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In any strongly chaotic time-evolution, we expect that the interactions
lead to growth of correlations between different parts of the system.

Such correlations are conventionally probed with two-point functions
of few-body operators.

A more fine-grained probe of the growth of correlations is the
entanglement entropy of a subsystem.

We expect that the strong interactions in chaotic systems cause them
to thermalize: any initial state starts to resemble a thermal state at
sufficiently late times.

This leads to the universal expectation that irrespective of the initial
state, entanglement entropy saturates to an extensive value at late
times.



Universality in approach to equilibrium

Evolution of entanglement entropy in generic chaotic time-evolutions
is very difficult to study analytically.

But the few analytically tractable examples we can study suggest
surprising universality.

In both random circuits and holographic CFTs, the evolution of
entanglement entropy at late times can be expressed in terms of a
membrane formula.

Conjectured to hold universally in Jonay, Huse, Nahum.



Membrane picture for entanglement growth

In one spatial dimension, suppose we want to find the entanglement
entropy of the left half-line at time t.

Extend the system in time direction from τ = 0 to τ = t, and
consider all possible curves:

𝜏 = 0

𝜏 = 𝑡
𝑥

𝑣

We can integrate a function E(v) along the curve, and minimize over
all possible curves.



While this formula turns out to hold in both random circuits and
holographic CFTs, the methods used in the two cases are very
different.

In random circuits, Haar averages for n-th Renyi entropy.

In holographic CFTs:

Thermalization in boundary is dual to gravitational collapse in bulk.

Liu and Suh, Hartman and Maldacena applied HRT formula Hubeny, Rangamani, Takayanagi to
find the evolution of von Neumann entropy in this setup.

Mezei showed that for large system size and time, we can get rid of the
radial direction in the bulk, and reduce the HRT formula to a
minimization problem in the boundary.

The resulting membrane tension satisfies non-trivial constraints from
Jonay, Huse, Nahum.
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Questions

What is the physical meaning of the entanglement membrane, and
the source of this universality?

Heuristically, if there is a tensor network representation of the state,
we may think of the membrane as a “minimal cut.”

But we would like to have a more precise understanding of the
following questions:

1. What is the source of the velocity-dependent function E(v)?

2. Is there an underlying structure in terms of low-lying modes,
which we could look for in a continuum theory such as a
holographic CFT?
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In this talk, we will propose a possible common underlying structure,
involving certain universal low-lying modes.

We will make use of a family of time-dependent Hamiltonians:

H(t) =
∑
α

Jα(t)Hα,

where the Hα are local operators, and Jα(t) are random numbers,
uncorrelated for different times and different α.

𝐽!(𝑡)𝐻!Random 
Lorentzian
evolution: 

𝐻!(𝑡)

𝐻!(𝑡)

Previously, such models have allowed a derivation of diffusion in
two-point functions Moudgalya and Motrunich; Ogunnaike, Feldmeier, Lee.
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From Lorentzian to Euclidean time-evolution

Observables of interest, such as the n-th Renyi entropy, can be
written as a transition amplitudes under (U ⊗ U∗)n in any system.

e−(n−1)S
(A)
n = TrAρ

n
A = TrA

(
TrĀUρ0U

†
)n

…

! = 0

!

$! $′! $" $′" $# $′#

&$

Tr% , Tr%

The key simplification in Brownian models is that the Lorentzian
evolution on 2n copies can be replaced with a Euclidean evolution:

(U(t)⊗ U(t)∗)⊗n = e−P2nt



From Lorentzian to Euclidean time-evolution

Observables of interest, such as the n-th Renyi entropy, can be
written as a transition amplitudes under (U ⊗ U∗)n in any system.

e−(n−1)S
(A)
n = TrAρ

n
A = TrA

(
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Let us derive the Euclidean evolution explicitly in the two-copy case
(n = 1).

Divide time-evolution into small steps of size ϵ.

H(t) =
∑
α

Jα(t)Hα

Jα(t) = 0, Jα(t)Jα′(t ′) =
1

2

δαα′δtt′

ϵ
Then we have:

e iHa(t)ϵ ⊗ e−iHb(t)
T ϵ

≈ (1+ iHa(t)ϵ−
1

2
Ha(t)

2ϵ2 + ...)⊗ (1− iHb(t)
T ϵ− 1

2
Hb(t)

T 2
ϵ2 + ...)

= 1− ϵP2 + O(ϵ2) ≈ e−ϵP

where
P2 =

∑
α

(Ha,α − HT
b,α)

2
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Summary

The n-th Renyi entropy can be expressed as a transition amplitude
under Euclidean evolution with a non-negative Hamiltonian P2n.

