Bootstrapping bulk

Nat Levine École Normale Supérieure bulk locality

Strings 2024 Gong Show CERN

[Part I: 2305.07078]

[Part 2: 24xx.xxxxx]

with Miguel Paulos

cf. [Bena]
[Hamilton Kabat Lyfchitz Lowe]

$$\langle \Psi | O_1 O_2 \rangle = F(z) = \sum_{\Delta} c_{\Delta} g_{\Delta}(z) \qquad (c_{\Delta} = \mu_{\Delta} \lambda_{\Delta}^{12})$$

$$\langle \Psi | O_1 O_2 \rangle = F(z) = \sum_{\Lambda} c_{\Lambda} g_{\Lambda}(z) \qquad (c_{\Lambda} = \mu_{\Lambda} \lambda_{\Lambda}^{12})$$

[Kabat Lifschytz]

$$\langle \Psi | O_1 O_2 \rangle = F(z) = \sum_{\Lambda} c_{\Lambda} g_{\Lambda}(z) \qquad (c_{\Lambda} = \mu_{\Lambda} \lambda_{\Lambda}^{12})$$

$$=\sum_{\Lambda}c_{\Lambda}$$

[Kabat Lifschytz]

functionals

$$\theta_f[-] = \oint dz f(z) (-)$$

sum rules

$$\theta_f[F] = \sum_{\Lambda} c_{\Lambda} \theta_f[g_{\Lambda}] = 0$$

Why?

Additional constraints on top of crossing

$$\theta_f[F] = \sum_{\Delta} c_{\Delta} \theta_f[g_{\Delta}] = 0$$

Toy model for 1d crossing

Want to understand "extremal" solutions

[El-Showk Paulos] [Mazac] [Mazac Paulos] [Paulos Zan]

Want to understand "extremal" solutions

[El-Showk Paulos] [Mazac] [Mazac Paulos] [Paulos Zan]

Recipe

basis of functionals
$$\theta_n[-] = \oint dz f_n(z) (-)$$

- Complete
- **Dual** to a "sparse" spectrum: $\theta_n[g_{\Delta_m}] = \delta_{mn}$

"extremal" solution

$$F_{\Delta}^{\Delta_n} = g_{\Delta} - \sum_{n} \theta_n[g_{\Delta}] g_{\Delta_n}$$

Result

Explicit bases of functionals
$$\theta_n$$

dual to any
$$\Delta_n = 2\Delta_\phi + 2n + \gamma_n$$

dual to any $\Delta_n = 2\Delta_\phi + 2n + \gamma_n$ $\sim n^{-\epsilon}$ for large n analytic for large n

Result

Explicit bases of functionals θ_n

dual to any
$$\Delta_n = 2\Delta_\phi + 2n + \gamma_n$$

 $\sim n^{-\epsilon}$ for large n analytic for large n

• Explicit functional actions:

$$\theta_n[g_{\Delta}] = \prod_{m \neq n} \left(\frac{\Delta - \Delta_m}{\Delta_n - \Delta_m} \right)$$

 $\hat{\theta}_{n=4}$ $\theta_{n=4}$ $\theta_{n=4$

• Interacting "extremal" solutions:

$$F_{\Delta}^{\Delta_n} = g_{\Delta} - \sum_{n} \left[\prod_{m \neq n} \left(\frac{\Delta - \Delta_m}{\Delta_n - \Delta_m} \right) \right] g_{\Delta_n}$$

How?

test functions

$$\theta_n[F] = \oint dz f_n(z) F(z) = (f_n, \operatorname{Disc}(F))$$

$$f_n$$

 $\mathsf{Disc}(F)$

test functions

distributions

Constructed Schauder bases $\{f_n\}$ \leftarrow Dual $\{\operatorname{Disc}(g_{\Delta_n})\}$

Paley-Wiener theorem: $\theta_n(\Delta) := \theta_n[g_{\Lambda}]$ entire function

$$= \prod_{m \neq n} \left(\frac{\Delta - \Delta_m}{\Delta_n - \Delta_m} \right)$$

Future directions...

1. Numerics: Crossing+Locality

2. Analytic extremal solutions of 1d crossing equation?

