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Introduction: Quantum Gravity Cutoff/Species Scale

» General expectation: Energy scale at which quantum gravitational effects become relevant

M, ~ 10" GeV

» Question: What is the actual Quantum Gravity Cutoff in a theory of gravity and is it always
given by M;?
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Introduction: Quantum Gravity Cutoff/Species Scale

» General expectation: Energy scale at which quantum gravitational effects become relevant

M, ~ 10" GeV

» Question: What is the actual Quantum Gravity Cutoff in a theory of gravity and is it always
given by M;?

“Species Scale”: [Dvali’07]
» In the presence of large number of light species of states A 1

— Quantum Gravity Cutoff parametrically below Planck scale MS = =2 <1
pl light

Distance Conjecture [Ooguri, Vafa 06]

» In asymptotic limits Njjop, — 00

Along paths in scalar field space traversing distances d > lp < A/ Mpl -0

an infinite tower of states becomes light in Planck units as

M@ siry ]

O

» Tower known in explicit cases
— can compute A, in these limits!

For reviews see [Palti '19;
van Beest, Calderon-Infante, Mirfendereski, Valenzuela '21
Agmon, Bedroya, Kang, Vafa ‘Q2]

Recent works on species scale: [(Calderon-Infante), Castellano, Herraez, Ibanez '22,’23; Melotti, Marchesano '22; v.d. Heisteeg, Vafa, MW, Wu '22,'23;
Cribiori, Lust, (Staudt) 'Q2,’23; Cribiori, Lust, Montella '23; Castellano, Ruiz, Valenzuela '23;
Calderon-Infante, Delgado, Uranga ’Q3; Basile, Lust, Montella '23; Cota, Mininno, Weigand, MW '22,'23;
Basgile, Cribiori, Lust, Montella ’24; Bedroya, Vafa, Wu ’24; Bedroya, Mishra, MW ’24; Aoufia, Basile, Leone ‘4] 1




A without counting light states

» Question: How do we compute the QG cutoff/species scale away from
asymptotic limit?

* Would need to compute light spectrum at any point in field
space...

e Computation of exact spectrum at strong
coupling difficult
— need different way to compute A
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» Question: How do we compute the QG cutoff/species scale away from
asymptotic limit?

* Would need to compute light spectrum at any point in field
space...

e Computation of exact spectrum at strong
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» Proposal: QG cutoff captured by gravitational higher-derivative corrections to
Einstein-Hilbert action. [v.a. Heisteeg, vafa, MW, (Wu) 23]
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A without counting light states

» Question: How do we compute the QG cutoff/species scale away from
asymptotic limit?

* Would need to compute light spectrum at any point in field
space...

e Computation of exact spectrum at strong
coupling difficult
— need different way to compute A

» Proposal: QG cutoff captured by gravitational higher-derivative corrections to
Einstein-Hilbert action. [v.a. Heisteeg, vafa, MW, (Wu) 23]
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Scalar fields
M,
e Wilson coefficients of higher-derivative A(P) ~ 1
terms give species scale: an(gb)%
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“Minimal” Black hole and A

» What is the physical meaning of the scale suppressing the higher-derivative
corrections?

/ Field strength

» Compare to Field Theory (e.g. electrodynamics in d dimensions):

— higher-derivative corrections sensitive to particles of mass m Z corr =
that have been integrated out.

man—d (FZ)”
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“Minimal” Black hole and A

» What is the physical meaning of the scale suppressing the higher-derivative
corrections?

/ Field strength

» Compare to Field Theory (e.g. electrodynamics in d dimensions):
— higher-derivative corrections sensitive to particles of mass m
that have been integrated out.

1 F2 n
corr 2~ (F")

/ Curvature

» Analogue terms in gravity should be: < géag D) WR &

» But: in gravity cannot “integrate-in” additional states — e.g. black holes are strongly coupled

» Still: higher-derivative corrections encode imprint of “minimal black hole”: — cf. original motiviation for species scale
in [Dvali’07]

see also [Cribiori, List, Staudt ’22; Calderon-Infante, Delgado, Uranga ’23]

e Minimal black hole = smallest black hole describable by some effective field theory
— mass M, and radius rj;™ = A (EFT cutoff)  (ingeneral Ay, # M)

e Consider 2 — 2 scattering amplitudes and match higher-derivative expansion of action
with contribution from minimal black hole!
3



