES

We now outline the main steps in the numerical cal-
culation. For concreteness, we refer to the details of the
model introduced in Section II, but we note that the pro-
cedure is general for heterotic line bundle models.

(1) At the reference Kähler locus (ti) = (1, 1, 1, 1), and
for the defining polynomial (III.7) with  0 = 2 and
for each  2 {0, 0.5, 1, 2, 4, 6}, a sample of 300, 000
points on the TQ manifold is generated. Then,
the Ricci-flat CY metric is computed by machine-
learning the function � in Eq. (III.3), with this
point sample as a training/validation set.

(2) For each relevant line bundle L, the corresponding
HYM bundle metric H is computed by machine-
learning the function � in Eq. (III.13), with a
newly generated training/validation point set and
the loss function (III.15). This needs to be done
for three line bundles, namely, for L2 associated to

trained

reference

canonical

0 1 2 3 4 5 6
0.000
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0.010

0.015

0.020

ψ

M
as
s/(
e-

ϕ
|〈
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u 〉
|)

Figure 7. Plot of the (degenerate) top/charm mass in units of
e
��|hHui| for the defining polynomial (III.7) with  0 = 2, as a

function of the complex structure modulus  . The black curve
corresponds to the full neural network calculation, whilst the
red curve gives the masses computed with the reference met-
rics and differential forms. The blue curve shows the mass for
canonical kinetic terms, obtained by setting KQ = Ku = I2
and k

u = k
Q = k = 1 in Eq. (II.8). Comparison of the

blue and black curve demonstrates the importance of includ-
ing the field normalisations. Error bars are statistical, and
average five independent calculations.

Q
1

2
, Q

2

2
, U

1

2
, U

2

2
, for L5, associated to Q5, U5 and for

L
⇤
2
⌦ L

⇤
5
, associated to H

u
2,5.

(3) For each matter field involved, the corresponding
bundle-valued harmonic form ⌫ is computed by
starting with the corresponding reference bundle-
valued form taken from Refs. [21–23], machine-
learning � in Eq. (III.18), with an additional point
sample as training/validation set and loss func-
tion (III.20). This needs to be done for seven cases:
the three left-handed quarks Q

i, the three right-
handed up-quarks U

i and the up-Higgs H
u.

(4) Using the aforementioned quantities, Eqs. (III.1)
and (III.2) are used to compute the holomorphic
Yukawa couplings and matter field metrics. This is
done by Monte-Carlo integration using the given
point sample. These results must be consistent
with the structure of Yukawa couplings and mat-
ter field metrics as given in Eqs. (II.6) and (II.8),
which provides an important check of our calcula-
tion. Furthermore, this determines the entries �i
of the holomorphic Yukawa couplings in Eq. (II.6)
and the quantities K

Q
,K

u
, k

Q
, k

u
, k in Eq. (II.8).

(5) Finally, inserting these quantities into Eqs. (II.9),
(II.10) and (II.11), we determine the physical up
Yukawa couplings and up-quark masses.

The above calculation is performed in three modes. Ini-
tially, we carry out a quick calculation with the analytic
reference quantities, that is, we set � and all � and �

to zero. In this case, no neural networks need to be
trained—the above first three steps are trivial—but the

Standard	embedding

Line	bundle	sum



Test	swampland	distance	conjecture

• Compute	moduli-dependent	
spectrum	of	Δ()	in	example	CY:s

• Level	crossing	&	number	theory	

2

nates. For such families, the rate ↵ has been estimated
in the case where a Kaluza–Klein (KK) tower of states
becomes light from the fact that the mass of the KK tower
is expected to go like

mKK(p1) ⇠
MPl

r2
⇠ mKK(p0)e

�↵d(p0,p1) (2)

with r3
⇠ Vol(X) and ↵ = 4/

p
3 in the large radius

limit [18, 19].1 We can compare our explicit results to this.
However, we do set up the problem such that it generalizes
to more complex situations in which the Picard–Fuchs
system does not need to be solved analytically, or in
which the geodesic trajectory through moduli space is
more complicated and thus makes it hard to determine
the KK spectrum.

We also note that according to Weyl’s law, the eigen-
values �n of the Laplacian on a real d-dimensional Rie-
mannian manifold X with volume V satisfy

lim
n!1

�d/2n

n
!

(4⇡)d/2�(1 + d/2)

V
, (3)

and hence the eigenvalues go to zero as mKK ⇠ �1/2
⇠

V �1/6, i.e. the entire KK tower becomes massless. Includ-
ing the 1/V factor of the 4D metric in Einstein frame, we
recover the scaling in (2).

This project requires carrying out the following steps:

1. Compute the moduli space metric (using either an-
alytic [20] or numeric [21] techniques)

2. Compute the geodesics and the geodesic distances
in moduli space

3. Compute the CY metric along the moduli space
geodesics

4. Compute the massive spectrum from the CY metric
5. Fit a function to the masses and compare with the

prediction from the SDC

We describe steps 1 to 3 in Section II, steps 4 and 5
in Section III, and conclude in Section IV. We discuss
the transformation of the metric to Einstein frame in
Appendix A, and explain how to compute the irreducible
representations of the symmetry groups that lead to the
degeneracies of the Laplace operator in Appendix B.

II. GEODESICS IN MODULI SPACE

In order to check the SDC, we need to fix two points in
the moduli space and then find the shortest geodesic that
connects these points. We will therefore need to discuss
moduli space geodesics. We will start with a review [18–
20] of geodesics in complex structure moduli space and
then briefly comment on the corresponding Kähler moduli
space results. We will be following [20].

