Light ray operators, detectors, and energy

correlators

David Simmons-Duffin

Caltech

June 6, 2024



Two questions about Lorentzian QFT

® What can we measure at null infinity?
® How do correlators behave at large boost?

Both questions will lead us to the notion of a light-ray operator.



Kinematics of non-integer spin

Light-ray operators in CFT transform like primaries with non-integer spin.

For a local operator, we can use index-free notation
O(z,2) = Opy oy ()2 - 2#7 —  polynomial with degree J

® To describe an operator with non-integer spin, we drop the
polynomial requirement and allow general homogeneity

O(x,A\2) = A20(x,2) Jp €C

O(z, ) is labeled by a spacetime point 2 and a null direction z.
Every O has a “spin-shadow” related by Jy <> 2 —d — J,

S[0](x, z) = /Ddfzz'(fzz 22T Q(x, 2)



Example: light-transform

The light-transform of a local operator O is a null integral starting from
2 in the direction of z:

LO)(.2) = [

— 00

oo

da(—a)~2770 (x - 2, z)

e L[O] transforms like a primary with (Ap,Jp) = (1—J,1— A).

e Setting x = oo with z = (1,7) gives integral along .# T, at a point 7
on the celestial sphere. Under the Lorentz group, it behaves like a
primary on S9! with dimension —Jy. This is a kind of “detector.”

it

jJr



The ANE(C) operator

® |n flat-space CFT, the ANEC operator is the light-transform of the
stress tensor L[T]

® Placing z at spatial infinity, we get an integral of T along .#+ which
measures the flux of energy in the direction 7

(i) = 2 L[T(oo, Z)|z:(1,ﬁ)

In a general QFT,

() = lim r2/dtniTOi(t,rﬁ)

r—00
e £(i) is a generator of a BMS algebra
® ANEC: L[T7] is positive
® Two proofs: quantum information
causality

® Many applications: OPE bounds, operator dimension bounds,
QNEC, a-theorem



Energy correlators

<\P£(ﬁ1<)\p|\1; i) | V) Z /da’H (it; — i, /15,

® Measures correlations between flux of energy in different directions
7i; on the celestial sphere, in some state |¥).
® IR safe , under good theoretical control. Can
be computed via amplitudes and/or correlation functions.
® Calculations in QCD and N =4 SYM

® (Related calculations in classical gravity )

® Experimentally measurable. Can cleanly access lots of different
physics: jet substructure, top mass, QGP...
,and...
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What can we measure at null infinity?

® £(7ly) -+ E(Mix) is a kind of multi-point light-ray/light-cone operator
® What else can we measure? What kinds of detectors D exist?

® Can we understand the space of detectors in terms of basic
components, like we understand local operators in CFT?




What can we measure at null infinity?

Interesting example: CFT coupled to gravity.

® This theory does not have local correlation functions or scattering
amplitudes.

® \What are the observables?

® |t should have detectors whose event shapes we can measure
(BH-BH|D|BH-BH).

® A holographic theory of flat space should know about these
detectors.



Detectors in free scalar theory

® In the free scalar theory,
£(2) = LT](00, 2) = / dE B42a1 (B2)a(E>)
0

It counts particles weighted by E.

® More generally, we can measure
£5(2) = / dE BT =141 (B2)a(E2),
0

which counts particles weighted by E7 1.
® For integer J, £; = L[O;] with O; = ¢d”7¢.

® But since FE is positive, we can also let J € C. This gives the
leading Regge trajectory of the free theory.

® Can write £; as a bilocal integral along a null ray

1 1
Er(z) = m/daldond)(al;z)(b(a%Z)



Renormalizing detectors

® When we turn on interactions, £ is no longer IR/collinear safe.
Splitting conserves E, but not E/~1

® Manifests as IR/collinear divergences in perturbation theory.

® The theory is telling us that the bare £; is not a “good” observable.
Need to renormalize it to find out what the “good” observables are.

local operator detector
“measure at a point” | “measure in cross-sections”
UV divergence IR divergence
need to renormalize need to renormalize
theory-dependent theory-dependent
OPE light-ray OPE
radial quantization ?

® Renormalized detectors give an operator definition of IR safe
weighted cross-sections. (Can we do the same for amplitudes?)



Chew-Frautschi plot in the Wilson-Fisher theory .o, oo,

Kravchuk, Meltzer, DSD '2
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® Turn on interactions: £; mixes/recombines with its shadow!
® It turns out there is no invariant distinction between “light-ray” and
“light-cone” operators.

2
L4 ")/¢aJ¢ = 7% (2-IOOp) VS. ")/432 = % (1—|Oop) [Caron-Huot; Alday,

Henriksson, van Loon '17]



CF pIOt In planar N — 4: SYM [Brower, Polchinski, Strassler, Tan '06]

® “Twist-2" sector is closed in the planar limit.

