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N
Introduction

@ Strings 2024 conference —> talk about (solving) string theory!
@ Via AdS/CFT, string/M-theory in AdS x X <+— (S)CFT.
@ This talk: Study V' = 4 SYM (and ABJM) theory using bootstrap.
@ Various approaches
e weak coupling expansion (small A = g2 N)
o integrability (large N)
o holography (large N, large )

supersymmetric localization (only protected observables)

@ numerical bootstrap

analytic bootstrap (large N or large spin/charge)

@ Numerical bootstrap seems most promising b/c it is non-perturbative.
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|
N =4 SYM

@ N =4 SYM: labeled by gauge group, e.g. SU(N).

@ Vector multiplet: A, X, N\, witha=1,...,6andi=1,...,4.

4ri

@ Conformal manifold param. by gym and 6. Define 7 = 2 + o
YM

2
@ Anomaly coeffs. ¢ = a= Y1

Silviu Pufu (Princeton University) 6-6-2024 3/18



|
N =4 SYM

@ N =4 SYM: labeled by gauge group, e.g. SU(N).

@ Vector multiplet: A, X, N\, witha=1,...,6andi=1,...,4.

4ri

@ Conformal manifold param. by gym and 6. Define 7 = 2 + o
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@ Anomaly coeffs. ¢ = a= Y1

@ Question: What is the low-lying spectrum?

o Lowest protected operator: Sz, = tr (XaXp — $0XcXc) has A = 2, in 20/
of SO(6)r, same multiplet as stress energy tensor
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N =4 SYM

@ N =4 SYM: labeled by gauge group, e.g. SU(N).
@ Vector multiplet: A, X, N\, witha=1,...,6andi=1,...,4.

@ Conformal manifold param. by gym and 6. Define 7 = % + %.
YM

2
@ Anomaly coeffs. ¢ = a= Y1

@ Question: What is the low-lying spectrum?

o Lowest protected operator: Sz, = tr (XaXp — $0XcXc) has A = 2, in 20/
of SO(6)r, same multiplet as stress energy tensor

o Lowest unprotected operator: tr X, X, (at weak coupling) or Sz S (at
strong coupling). Dimension varies from 2 to 4.
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-
Bootstrapping NV = 4 SYM

@ [Beem, Rastelli, van Rees '13; '16] studied 4'pt function of Sab-
@ N appears through c in the OPE stress tensor exchange.

@ Plots from [Beem, Rastelli, van Rees '16] showing upper bounds on the
dimension of the lowest unprotected scalar operator.
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@ Bound matches SUGRA the large N (large c¢) prediction for the
dimension of SppSap: A =4 -2 +....
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@ [Beem, Rastelli, van Rees '13; '16] studied 4'pt function of Sab-
@ N appears through c in the OPE stress tensor exchange.

@ Plots from [Beem, Rastelli, van Rees '16] showing upper bounds on the
dimension of the lowest unprotected scalar operator.
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@ Bound matches SUGRA the large N (large c¢) prediction for the
dimension of SppSap: A =4 -2 +....

@ How can we input gym and 6?7
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Integrated correlators

@ Supersymmetric localization gives Zg« (7,7, m) [Pestun 07] where m is
N = 2-preserving mass (mass for hypermultiplet).

@ Derivs of Zg«(7,7, m) at m = 0 — integrated correls in SCFT (see
[Closset, Dumitrescu, Festuccia, Komargodski, Seiberg '12] for 2-pt fns in 3d).
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Integrated correlators

@ Supersymmetric localization gives Zg« (7,7, m) [Pestun 07] where m is
N = 2-preserving mass (mass for hypermultiplet).

@ Derivs of Zg«(7,7, m) at m = 0 — integrated correls in SCFT (see
[Closset, Dumitrescu, Festuccia, Komargodski, Seiberg '12] for 2-pt fns in 3d).

@ On S* of radius r, the action is (recall 7 = & + ;%”)
YM

S— T/d4x\/§(9+?/d4x\/§@
+m / d*x VG {;J(x) 4 K(x)] +o(n?)
@ Here, O, O are A = 4 ops (Lagrangian + FI:'—term)
J(x) is a A = 2 op. (scalar bilinear, specific component of Szp)

K(x) is a A = 3 op. (fermion mass), same multiplet as J
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Integrated correlators

@ Derivatives w.r.t. 7, 7, m bring down integrated ops

0 4 8 “wogo., 2 /4 Y
Eﬁ/dx\@o, 6?—>/dx\@0, oo [dxvg|® k|
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Integrated correlators

@ Derivatives w.r.t. 7, 7, m bring down integrated ops

0 4 8 “wogo., 2 /4 Y
Eﬁ/dx\@o, 6?+/dx\@07 oo [dxvg|® k|

@ We consider two integrated 4-point functions

0% log Zs
ITOTOM?