Scattering Amplitudes and A

[Bedroya, Mishra, MW ’24]

» Result: minimal black hole contribution to 2 — 2 scattering amplitudes can only be reproduced by

higher-derivative corrections of the form
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Scattering Amplitudes and A

[Bedroya, Mishra, MW ’24]

» Result: minimal black hole contribution to 2 — 2 scattering amplitudes can only be reproduced by
higher-derivative corrections of the form
My ¢
Lo D by—
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n—1 _ __ ¢c..min\—1  Species Scale = Scale
R R : As — Amin — (}’ H ) set by minimal BH

e At center of mass energies £ > M_. and impact parameters b < Ar_niln scattering process involves
black hole formation/evaporation

— amplitude is exponentially suppressed by black hole entropy

> T
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Scattering Amplitudes and A

[Bedroya, Mishra, MW ’24]

» Result: minimal black hole contribution to 2 — 2 scattering amplitudes can only be reproduced by
higher-derivative corrections of the form

M4=2 . |
~ pld n—1 _ __ ¢,.minmy—1  Species Scale = Scale
Z corr = Gn A2n R R = As _ Amin _ (7‘ H ) set by minimal BH

—1

» At center of mass energies E > M, . and impact parameters b << A_.  scattering process involves

black hole formation/evaporation
— amplitude is exponentially suppressed by black hole entropy
)
* At fixed angle and large energies black hole contribution still suppressed, but leaves a phase 4

factor: ~ CXp(z\/; il (E)) Horizon radius of Schwarzschild

[Giddings, Srednicki ’07] Y~ DlackholewithmassE 1 v

min
— becomes exponentially large upon continuation to unphysical regime (¢ > 0)

o ~expQry(En/t)  for >0
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Scattering Amplitudes and A

[Bedroya, Mishra, MW ’24]

» Result: minimal black hole contribution to 2 — 2 scattering amplitudes can only be reproduced by
higher-derivative corrections of the form

M4=2 . |
~ pld n—1 _ __ ¢,.minmy—1  Species Scale = Scale
Z corr = Gn A2n R R = As _ Amin _ (7‘ H ) set by minimal BH

e At center of mass energies £ > M_. and impact parameters b < Ar_niln scattering process involves
black hole formation/evaporation

— amplitude is exponentially suppressed by black hole entropy

* At fixed angle and large energies black hole contribution still suppressed, but leaves a phase

factor: ~ CXp(z\/; il (E)) Horizon radius of Schwarzschild

[Giddings, Srednicki ’07] \_ black hole with mass E P T M

E
A

min
— becomes exponentially large upon continuation to unphysical regime (¢ > 0)

o ~expQry(En/t)  for >0

OEIN\

e Can argue: at energies A . < E < M_. replace ry by b.(E) = A~}

min min)
[Bedroya, Mishra, MW '24]
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Scattering Amplitudes and A

[Bedroya, Mishra, MW ’24]

» Match the amplitude at different energy scales:

> T

« Can argue: at energies A, < E < M. replace r; by b .(E) = Ar_niln@(E/ Ain)
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Scattering Amplitudes and A

[Bedroya, Mishra, MW ’24]

» Match the amplitude at different energy scales:

> [T

« Can argue: at energies A, < E < M. replace r; by b .(E) = Ar_niln@(E/ Ain)

— o ~exp (A} V1 X Oog E/A ;) )

e Match this amplitude with higher-derivative expansion at £ ~ A .

 To reproduce exponential behavior of & for > 0 need:
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Scattering Amplitudes and A

[Bedroya, Mishra, MW ’24]

» Match the amplitude at different energy scales:

> T

e Can argue: at energies A . < E < M_. replace ry, by b(E) = A~} O(E/A

min mln)

— o ~ exp ( L/t x O(log E/ Amln)>

e Match this amplitude with higher-derivative expansion at £ ~ A

 To reproduce exponential behavior of & for > 0 need:

G

S D MR R with  a,~
A2n
min

1

2n)!l(n—-1)!

Ma§

i e grav — 2 P
» Compare to species scale definition: 5. Da, A2n

A)

RO 'R

Upshot: A, = A_;, = the QG cutoff corresponds
to the radius of the smallest black hole in the theory!



Species Scale from Higher-derivative Corrections

[v.d. Heisteeg, Vafa, MW, Wu '23]

» Consider higher-derivative corrections to effective action, e.g.