® When interactions are turned on, the 45° DGLAP trajectory mixes
with the horizontal BFKL trajectory, forming a smooth Riemann

Surface. [Kuraev, Lipatov, Fadin '77; Balitsky, Lipatov '78; Braun, Korchemsky, Mueller '03; ...]

® BPST understood the surface at strong coupling by constructing a
Regge trajectory of vertex operators in the bulk string theory.

® Shape now known exactly at finite A from integrability [alfimov, Gromov,

Kazakov '15; Gromov, Kazakov, Leurent, Volin '15; Gromov, Levkovich-Maslyuk, Sizov '17]



What is a BFKL trajectory?

[ driydiiy (#%) [ doiK(

. . i
* Integral of F,,'s along Wilson lines stretched along .#+.

[ driydria(- -+ ) projects onto Lorentz irrep with spin J, =1 — A.

Ap =1—J =0is fixed (at tree level). Varying A, we trace a
horizontal trajectory on the Chew-Frautschi plot at J = 1.

Can add more Wilson lines to get infinitely more trajectories at
J = 1. When we turn on the coupling, they mix in an intricate way
(Balitsky-JIMWLK evolution).



Large boost: “light rays” in 1d

OTOC : (W (5 +it)V (5)W (it)V (0))

The scramblon/Pomeron is the fastest-growing part at large ¢. It is an
intrinsically 2-sided operator associated to the gray points (1d “light ray”)

KHUWLWRY ~ ™IS+ ...

Inversion formula”:

& 1
@)\E/ dte_’\teKt{WLWR} = Oy~ PN S+...
0 — Nk

OTOC — a matrix element of S:

OTOC = MUV, [S|VR) + ...



Conformal Regge theory

In the Regge limit, the correlator becomes a matrix element of a
“Pomeron” operator

<O4010203> ~ €(J*_1)t<04|ReS‘]:J*@%,J|O3>.
The Pomeron can be extracted from

Oa,(z,2) = /dmdngA,J(arl,xg,x,z)Ol(’)g

Residue localizes the integral to a neighborhood of a null plane.
Intuitively, the Pomeron is a 2-sided operator in “angular/Rindler
quantization.”



The light-ray kernel

(Some? all?) light-ray operators are packaged together by

Oa,g(z,2) = /dxldeQKA’J(xl,3}'2,.%',21)0102

Oa, s transforms like a primary with (Ap,Jp) = (1 —J,1 — A), but
A and J can be complex.

® Conjecturally, the poles occur at a Riemann surface in the A-J
plane, with residues being light-ray operators.

Oy,
Oar~ Z A=A (T)

The kernel is constructed so that at integer J, O; ; = L[Ox, j].

The light-ray operator at A = % with largest J is the Pomeron.

Setting x = oo gives a class of detectors D; j(z) = 0, 5(00, 2).



The light-ray OPE

e Light-ray operators appear in £(7i1) x E(7iz) OPE (i1 — 7i2).

® General statement in CFT

ExE= Z Z O js; + ZDQnQi,J:3+2n7j:4

i 1=0.2.4 n.a
J j=0,2,4 0,24

d
A-j

Proof at the level of kernels: relating L[---]L[---] to K, j. [NB:
Cannot do O1 x O OPE inside the integral — it doesn't converge.]

® Derivations of leading term . Light-ray
OPE = “factorization theorem" for (££)

® General OPE for O x Qg currently unknown... Perturbative
explorations:



Mysteries of the Chew-Frautschi plot: Higher twist

® Twist > 2 operators: number of local operators grows with spin.

® |Infinite number of smooth Regge trajectories, but their matrix
elements develop zeros in precise pattern. [Homrich, DSD, Vieira '22; Klabbers

Preti, Szécsényi '23]

® General mechanism explained in [Henriksson, Kravchuk, Oertel 23], Involves an
interesting light-ray “two-point function” [caron-Huot '13]

(T'{0,0,})



Mysteries of the Chew-Frautschi plot: finite NV

subleading trajectories

4 5
A

® What is this structure supposed to look like at finite A and finite N7?
Do Regge trajectories unify into a single surface?

® Leading log N/N correction to (E€) at large A:



Some open questions

How do you measure a general detector operator at a collider?
Can we measure detectors in a condensed matter system?

Can we formulate EFT running and matching for detectors? (Could help
organize understanding of confinement effects in (€ --- &)

)
What does the Chew-Frautschi plot look like at finite A and finite N7

Can we find positivity/rigidity conditions for light-ray operators? Can we
formulate bootstrap conditions?

What behavior in the deep Regge limit is possible? Transparency vs.
chaos?

Are other Lorentzian singularities described by other types of operators?
Does “factorization theorem” = OPE?

What is the general form of the light-ray OPE?

How are light-ray operators and conformal line defects related?

Do light-ray operators participate in interesting algebras?

Thanks!
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