The equilibrium saturation value of the n-th Renyi entropy is
determined by the zero energy states of P2n.

The result is consistent with the equilibrium approximation of Liu and SV.

Approach to equilibrium is determined by low energy eigenstates,
which have a universal structure.
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For the second Renyi entropy in models without symmetries:

P4 has two degenerate ground states:

↓ ↓ ↓ ↓ ↓ ↓ ↓ !

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓  , ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

↑ !"#"$ ↑ ↑ ↑ ↑ ↑ ↑|𝜙!!,…,!"⟩|𝜓!⟩ = Σ"	𝑒#	!	"
The low-energy excitations include a “one-particle” band
approximately given by:

↓ ↓ ↓ ↓ ↓ ↓ ↓ !

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓  , ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

↑ !"#"$ ↑ ↑ ↑ ↑ ↑ ↑|𝜙!"$,…,!"#⟩|𝜓!⟩ = Σ"	𝑒#	!	"

for some O(1) d .

This structure leads to the membrane picture.

The one-particle excitations have a gapped dispersion relation E (k),
which is related to E(v) by Legendre transformation.

Dispersion relation at O(1) values of k is physically important for
satisfying certain constraints on E(v).
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Plan

Introduce expression for the second Renyi entropy as a transition
amplitude, and the definition of |↑⟩ and |↓⟩.

Derive the low-energy excitations in a simplifying limit.

Discuss how the structure remains robust more generally.
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Second Renyi entropy as a transition amplitude

Second Renyi entropy involves two forward and two backward copies
of U:

e−S2,A(t) = TrA

(
TrĀUρ0U

†
)2

…

𝑡

𝑓! 𝑏!

Tr" 	, Tr"

𝑈⊗𝑈∗ 𝑈⊗𝑈∗ 𝑈⊗𝑈∗⊗

𝑓# 𝑏# 𝑓$ 𝑏$

𝑓! 𝑏! 𝑓# 𝑏#

⊗! ↑ , 	 𝑖"𝑖"# 𝑖$𝑖$# ↑ =
1
𝑞
𝛿!"!"#𝛿!$!$# 	

⊗! ↓ , 	 𝑖"𝑖"# 𝑖$𝑖$# ↓ =
1
𝑞
𝛿!"!$#𝛿!$!"# 	

𝑎 𝑏 𝑐 𝑑

𝑎 𝑏 𝑐 𝑑

𝑎 𝑏 𝑐 𝑑

Let us introduce the following “spins” on four copies of a single site in

particular, Zhou and Nahum

|↑⟩ = |MAX⟩ab |MAX⟩cd , |↓⟩ = |MAX⟩ad |MAX⟩bc

Evolution of second Renyi entropy is given by

e−S2,A(t) = ⟨DΣA
|(U ⊗ U∗)2 |ρ0⟩ |ρ0⟩

where

𝐷!! =	⊗"∈$ ↓ ⊗"∈$̅ ↑
𝐴
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Equilibrium value in models without conserved quantities

P4 generally has exactly two zero energy eigenstates:

|↑ .... ↑⟩ , |↓ ... ↓⟩

This gives the Page value for the entropy of pure state at late times:

lim
t→∞

S2,A(t) = min(log dA, log dĀ)

We would now like to understand the approach to this value using the
low-energy modes of P4.



Low energy excitations: GUE model



GUE model

Take each Hα(t) to be an i.i.d. random Hermitian matrix on adjacent
sites drawn from the GUE ensemble:

Hα(t) = H
(GUE)
i ,i+1 (t)

𝐽!(𝑡)𝐻!Random 
Lorentzian
evolution: 

𝐻!(𝑡)

𝐻!(𝑡)

dim = 𝑞

Using the average over these random matrices, P4 can be expressed
entirely in terms of |↑⟩ , |↓⟩.
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Analytically solvable large q limit

In the large q limit, P4 is exactly solvable, and has a very simple
action on a single domain wall

⟨Dx | ≡ ⟨↓ ↓ ... ↓x ↑x+1 ↑ ... ↑|

⟨Dx |P4 = ⟨Dx | −
1

q
(⟨Dx−1|+ ⟨Dx+1|)

This leads to the following band of lowest excited states:

⟨ψk | =
∑
x

e ikx ⟨Dx |

E (k) = 1− 2

q
cos k

k

E(k)𝐸(𝑘)