1
S = Jddx Ner [ ‘; <R + (00 + DR + ax PR’ +aH)R' + )] |

M,

P
» Wilson coefficients encode field dependence of scale AS(Cb) ~

a, ()
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[v.d. Heisteeg, Vafa, MW, Wu '23]

» Consider higher-derivative corrections to effective action, e.g.

Md—2
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» Strategy: Focus on terms that can be computed explicitly for any value of ¢

— e.g. BPS couplings in supersymmetric theories
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[v.d. Heisteeg, Vafa, MW, Wu '23]

» Consider higher-derivative corrections to effective action, e.g.

Md—2
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» Wilson coefficients encode field dependence of scale AS(Cb) ~

a, ()

» Strategy: Focus on terms that can be computed explicitly for any value of ¢

— e.g. BPS couplings in supersymmetric theories

. t8t8R4-coupling in theories with maximal supersymmetry.

e R’-term in vector/tensor sector of theories with 8 supercharges in 6d/5d/4d.




Species Scale from Higher-derivative Corrections

[v.d. Heisteeg, Vafa, MW, Wu '23]

» Consider higher-derivative corrections to effective action, e.g.

Md—2

S=Jddx\/—_g[ ‘;

1
<R + 5(a¢)2 + ay(P)R? + ay(P)R> + a, ()R + )] .

Mpl
» Wilson coefficients encode field dependence of scale AS(Cb) ~

a, ()

» Strategy: Focus on terms that can be computed explicitly for any value of ¢

— e.g. BPS couplings in supersymmetric theories
. t8t8R4-coupling in theories with maximal supersymmetry.

e R’-term in vector/tensor sector of theories with 8 supercharges in 6d/5d/4d.

» Obtain an upper bound for the species scale everywhere in moduli space!



Species Scale from Higher-derivative Corrections

[v.d. Heisteeg, Vafa, MW, Wu '23]

» As an example consider 10d Type IIA string theory — single modulus = string coupling ¢ = log(g,):

» First non-vanishing term of the higher-derivative corrections is t8t8R4—coupling.

M
SlO,R4 = TP ‘Adlox —g a,(¢) t8t8R4 [Green, Vanhove '97]
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Species Scale from Higher-derivative Corrections

[v.d. Heisteeg, Vafa, MW, Wu '23]

» As an example consider 10d Type IIA string theory — single modulus = string coupling ¢ = log(g,):
» First non-vanishing term of the higher-derivative corrections is t8t8R4—coupling.

2

M 1

S0t = TP [dlox —g a,(¢) t8t8R4 [Green, Vanhove '97]

» Coefficient a,(¢) is one-loop exact — tree-level + one-lpop contributions

. ~3/4 : H
ad) = 4, ( 3-2°%¢(3) e_vg(/;/z + 2o e¢/2>
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Species Scale from Higher-derivative Corrections

[v.d. Heisteeg, Vafa, MW, Wu '23]

» As an example consider 10d Type IIA string theory — single modulus = string coupling ¢ = log(g,):

» First non-vanishing term of the higher-derivative corrections is t8t8R4—coupling.

M
SlO,R4 = TP ‘Adlox —g a,(¢) t8t8R4 [Green, Vanhove '97]
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Species Scale from Higher-derivative Corrections

[v.d. Heisteeg, Vafa, MW, Wu '23]

» As an example consider 10d Type IIA string theory — single modulus = string coupling ¢ = log(g,):

» First non-vanishing term of the higher-derivative corrections is t8t8R4—coupling.

M
SlO,R4 = TP ‘Adlox —g a,(¢) t8t8R4 [Green, Vanhove '97]

» Coefficient a,(¢) is one-loop exact — tree-level + one-lpop contributions

A 3. 23/44/(3) ; v
Cl4(¢) = a, i 6—345/2 + (272.)3/4 e¢/2

» For the species scale this means:
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with expectation from perturbative IIA string theory

e For ¢ — + oo: one-loop dominates — species scale agrees S

with expectation from 11d M-theory




The Desert of the Moduli Space

[v.d. Heisteeg, Vafa, MW, Wu ’23]

» Can repeat this in a large class of examples:

— 32 supercharges; e.g. M-theory on T"

see also [Cribiori, List '23; Castellano, Herraez, Ibanez '23]