0*log Zss
’ om*

m=0 m=0

(Each equals an integrated 4-pt fn + integrated lower-pt functions that
are fixed by SUSY)
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Integrated correlators

@ Derivatives w.r.t. 7, 7, m bring down integrated ops

0 4 8 “wogo., 2 /4 Y
Eﬁ/dx\@o, 6?+/dx\@07 oo [dxvg|® k|

@ We consider two integrated 4-point functions

0% log Zs
ITOTOM?

0*log Zss
’ om*

m=0 m=0

(Each equals an integrated 4-pt fn + integrated lower-pt functions that
are fixed by SUSY)

@ As per [Gerkchovitz, Gomis, Komargodski '14; Gerkchovitz, Gomis, Karasik, Komargodski, Ishtiaque,
ssp 6], in SUSic correlators one can replace

9 2 9 27

A, Aare A = 2 ops (components of Sz) at North and South poles of S*.
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Integrated correlators

To use this in bootstrap, follow 3 steps:

@ Raelate derivs of Z. to integrated 4-pt functions of Sz,. Need Ward ids. Done in
s
[Binder, Chester, SSP, Wang '19; Chester, SSP '20] . For example:

0-0-02log Z| = / dudVv u(U, V) T(U, V)

where (U, V) is a SUSY-preserving measure; T(U, V) appears in (SSSS).
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To use this in bootstrap, follow 3 steps:

@ Raelate derivs of Z. to integrated 4-pt functions of Sz,. Need Ward ids. Done in
s
[Binder, Chester, SSP, Wang '19; Chester, SSP '20] . For example:

0-0-02log Z| = / dudVv u(U, V) T(U, V)

where (U, V) is a SUSY-preserving measure; T(U, V) appears in (SSSS).

4 4 . _
@ Calculate 28, 212 from Pestun’s matrix model for any N, 7, 7.

o Need instanton partition function — interesting SL(2, Z) properties [Chester,
Green, SSP, Wang, Wen ’19, 20°]

@ (N — 1)-dimensional integral, so explicit evaluations only for small N

o log Z

@ Recursion formula in N for J=-=22=

[Dorigoni, Green, Wen '21]

9% log Z

R in [Alday, Chester, Dorigoni, Green, Wen '23] .

@ Efficient way of calculating
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Integrated correlators

To use this in bootstrap, follow 3 steps:

@ Raelate derivs of Z. to integrated 4-pt functions of Sz,. Need Ward ids. Done in
s
[Binder, Chester, SSP, Wang '19; Chester, SSP '20] . For example:

0-0-02log Z| = / dudVv u(U, V) T(U, V)

where (U, V) is a SUSY-preserving measure; T(U, V) appears in (SSSS).

4 4 . _
@ Calculate ;7252 ©-22 from Pestun’s matrix model for any N, 7, 7.

o Need instanton partition function — interesting SL(2, Z) properties [Chester,
Green, SSP, Wang, Wen ’19, 20°]

@ (N — 1)-dimensional integral, so explicit evaluations only for small N

o log Z

@ Recursion formula in N for J=-=22=

[Dorigoni, Green, Wen '21]

9% log Z

R in [Alday, Chester, Dorigoni, Green, Wen '23] .

@ Efficient way of calculating

© Combine integrated constraints with crossing equations and linear / semi-definite
programming [Chester, Dempsey, SSP '21; Chester, Dempsey, SSP '23] .
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Expectations

@ Atlarge N, planar result from integrability [Gromov, Hegedus, Julius, Sokolova 23] :

..... Triple —trace

_.-1'l xx == Double —trace
I3ad “Xa<¥a

----- Single —trace

— | OWeESt

SabSab

I I I I ) H%\[A‘V
100 150 200 250 300
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Expectations
@ Atlarge N, planar result from integrability (Gromov, Hegedus, Julius, Sokolova 23] :
A
e,
<33 VPP
6 .-...‘I-.-.‘a ..................... YL e —
B e =
' Dab SM S [ Double —trace
----- Single —trace
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@ Atfinite N, expect: level crossing — level repulsion.
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Expectations
@ Atlarge N, planar result from integrability (Gromov, Hegedus, Julius, Sokolova 23] :
A
e,
<33 VPP
6 .-...‘I-.-.‘a ..................... YL e —
S -
' S”“SM R Double —trace
----- Single —trace
______ — | OWeESt
SabSab
Il Il Il Il I ) 2 A7
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@ Atfinite N, expect: level crossing — level repulsion.

