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Why use machine learning:

Cat 0.98
It works. Dog 0.02
e Automate tasks Cow 0.00

* Solve hard problems

Recent successes driven by

* better software (neural nets, optimizers)

* better hardware (GPUs) &

* more data (... and more money/energy for training)  ow can1help you today?
e user-friendly ML libraries (tensorFlow, JAX, PyTorch,...)



Why use ML in string theory?

* Build string vacuum with {Standard Model, dS, scale separation, ..}
* Can ML pick good geometries? Speed up hard computations? Find vacua?

 Swampland program
e Can ML help classify UV-complete effective field theories?

* Numerics: ML for conformal bootstrap, ML of CY metrics
e Learn mathematical structures (perhaps of relevance for physics)

* Physics-inspired models to explain how ML works
... progress on all of these topics, driven by many researchers
Reviews: Ruehle:20, Bao, He, Heyes, Hirst:22, Anderson, Gray, ML:23



CY geometry: Ricci flat metrics

CY Theorem: Let X be an n-dimensional compact, complex, Kahler

manifold with vanishing first Chern class.
Then in any Kahler class []], X admits a unique Ricci flat metric g y.

Calabi:54, Yau:78
* For n>2, no analytical expression for g y. K3: Kachru-Tripathy-Zimet:18

* Solve R;i(g) =0 A4th order, non-linear PDE. Very hard.

* Equivalent to 24 order PDE for function ¢.
Hard, but may solve numerically on examples



CY geometry: Ricci flat metrics

CY Theorem: Let X be an n-dimensional compact, complex, Kahler
manifold with vanishing first Chern class.
Then in any Kahler class [J], X admits a unique Ricci flat metric g.y.

Kahler form J-ysatisfies
* Joy =]+ 00¢ same Kahler class; ¢ is a function

* Jov Aoy Aoy =k QAQ  Monge-Ampere equation (k constant)
2"d order PDE for ¢

* Sample points on CY; compute J, (), k; solve MA eq numerically



Numerical CY metrics

Algebraic CY metrics Machine Learning CY metrics

. = _ 1 _a=b * Neural Networks are universal
Ki(z,2) = 3 LInHapp®p approximators
spectral basis of polynomials Cybenko:89, Hornik:91,

. Leshno et.al:93, Pinkus:99
* Solve for H,j; using

* Donaldson algorithm

Donaldson:05, Douglas-et.al:06, * Train ML model to approximate

Douglas-et.al:08, Braun-et.al:08, CY metric, or Kahler potent|al
Anderson-et.al:10, ... Ashmore—He—Ovrut:19,

e Functional minimization Douglas—Lakshminarasimhan—Qi:20,
Headrick—Nassar:13, Cui—Gray:20, Anderson—et.al:20,
e 20001, 20

® ... or machine learning Ashmore—CaImon—He—Ovrut:Zi,ZZ,

Berglund-et.al:22,
Gerdes—Krippendorf:22, ...



Machine Learning implementation

Moduli Loss functions Error measures
Point ML model Metric
sample (neural net) prediction

Training algorithm



1. Generating a point sample

On example CY need random set of points, sampled w.r.t. known measure

Leading algorithm: CY is hypersurface in P" Douglas et. al: 06
» Sample 2 pts on IP™, connect with line & intersect 2 n + 1 pts
 Shiffman-Zelditch theorem: distributed w.r.t. dvolgs

Generalizes to CICYs and CYs from Kreuzer-Skarke list
Douglas et.al: 07, ML, Lukas, Ruehle, Schneider: 21,22

* Fast point generators of ML packages
MLgeometry, cymetric, cyjax



2. Setting up the ML model

Architectural choices
* What to predict?

* Encode constraints in NN or loss?
(global, complex, Kahler...)

* Flexibility vs. precision




ML models - choice of architecture

1. Learn metric LA Model g cymetric
Anderson-et.al 220, Z learnable parameters 6 ab
Jejjala—Mayorga—Pena:20
ML-Lukas-Ruehle-Schneider:21, 22

. . 4 Model cymetric

2. Learn Kahler potential (¢) L= .

Anderson-et.al. :20’ Z learnable parameters @ M LgeomEtry
Douglas—Lakshminarasimhan—Qi:20, l
Ashmore—Calmon—He—Ovrut:21,22, ]
ML-Lukas-Ruehle-Schneider:21, 22,

Berglund-et.al.:22

Anderson-et.al.:20, — [ — /
Gerd es—Krippendorf:ZZ learnable parameters & ?
Blo

Figure adapted from Anderson et aI:2010

) . () K cyjax
3. Learn Donaldson’s H matrix Moddl ]/ H



3. Train the ML model

Architectural choices
 What to predict?
* Encode constraints in NN or loss?

Then train

e Adapt layer weights to minimize
loss functions

* Stochastic gradient descent
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Loss functions encode math constraints

* Train the network to get unknown Ricci-flat metric (in given Kahler class)

e Use semi-supervised learning
1. Encode mathematical constraints as custom loss functions
2. Train network (adapt layer weights) to minimize loss functions

* Satisfy Monge-Ampere eq =2 minimize Monge-Ampere loss

1 det gy
kQAQ

ouc|

n

* Less rigid metric ansatz = more loss functions (Kahler, transition)



4. Check accuracy

 After training, check that MA eq holds and Ricci tensor is zero

Check via established benchmarks:

1 1
p— R — R r|l -
? Volcy A ’ Volcy A ‘ i ’

* For CY manifolds with more than one Kahler class, checks of volume
and line bundle slopes ensures this stays fixed.