— 16 supercharges; e.g. Heterotic/Type I on T"
— 8 supercharges; e.g. F-/M-/Type II on Calabi-Yau threefolds
[v.d. Heisteeg, Vafa, MW, Wu ’22]
» Always find higher-derivative corrections that capture dependence of species scale on (part of) the
moduli everywhere in moduli space
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of light fields [Long, Montero,
Vafa, Valenzuela ’21]




The Desert of the Moduli Space

[v.d. Heisteeg, Vafa, MW, Wu '23]

» Can repeat this in a large class of examples:

— 32 supercharges; e.g. M-theory on T"

see also [Cribiori, List '23; Castellano, Herraez, Ibanez '23]

— 16 supercharges; e.g. Heterotic/Type I on T"

— 8 supercharges; e.g. F-/M-/Type II on Calabi-Yau threefolds
[v.d. Heisteeg, Vafa, MW, Wu ’22]

» Always find higher-derivative corrections that capture dependence of species scale on (part of) the
moduli everywhere in moduli space

» Can determine the “Desert Point” in moduli space where species scale is maximized <> least amount

of light fields [Long, Montero,
Vafa, Valenzuela ’21]

Example AT M,
R 10d ITA 0.755
| 10d 1IB 0.756
of M-theory on T° 0.513
8. M-theory on 77 0.504
06 10d Heterotic Eg X Eg 0.823
04 10d Heterotic SO(32) 0.822
o2 F-theory on F,, 27304
-2 = 0 1 M-theory on X, g 0.490




Bound on the Slope of A

» Question: How fast can A, vary as a function of the scalar fields ¢? [v.d. Heisteeg, Vafa, MW 'R3]
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— generate new operator @m +, With coefficient depending on VA/!




Bound on the Slope of A

» Question: How fast can A vary as a function of the scalar fields ¢? [v.d. Heisteeg, Vafa, MW '3]
i Md—2 0O (R |
: : o : pl (R)
» Consider higher-derivative expansion: Seray = [ddx Va1 > (R + ; A?iz(gb) + ...

i | o _
» Integrate out high-energy modes of ¢ = ¢, + 6¢ ‘ . ‘

— generate new operator @m +, With coefficient depending on VA/!

VA(dy)
A(hp)

2

— Consistency of effective higher-derivative expansion leads:

» Bound valid everywhere in field space — what is c¢?
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» Question: How fast can A vary as a function of the scalar fields ¢? [v.d. Heisteeg, Vafa, MW '3]
i Md—2 0O (R |
: : o : pl (R)
» Consider higher-derivative expansion: Seray = [ddx Va1 > (R + ; A?iz(gb) + ...

< As_l > )
» Integrate out high-energy modes of ¢ = ¢, + 6¢ ‘ . ‘

— generate new operator @m +, With coefficient depending on VA/!

VA(dy)
A(hp)

2

— Consistency of effective higher-derivative expansion leads:

» Bound valid everywhere in field space — what is ¢? 5 1/8




Bound on the Slope of A

» Question: How fast can A vary as a function of the scalar fields ¢? [v.d. Heisteeg, Vafa, MW '3]
_1x11ﬁ—2/ 0O (R |
: : o : pl (R)
» Consider higher-derivative expansion: Seray = [ddx Va1 > (R + ; A?iz(gb) + ...

< As_l a
» Integrate out high-energy modes of ¢ = ¢, + 6¢ ‘ . ‘

— generate new operator @m +, With coefficient depending on VA/!

2
. . . . VA(@) ¢ o(1
— Consistency of effective higher-derivative expansion leads: a2 ¢ (1)
Ay(do) M
: _— : Example: 10d Type IIA 2
» Bound valid everywhere in field space — what is c¢? P P [VAA] 1/8
B
0.10
.. 0.08 -
» From explicit examples: 1
L. . . 0.06 -
— slope maximized in asymptotic C = :
_ 0.04 -
limits and bound satisfied with d—12 :
0.02 1/72
[v.d. Heisteeg, Vafa, MW, Wu’23] "ormmmmmmmmmmmmmmmmm e oo T e




Species Scale and Emergent String Conjecture

[v.d. Heisteeg, Vafa, MW, Wu ’23]

» Species Scale varies most rapidly in asymptotic limits

1
— bound |VAS/AS|2 < ~

(in Planck units) can be saturated in these limits!
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» Species Scale varies most rapidly in asymptotic limits
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» Possibilities for asymptotic limits constrained by Emergent String Conjecture [Lee, Lerche, Weigand '19]

At infinite distance in field space the lightest tower of states predicted by Distance Conjecture is either

i) a KK-tower signaling a decompactification to D > d dimensions
-OR-
ii) the tower of excitation of fundamental, perturbative string
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» Species Scale varies most rapidly in asymptotic limits

1
— bound | VA /A, |2 < y (in Planck units) can be saturated in these limits!