4 12
. . 3 3)2 213 3 (6{(3)—26—15((5)(1+m)) 5
o Sma” )\ AO — 2 + 4r 1674 + 2564 + 204878 + O(A )
[Velizhanin "09; Eden, Paul *16; Fleury, Pereira '20]
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Expectations
@ Atlarge N, planar result from integrability (Gromov, Hegedus, Julius, Sokolova 23] :
A
7 e,
e
6 .-...‘I-.-.a ..................... L e —
5 ) S”/‘SM 2 R Double —trace
----- Single —trace
Py — | OWeESt
SabSab
3
Il Il L L L ) 2 N
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@ Atfinite N, expect: level crossing — level repulsion.

4 12
. . 3 3)2 213 3\ (6{(3)—26—15((5)(1+m)) 5

o Sma” )\ AO — 2 + 4r 1674 + 2564 + 204878 + O(A )

[Velizhanin "09; Eden, Paul *16; Fleury, Pereira '20]
o Large N, finite 7: Ag =4 — 2 4+ — 15 __Fo o (7,7) + 119 4 O(c 4

g , T. 0= - C+7\/§ %c% 3/2(T,T)+4202 + (C )
us
[Alday, Bissi '17; Chester '19; Chester, Green, SSP, Wang, Wen '20, '21]

Silviu Pufu (Princeton University) 6-6-2024 8/18



N
Results

@ Upper bounds on the dimension of the lowest unprotected scalar for
various values of N and Jywm, at 6 = 0 [Chester, Dempsey, SSP ‘23]

Ao
4.0r G TR SR TN -
“g“ """ = Planar
o suan
3.5k SU10)
SU©)
SU®)
3.0F SUT)
SU(6)
SU®G)
2.5r SU®@)
SU@3)
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P P P e 2 A7
% 20 10 60 s0 P

@ The max is at g2,, = 4 (self-dual point). Each curve is invariant under
the S-duality transformation gym — 47/gym-
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N
Results

@ Comparison b/w upper bounds for SU(2) and SU(10) and weak coupling
and large N expansions.

Ay

Y suao) .
T A=35
A=413
3.0F = A=
—_— A=
o5 | m==== Weak Coupling Padé
""" Large N
L L L L L 1137\; L L L L L '/‘iil“ Without ICs
0.0 0.2 0.4 0.6 0.8 1.0 4w 0.0 0.2 0.4 0.6 0.8 1.0 4m
@ Bound w/o integrated constraints is never saturated.
A5 A=19
@ Crossover for OPE coeffs  "**f suao p=2r
0.10 A=35
0.08 A =43
0.06 A=dl
0.04 A
U /A |----- Weak Coupling Padée
024 - Strong Coupling
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N
Results

@ Comparison with large N expansions shows bounds are sensitive to
NNNLO (beyond tree level SUGRA) correction

‘‘‘‘‘‘ Strong Coupling O(c™")
- Strong Coupling O(c™7/%)

------ Strong Coupling O(c?)

A=c

Without ICs
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|
ABJM theory

@ In 3d \V = 8 SCFTs, the analog of the 20’ operator S,y isa A = 1
operator Sag in 35, of SO(8)z, with A,B=1,...,8.

@ One can compute Zgs(m,, m_) where m. are N = 4-preserving masses
[Kapustin, Willett, Yaakov '09] .