1 In fact, [18] asserts mKK ⇠ 1/r2 and [19] asserts mKK ⇠ 1/r1/2,
leading to di↵erent factors of 2 for ↵. We discuss this further in
Appendix A.

A. Geodesics in complex structure moduli space

The Kähler potential for the (Weil–Petersson) Kähler
metric of the complex structure moduli space of a CY
manifold X is

Kcs = � ln

✓
i

Z

X
⌦( ) ^ ⌦̄( ̄)

◆
, gab̄ = @a@̄b̄Kcs , (4)

where ⌦ is the holomorphic (3, 0)-form on X, @a = @/@ a ,
a = 1, 2, . . . h2,1(X), and  a are the complex structure
parameters. The normalization of the Kähler potential has
been chosen such that, upon dimensional reduction on X,
the Einstein–Hilbert term is canonically normalized [22,
23]. This ensures that the geodesic distance is given in
units of the 4D e↵ective Planck mass.

Choosing a symplectic basis of three-cycles AI , BI 2

H3(X, ) and dual three-forms ↵I ,�I with2 I = 0, 1,
normalized such that

AI
\ BJ =

Z

X
↵J ^ �I =

Z

AI

↵J =

Z

BJ

�I = �IJ , (5)

and all other combinations zero, we can define the period
vector

⇧ =

✓
GI

zI

◆
=

✓R
BI

⌦R
AI ⌦

◆
, (6)

such that

⌦ ^ ⌦̄ = zI ḠI � z̄IGI . (7)

The periods have been determined analytically in [20]
as solutions to a hypergeometric system of Picard–Fuchs
equations and can be written in terms of hypergeometric
functions.

In [21], a numerical method for computing the mod-
uli space metric has been proposed, which we compare
with the exact results. The method proceeds by vary-
ing the complex structure, computing a basis of (non-
holomorphic) three-forms under the variation, and evalu-
ating the integral appearing in the metric in (4) numeri-
cally using Monte Carlo integration. Note that we need
to perform the Monte Carlo integral at di↵erent points
in complex structure moduli space for computing the nu-
merical CY metric anyways. Having obtained the moduli
space metric at di↵erent points in moduli space, we inter-
polate the solution and use the interpolated function for
further analysis.

Once we have the periods and the metric, the next step
is to compute the Christo↵el connection, which, for a
Kähler metric, is

�c
ab = gcd̄@agbd̄ , �c̄

āb̄ = �c
ab , (8)

2 Note that there are 2h2,1(X)+2 three-forms, which can be divided
into two pairs of h2,1(X) + 1 three-forms.
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Figure 7: Spectrum of the scalar Laplacian on the quartic as a function of complex structure. We plot
a codimension 1 slice  = (1 + i)⇢ in the moduli space, which contains CM points at  �4 = �1/48 and
 
�4 = �9/16 (corresponding to the dashed lines at ⇢ = �0.61 and ⇢ = �1.86). We can see eigenvalue

crossings in the vicinity of these values.

Using the same method that we outlined in Section 2.1 for the torus, we find the irreps

dim(irrep) 1 2 3 6 12
number(irreps) 2 1 6 1 2

(63)

In our numerical analysis, we choose an arbitrary branch of the fourth root of unity and approach the
CM points along the trajectory  = (1 + i)⇢ for ⇢ 2 . We approximate the CY metric using the
cymetric package [26,27]. We use the phi model with a three-layer neural network (NN) with 64 hidden
nodes each and gelu activation, and train the NN with 1 million points generated for ⇢ 2 [�3, 0]. We
train the NN until the sigma loss is . 0.01, which happens already at around 5 epochs. With this
approximate CY metric, we then compute the spectrum using k� = 2, which gives us access to the first
100 eigenmodes of the scalar Laplacian on 3. The full calculation takes around 2 hours on a modern
desktop PC. We then group the eigenmodes according to their multiplicities as computed in (63). The
result is shown in Figure 7. We see that there are eigenmode crossings among low eigenmodes that are
consistent with the CM points on the quartic given in (61). We want to point out, however, that the
crossing around ⇢ = 0.61 is hard to disentangle and could also be consistent with the red, green, and
purple line approaching each other but not actually crossing. Since all three have multiplicity 3, they
cannot be distinguished by their multiplicity, unlike the much cleaner crossing around ⇢ = �1.86. In
any case, the spectrum behaves in a special way around ⇢� = 0.61 as compared to other values for  ,
where the eigenmodes just decay or grow exponentially.

5.3 Crossing and attractor points for the quintic

For the quintic, the only CM point that is known analytically is at  = 0, Computation of the scalar
Laplacian eigenmodes show a plethora of crossings at  = 0, which is known to be a CM point as
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Conclusion	and	outlook

• ML	models	learn	Ricci	flat	metrics	on	CICY	and	KS	CY	manifolds.
• Mathematical	constraints:	encoded	in	NN	or	in	loss	functions
• Performant	ML	packages:	cymetric,	MLgeometry,	cyjax
• Architecture	determines	accuracy,	performance,	generality
• Physics	applications:	

• Yukawa	couplings	Butbaia-et.al:24,	Constantin-et.al:24
• Swampland	distance	conjecture,	Ashmore:20,	Ashmore	&	Ruehle:21	Ahmed	&	Ruehle:23

Outlook:	
• Moduli-dependent	CY	metrics		Anderson-et.al:20,	Gerdes-Krippendorf:22
• Beyond	CY:	G2	metrics,	G-structure	manifolds,	...
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Thank	you	for	listening!