» Possibilities for asymptotic limits constrained by Emergent String Conjecture [Lee, Lerche, Weigand '19]

At infinite distance in field space the lightest tower of states predicted by Distance Conjecture is either
i) a KK-tower signaling a decompactification to D > d dimensions
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ii) the tower of excitation of fundamental, perturbative string
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Species Scale and Emergent String Conjecture

[v.d. Heisteeg, Vafa, MW, Wu ’23]

» Species Scale varies most rapidly in asymptotic limits

1
— bound | VA /A, |2 < y (in Planck units) can be saturated in these limits!

» Possibilities for asymptotic limits constrained by Emergent String Conjecture [Lee, Lerche, Weigand '19]

At infinite distance in field space the lightest tower of states predicted by Distance Conjecture is either
i) a KK-tower signaling a decompactification to D > d dimensions

-OR-
ii) the tower of excitation of fundamental, perturbative string

» Nature of tower determines properties of species scale:

2
Dimensional V AS D —d
e KK tower — species scale is higher-dim. Planck scale -
p : p—r4 A | T D-2d-2
2
Perturbative V AS 1
e String tower — species scale is string scale - —
String Theory AS d—?2
. . . . . . 2
» Emergent string limit gives most extreme variation of A VA, - 1
— Emergent String Conjecture gives sharp bound on slope of species scale! A - d-=-2




Species Scale — Overview

[v.d. Heisteeg, Vafa, MW, Wu ’23]

» Species Scale can be computed from higher-derivative corrections to Einstein-Hilbert

action (— corresponding to scale of minimal black hole)

d=2

_ Mpl d 1 2 < @2n+2(<%, a)
S = — [d N RO Z:} 0= — A

M,

a, ()7

» In explicit examples can give an upper bound on A from terms protected e.g. by supersymmetry

— bound on the maximally possible value for QG cutoff (Desert point)
AP < M

» Slope of species scale bounded from above everywhere in moduli space.

» Bound saturated in asymptotic limits where Emergent String Conjecture predicts universal

bound: 2 B
VA | My

<
A d—2

\)



Emergent Strings — Bottom-Up?

» Emergent string conjecture states that asymptotic regimes where A < Mpl have universal properties!

At infinite distance in field space the lightest tower of states predicted by Distance Conjecture is either

i) a KK-tower signaling a decompactification to D > d dimensions
-OR-
ii) the tower of excitation of fundamental, perturbative string

» Motivation and Evidence for Emergent String Conjecture comes from top-down string theory examples

see for example [Lee, Lerche, Weigand ’18,’19,’21; Baume, Marchesano, MW ’19; Xu '20; Klaewer, Lee, Weigand, MW ’20,
Alvarez-Garcia, Klaewer, Weigand '21; MW ’22; Etheredge, Heidenreich, McNamara, Rudelius, Ruiz, Valenzuela '23, '24;
Alvarez-Garcia, Lee, Weigand '23]




Emergent Strings — Bottom-Up?

» Emergent string conjecture states that asymptotic regimes where A < Mpl have universal properties!

At infinite distance in field space the lightest tower of states predicted by Distance Conjecture is either

i) a KK-tower signaling a decompactification to D > d dimensions
-OR-
ii) the tower of excitation of fundamental, perturbative string

» Motivation and Evidence for Emergent String Conjecture comes from top-down string theory examples

see for example [Lee, Lerche, Weigand ’18,’19,’21; Baume, Marchesano, MW ’19; Xu '20; Klaewer, Lee, Weigand, MW ’20,
Alvarez-Garcia, Klaewer, Weigand '21; MW ’22; Etheredge, Heidenreich, McNamara, Rudelius, Ruiz, Valenzuela '23, '24;
Alvarez-Garcia, Lee, Weigand '23]

» Question: Can we argue for universal properties of limits where A, < Mpl without directly

using string theory?
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» Question: Can we argue for universal properties of limits where A, < Mpl without directly

using string theory?
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* A tower for which the density of one-particle states grows exponential in
energy p(E) o exp(E/A,)
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» Emergent string conjecture states that asymptotic regimes where A < Mpl have universal properties!