. . o* IogZS;g o* |Ongs
@ The derivatives om0 ot

[Dedushenko, SSP, Yacoby '16] .

give directly an OPE coefficient

@ The mixed derivative mzz m‘f gives an integrated correlator of Syp [Binder,
Chester, SSP '18] .
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M-theory archipelago
@ Bounds for OPE coefficients in N' = 8 SCFTs, with input about OPE

coefficient obtained from 4th mass derivative for the U(N); x U(N)_1
ABJM theory [Agmon, Chester, SSP '19] :

Nasojopm
16.0 13390
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13.375}.
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4 @
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Integrated constraints in ABJM

. 8*log Z . ,
@ Integrated constraint from 5 _>=-¢* reduces size of the island by a factor
Zom?.

of ~10. For N =2 [Chester, Dempsey, SSP, work in progress] .
ABJM,;, A = 14

15.95] ]

o 15.04f ]

o

o N

o«

- 15930 ]

::_" No IC

_— With IC

15.92] ]
15.91} ]

9.530 9.535 9.540 9.545 9.550 9.555 9.560
)\2 0020
(A+)P5
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Comparison with large N expansion

@ OPE coefficient in terms of c¢r ~ N°3/2:

_ 64, 20480(1 - L)
9 972

tree-level SG

_ _»  917504(2/3)"/% _
A2 7' +513.492359072 — %cr”s L.

one-loop SG

contact D8 R*
@ Numerics are sensitive to NNNLO correction [Chester, Dempsey, SSP, work in progress]

N=2
@D,

7.1504F
7.1503F — 0(4")
71592// — 0(?)
7.1501F

B —7/3
7.1590 F 0("" )

7.1589F
7.1588 ¢ 1

0.000984  0.000985  0.000986  0.000987°"

@ With more precision, we would be sensitive to unprotected contributions
in M-theory effective action!
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A comment on integrated correlators

@ INd=4 N =4 SYM, T = 9,0-82 log Zss,
7 < U d*x1/g (;J+ Kﬂ U d*Xo\/g (;J+ K)] A(S)A(N)>
can be written using (J =S4+ Soo — 833 — S, A= 855 + 2/856 — Sss)

(00O ACE)ACKE)) = - F(u. ).

4
X12X34
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A comment on integrated correlators

@ INd=4 N =4 SYM, T = 9,0-82 log Zss,

T < U d*x, /G (;J+ Kﬂ U &3 /G (;J+ K)] A(S)A(N)>

can be written using (J =S4+ Soo — 833 — S, A= 855 + 2/856 — Sss)
— 1
(J(x1)J(x2)A(xs)A(Xs)) = —— F(u.v).
X12X34
@ The integrated correl. is [Binder, Chester, SSP, Wang '19]
“dR [T, ., v
Ioc/o -3 /0 do sin Q?F(u,v)

u=1+R%?—2R cos
v=R?

@ Interpretation: Send x3 — oo, x4 — 0 and map to S® x R:

(I )T 1) gz = (A, D)7, ) IA) = 5 2 F(uv),

A

with R=e"7', cos = - 1.
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A comment on integrated correlators

@ 7 is an integral over S® x R with a flat measure!

T / dr dQs (J(r, A)J(r', 7)) iz
S3xR

@ Easier to prove Ward ids on 83 X R [Dempsey, Offertaler, SSP, Wang, in progress] -

(K AK(, ) g o (O = 1) [0 (r, I 7)) )
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@ Generalization to half-maximal SCFTs in 4d, 3d, and even to defects.

Silviu Pufu (Princeton University) 6-6-2024 17/18



|
A comment on integrated correlators

@ 7 is an integral over S® x R with a flat measure!

T o / dr dQs (J(r, A)J(r', 7)) iz
S3xR

@ Easier to prove Ward ids on 83 X R [Dempsey, Offertaler, SSP, Wang, in progress] -

(K(r, DK (7' 1)) iz o< (O = 1) | &= =) J(r, AyJ (', 7

))aa]

@ Generalization to half-maximal SCFTs in 4d, 3d, and even to defects.

@ For 1/2-BPS line defect in ' = 2 SCFTs, (e.g. circular Wilson loop in
N =4 SYM), we have [Dempsey, Offertaler, SSP, Wang '24]

oma

02 log (W)

x / d*x \/g(x) (NI )y
m=0 HZ2 x §2
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Conclusion

Integrated correlators are very powerful when combined with numerical
bootstrap.

For ' = 4 SYM they allow us to find coupling-dependent bounds.

For ABJM theory they allow a more detailed comparison with M-theory.

Related topics: analytic bootstrap at large N, defects, SL(2,7Z), etc.

For the future: more precision for bootstrap numerics, constraints
involving squashing, less supersymmetric theories, etc.
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