𝑘

Δ

−𝜋 𝜋



Second Renyi entropy for half-line region

Let us return to the second Renyi entropy of a half-line region:

e−S2(y ,t) = ⟨Dy |e−P4t |ρ0, e⟩
𝐷!! =	⊗"∈$ ↓ ⊗"∈$̅ ↑

𝐴

𝑦

𝑥

𝜏 = 𝑡

𝜏 = 0

𝑦

Since ⟨Dy | only evolves to a superposition of ⟨Dx | at other locations,

e−S2(y ,t) =
∑
x

⟨Dy |e−P4t |D̄x⟩ ⟨Dx |ρ0, e⟩

=
∑
x

⟨Dy |e−P4t |D̄x⟩ e−S2(x ,t=0)

𝐷!! =	⊗"∈$ ↓ ⊗"∈$̅ ↑
𝐴

𝑦

𝑥

𝜏 = 𝑡

𝜏 = 0

𝑦



Membrane picture from one domain wall band

Using one-particle eigenstates in domain wall propagator:

⟨Dy |e−P4t |D̄x⟩ =
∑
k

e ik(x−y)e−E(k)t

At late times: using saddle-point approximation for the propagator,

S2(y , t) = minv [ E(v) t + S2(y + vt, t = 0) ]

where
E(v) = E (kv )− ikvv , kv is solution to E ′(kv ) = iv .

𝑣!

𝑡′ = 𝑡

𝑡′ = 0

𝑣

𝐿"#$%

𝐿"
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𝑣

𝑦 = 𝑣

ℰ!(𝑣)

ℰ) 𝑣 ≥ 𝑣
ℰ) 𝑣* = 𝑣* 	 , ℰ)+ 𝑣* = 1
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𝑣
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One-particle band at finite q

Away from large q limit, interactions can cause domain walls to split,
so the eigenstates and eigenvalues are modified.

From numerical diagonalization of P4:
q = 2 q = 3 q = 4
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Gapped spectrum in all cases.

Is the structure of the eigenstates robust?

Is there still a well-defined one-particle band within the continuum for
q = 2?
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Structure of eigenstates at finite q

Let us consider a variational ansatz for the eigenstates:

|ψk⟩ =
∑
x

e ikx |↓ .... ↓x⟩ |ϕx+1,...,x+d⟩ |↑x+d+1 ... ↑⟩

We can increase the value of d , and at each d , minimize

Evar(k) = ⟨ψk |P4|ψk⟩

over all choices of |ϕ⟩.

Rapid convergence of Evar(k) with d would tell us that the
eigenstates are well-approximated by |ψk⟩. Haegeman, Spyridon, Michalakis,

Nachtergaele, Osborne, Schuch, Verstraete



Variational results for q = 3

From minimizing ⟨ψk |A|ψk⟩ over all choices of |ϕ⟩ for various d :
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Variational results for q = 2

Still very good convergence with d :
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continuum. (⟨Dx | will only have significant overlap with this band.)
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Constraints on membrane tension

Overall, we still get the membrane formula at finite q, with E(v)
given by Legendre transform of exact dispersion relation.

Using the numerically obtained dispersion relations, we can find E(v),
and check that the general constraints Jonay, Huse, Nahum are satisfied

E(vB) = vB , E ′(vB) = 1, E(v) ≥ v , E ′′(v) > 0 .

First two constraints are needed to ensure entropy of equilibrium state does
not increase. They translate to the following condition on the dispersion
relation:

E (i log q) = 0

which cannot be satisfied by small k expansion.



Generalizations

In cases where coupling operators are fixed, P4 is no longer expressed
entirely in terms of |↑⟩ , |↓⟩. But similar variational calculation shows
that low energy eigenstates still have a dressed domain wall structure.

Can be seen as explicit realization of ideas of Zhou and Nahum emphasizing
importance of |↑⟩ , |↓⟩ in general chaotic systems.

We find a similar dynamics of domain walls in higher dimensions. In
the large q, small k limit, we obtain the same membrane tension as in
(1+1)D.



Summary and further questions

In Brownian models without conserved quantities, the membrane
picture is a result of gapped low-energy modes that resemble plane
waves of domain walls between permutations.

Questions:

How does this picture generalize to finite temperature?

How does the picture change in Brownian circuits with conserved
quantities?
How can a similar set of modes emerge in systems without random
averaging, including holographic CFTs?

Can we quantitatively analyse the higher-dimensional case?

Can these modes be used to formulate an effective field theory of
hydrodynamics for entanglement?



Thank you!



𝐽!(𝑡)𝐻!
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For 
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𝑏
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𝐴',')*Fixed  
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average  over  𝐽!(𝑡)

Random GUE 𝐻!(𝑡)