At infinite distance in field space the lightest tower of states predicted by Distance Conjecture is either

i) a KK-tower signaling a decompactification to D > d dimensions
-OR-
ii) the tower of excitation of fundamental, perturbative string

» Motivation and Evidence for Emergent String Conjecture comes from top-down string theory examples

see for example [Lee, Lerche, Weigand ’18,’19,’21; Baume, Marchesano, MW ’19; Xu '20; Klaewer, Lee, Weigand, MW ’20,
Alvarez-Garcia, Klaewer, Weigand '21; MW ’22; Etheredge, Heidenreich, McNamara, Rudelius, Ruiz, Valenzuela '23, '24;
Alvarez-Garcia, Lee, Weigand '23]

» Question: Can we argue for universal properties of limits where A, < M, without directly

using string theory?

» Goal: Show that in any gravitational weak-coupling limits where A, < M, the lightest tower of states is

[Bedroya, Mishra, MW '24] e A KK-tower associated to a decompactification to a higher dimensional theory,

_OR-
* A tower for which the density of one-particle states grows exponential in
energy p(E) o exp(E/A,)
Hagedorn growth as for see [Basile, Montella, Liist ’23] for complementary
perturb ative St].‘illg! bottom-up approach to Emergent String Conjecture! 0



One-Particle Density of States

[Bedroya, Mishra, MW '24]

» Central object for our analysis: density of one particle states p

» In limit Ay < M, a good estimate for p(E) for E > A is given in terms of high-energy 2 — 2 scattering

amplitudes at fixed, small impact parameter:

—log(A, p(E)) ~ log| 5 _»(E)|* + O(log(A/E))
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e Idea: Track a as a function of energy to infer

properties of towers of states.
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» Central object for our analysis: density of one particle states p

» In limit Ay < M, a good estimate for p(E) for E > A is given in terms of high-energy 2 — 2 scattering

amplitudes at fixed, small impact parameter:

—log(A, p(E)) ~ log| 5 _»(E)|* + O(log(A/E))

» General expectation: ,(E) ~exp |[ — More precisely: logp(E) =0 [<_> ] =0 [(%) Nog(E/ As)k]

s log p(E) ~ (E/A,)" - -
' e o is a piece-wise constant function on energy.

e Idea: Track a as a function of energy to infer

properties of towers of states.
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Black hole (UV) regime

» At very high energies the density of one-particle states is dominated by black hole microstates.

» Entropy of Schwarzschild black holes S=logp~| — = a>1
pl

» More generally: one-particle states are black hole microstates <> a > 1 [Bedroya, Mishra, MW '24]

— energy scale at which @ < 1 — a > 1 corresponds to mass of minimal black hole Mgy ...

A Ing(E) ~ (E/As)a
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over the d-dimensional Schwarzschild Black Hole.

— for horizons smaller than some 7 > A ! have transition to other solution.
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Black hole (UV) regime

» At very high energies the density of one-particle states is dominated by black hole microstates.

» More generally: one-particle states are black hole microstates <> a > 1 [Bedroya, Mishra, MW '24]

— energy scale at which @ < 1 — a > 1 corresponds to mass of minimal black hole My ;..

» Minimal black hole does not need to be a d-dimensional Schwarzschild black hole!
[Bedroya, Vafa, Wu '24]

* Below certain energy scale: can exist black solution that is entropically favored

over the d-dimensional Schwarzschild Black Hole.
— for horizons smaller than some 7 > A ! have transition to other solution.

* Examples in String Theory:

1. Gregory-Laflamme transition to higher-dimensional
Schwarzschild black hole (r. = Mg)l)  [Gregory, Laflamme 93]

2. Horowitz-Polchinski transition for perturbative strings
—1 [Horowitz, Polchinski '97]
(r = M; )
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Black hole (UV) regime

» At very high energies the density of one-particle states is dominated by black hole microstates.

» More generally: one-particle states are black hole microstates <> a > 1 [Bedroya, Mishra, MW '24]

— energy scale at which @ < 1 — a > 1 corresponds to mass of minimal black hole My ;..