QAQ
(Jor)?

1 —k




Experiments: Fermat vs. generic quintic

Anderson, Gray, ML:23

Monge-Ampere loss Error measures
Fermat Generic Fermat Generic
Cymetric, 100 000 points, ¢ model, 3 64-node layers, ML methods are less sensitive to symmetry

GELU, default loss parameters, Adam, batch (64, 50000) 1z




Experiments: KS CY example

ML,Lukas, Ruehle,Schneider:22

e h'1 =2, h*1 = 80 hypersurface from Kreuzer-Skarke database

Toric ¢p-model, default loss, 200 000 points
NN width 256, depth 3, GELU, batch (128, 10000), SGD w. momentum

ML methods work on
both CICY and KS CYs
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ACCU racy and benChmarkS Ahmed & Ruehle:23

Improve accuracy

. ! ¢ !
 Larger point sample
* Wider/deeper NN CYMEj(e 1FS

* Train longer

(((((( SFRERR
s e I ) I ]
30 e $
Z $ o 8§ ; I
* Benchmark cymetric ok Coepent pans
. . '3 .
cubic CY in P? (a.k.a. the torus) . HEE e
IO B o 100k
¢ SpECtrU m Of ACY Niode1* Mode2  Moded . Moded  Modes | Modes - Mode7 . Mode Moded | Mode10  Mode1l
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Accuracy, performance and architecture

15 e
* ¥ Xrs
* |s the control by loss functions enough? 199 pe——
751 &
 J
~ 50 .
ML models which always give global ¢ 25 g . I \
* Algebraic metric, using spectral basis o]
Anderson et al : 20, Douglas et al : 20, Gerdes & 0.98 0.99 1.00 1.01 1.02

Krippendorf:22, ...
 Combining cymetric with “spectral layer”

Z0Z0

improves accuracy and performance AR Z‘j';\
Berglund et al:22 (20,1 2) 22 T2 TP
woER . 2R




ML G-invariant CY metrics

Hendi, ML, Walden:24 (work in progress)

* Let X be smooth CY, G discrete symmetry w.o fixed points
Want: Ricci-flat metricon X /G

* Traditional approach: restrict spectral basis to invariant polynomials
Douglas et al:08, ... Butbaia et al:24

Alternative: design G-invariant ML model ¢(g - z) = ¢(2)

e Geometric Deep Learning: symmetry & performance
Bronstein et al:17,21,..

* Universal approximator theorem for invariant NNs varotsky:22,..

* |nvariance can be imposed in several ways in ML
In NN, just need one invariant layer

b(z) =p(c(A(...0c(A{(InvLay(z) ...)



CY metric on smooth quintic quotient

Hendi, ML, Walden: 24 (work in progress)
X

* Ricci-flat metric on - * Invariant layer projects data to
. del of i with fundamental domain of G
¢_m0 el of cymetric wit Aslan, Platt, Sheard:22, Kaba et.al. 23

non-trainable layer
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Applications



Physical Yukawa couplings

e Heterotic string: matter fields come  Butbaia, Mayorga-Pena, Tan, Berglund, Hubsch,
Jejjala, Mishra :24

from gauge bundle
Constantin, Fraser-Taliente, Harvey, Lukas,

* |In “standard embedding” models, Ovrut:24 .

physical Yukawa couplings known - Numerical Y
Strominger:85,Greene,et.al.86,87, Candelas:88,
Distler, Greene:88,...

* Not true for other gauge choices

* Use ML to compute
* Ricci-flat CY metric
* HYM connection
* Harmonic representatives

14; I Expected Y

Yis4

Standard embedding

Yooo  Yoo3

Mass/(e™ [{(H")))

—
' Line bundle sum

v



Test swampland distance conjecture

Ashmore:20, Ashmore & Ruehle:21 Ahmed & Ruehle:23

 Compute moduli-dependent
spectrum of Ay in example CY:s 300

250

Multiplicities
— 1
12
— 3
— 3
— 3

1. Compute the moduli space metric (using either an-
alytic [20] or numeric [21] techniques)

2. Compute the geodesics and the geodesic distances 100
in moduli space

3. Compute the CY metric along the moduli space : : Quartic,
geodesics 0 : : Ahmed

4. Compute the massive spectrum from the CY metric “2o =200 —ls o =L0 =05 0.0 Ruehle:23

5. Fit a function to the masses and compare with the P '
prediction from the SDC

 Level crossing & number theory
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Conclusion and outlook

* ML models learn Ricci flat metrics on CICY and KS CY manifolds.
 Mathematical constraints: encoded in NN or in loss functions

* Performant ML packages: cymetric, MLgeometry, cyjax

e Architecture determines accuracy, performance, generality

* Physics applications:
* Yukawa couplings Butbaia-et.al:24, Constantin-et.al:24
* Swampland distance conjecture, Ashmore:20, Ashmore & Ruehle:21 Ahmed & Ruehle:23

Outlook:
* Moduli-dependent CY metrics Anderson-et.al:20, Gerdes-Krippendorf:22

e Beyond CY: G2 metrics, G-structure manifolds, ...
Thank you for listening!
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