» Minimal black hole does not need to be a d-dimensional Schwarzschild black hole!
[Bedroya, Vafa, Wu '24]

* Below certain energy scale: can exist black solution that is entropically favored

over the d-dimensional Schwarzschild Black Hole.

— for horizons smaller than some 7 > A ! have transition to other solution.

e Examples in String Theory: Moy

1. Gregory-Laflamme transition to higher-dimensional
Schwarzschild black hole (r. = Mg}) [Gregory, Laflamme 93] g o ¢ string

Decompactification
d— D

Mp1,p
2. Horowitz-Polchinski transition for perturbative strings =
_1 [Horowitz, Polchinski’97]  Tup '
(r* — MS ) Figure taken from [Bedroya, Vafa, Wu ’'24]
1 . . . . ]
e Scale Agy = 1 related to scale of lightest tower in asymptotic regimes: Agy S Ay S M,
13



Towers of lights States from Black Holes

[Bedroya, Mishra, MW '24]

» Question: What do I need to get a black hole that is entropically dominates over a d-dimensional
Schwarzschild black hole?

» Consider a d-dimensional EFT of gravity in asymptotically flat spacetime with finitely many

weakly coupled states.
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» Question: What do I need to get a black hole that is entropically dominates over a d-dimensional
Schwarzschild black hole?

» Consider a d-dimensional EFT of gravity in asymptotically flat spacetime with finitely many
weakly coupled states.

» In asymptotically flat space can use Weak Energy Condition:

« Consider spherically symmetric black hole: ds® = — e?*Vdt*> + e*"Vdr? + rdefl_z
such that lim (1 - e20)4-3 = lim (1 — =203 = X

r—00 r—o0 471'

(d—3)

e Weak Energy Condition (T(()) < 0) requires: (-1+e*)+ ' >0

e The boundary conditions imply e** < e*/scwarschitd for every r

— no such black hole will have bigger entropy!

rSchwarzschild
H




Towers of lights States from Black Holes

[Bedroya, Mishra, MW '24]

» Question: What do I need to get a black hole that is entropically dominates over a d-dimensional
Schwarzschild black hole?

» Consider a d-dimensional EFT of gravity in asymptotically flat spacetime with finitely many
weakly coupled states.

» In asymptotically flat space can use Weak Energy Condition:

« Consider spherically symmetric black hole: ds® = — e?*Vdt*> + e*"Vdr? + rdefl_z
such that lim (1 - e20)4-3 = lim (1 — =203 = X

r—00 r—o0 471'

(d—3)

e Weak Energy Condition (T(()) < 0) requires: (-1+e*)+ ' >0

e The boundary conditions imply e** < e*/scwarschitd for every r

rSchwarzschild
H

— 1y < — no such black hole will have bigger entropy!

» To get entropically favored state need infinitely many additional states!

— Transition scale Agyy is indeed associated to mass scale of tower of states!

consistent with proposal in [Bedroya, Vafa, Wu ’24] "



Towers of Weakly Coupled States Below A

» Tower of States: Infinite family of states with mass m, = my + f(n) Am E
A
» What kind of towers of weakly coupled states can we get with mass scale m; << A,? I
S
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Towers of Weakly Coupled States Below A

» Tower of States: Infinite family of states with mass m, = my+ f(n) Am lE
» What kind of towers of weakly coupled states can we get with mass scale m; << A,? Y
s

» Basic properties of species scale — 3 EFT with cutoff A -:
e EFT described in terms of finitely many fundamental fields and defects Zﬁ
— collectively account for all states below A T ™o

» Weakly coupled defect can give rise to tower of weakly coupled states if
in closed configuration (e.g. upon compactification)

“Weakly coupled” brane: self-energy is negligible compared to its tension

— e.g. extrinsic curvature smaller than tension.




Towers of Weakly Coupled States Below A

» Tower of States: Infinite family of states with mass m, = my+ f(n) Am lE
» What kind of towers of weakly coupled states can we get with mass scale m; << A,? Y
s

» Basic properties of species scale — 3 EFT with cutoff A -:
e EFT described in terms of finitely many fundamental fields and defects Zﬁ
— collectively account for all states below A T ™o

» Weakly coupled defect can give rise to tower of weakly coupled states if
in closed configuration (e.g. upon compactification)

“Weakly coupled” brane: self-energy is negligible compared to its tension
— e.g. extrinsic curvature smaller than tension.

» Result: Tension  of weakly coupled p-branes (p > 1) bounded as & Z AI;"'I
[Bedroya, Mishra, MW '24]

e Obtained by considering contribution of these branes to scattering amplitude.

» Weakly-coupled defects cannot give tower of weakly coupled states with my, << A..
15



Towers of Weakly Coupled States Below A

[Bedroya, Mishra, MW '24]

» What possibilities for weakly coupled towers with m; < A, are left?

» Consider EFT that is valid at A and take weak-coupling limit A/M, 4 — 0.

» Since EFT is valid at energies A, the partition function has to be finite if we put it on a thermal
circle of circumference > A~! (fixed in units of A™1).
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Towers of Weakly Coupled States Below A

[Bedroya, Mishra, MW '24]

» What possibilities for weakly coupled towers with m; < A, are left?

» Consider EFT that is valid at A and take weak-coupling limit A(/M, 4 — 0.

» Since EFT is valid at energies A, the partition function has to be finite if we put it on a thermal
circle of circumference > A~! (fixed in units of A™1).

» Suppose we number of weakly coupled states with mass below A is NV, then we have

A A

dm e P"p(m) > e_ﬁAJ dm p(m) = e PAN
0

() > j

0

* N needs to be finite! —> EFT valid at A, has finitely many weakly coupled states.

» Only way to get states below A is by compactification of theory

— Only possible tower of states with mass scale my; << A, are KK states.
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Universality of Hagedorn behavior

[Bedroya, Mishra, MW '24]

s logp(E) ~ (E/A)"
» So far: considered the regimes '

ES A and E 2 A
(IR) (UV)

» Have EFT description valid up to

A, and black hole description

above Mgy rin-

a>1

— consider temperature diagram

s MBH,min
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Universality of Hagedorn behavior

dE
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[Bedroya, Mishra, MW '24]

Minimal black hole has temperature
T(MBH,min) = As

ESAjand E 2 A

» Have EFT description valid up to

» So far: considered the regimes

A, and black hole description

above Myt min-

)
As \ MBH,min

EFT valid up to A, (finitely many states):
— can consider radiation in a box with energy £ = A and T = A,

— consider temperature diagram

» Have T(A,) = T(Mgy ;) = Ay — need to consistently connect the regimes!
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EFT valid up to A, (finitely many states):
— can consider radiation in a box with energy £ = A and T = A

— consider temperature diagram

» Have T(A,) = T(Mgy ;) = Ay — need to consistently connect the regimes!
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e Since ag > 1 corresponds to black holes — need ag < 1 for energies A < E << Mgy i
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[Bedroya, Mishra, MW '24]

Minimal black hole has temperature
T(MBH,min) - As

ES A and E 2 A,

» So far: considered the regimes

» Have EFT description valid up to
A, and black hole description

above Mgy rin-

)
As \ MBH,min

EFT valid up to A, (finitely many states):
— can consider radiation in a box with energy £ = A and T = A

— consider temperature diagram

» Have T(A,) = T(Mgy ;) = Ay — need to consistently connect the regimes!

_ dlog (2
- dE

 Consider density of multi-particle states log Q(E) = E((E/ A)%) - 17!

e Since ag > 1 corresponds to black holes — need ag < 1 for energies A < E << Mgy i

e Only possibility to achieve T(Ay) = T(Mgy nin) = Ay is then ag = 1.
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Universality of Hagedorn behavior

s log p(E) ~ (EIA)"

[Bedroya, Mishra, MW '24]

» So far: considered the regimes
ESAjand E 2 A
(IR) (UV)

» Have EFT description valid up to EFT Regimer | Singrlike 1 tBlack Hole

Regime” i Regime”

A, and black hole description

above Myt min-

— consider temperature diagram

§ MBH,min
» Have T(A,) = T(Mgy min) = A, — need to consistently connect the regimes!

_ dlog (2
- dE

 Consider density of multi-particle states log Q(E) = 5((E/ A)%) - 17!

e Since ag > 1 corresponds to black holes — need ag < 1 for energies A < E << Mgy i
e Only possibility to achieve T(Ay) = T(Mgy nin) = Ay is then ag = 1.
 Final Result:  10gQ(E) = O(E/A) => logp(E) = O(E/A,) for Ay < E < Mpy min

[Bedroya, Mishra, MW '24] 17



Relation to Emergent String Conjecture

What do our results imply for the light towers of states?
 There are two possibilities in gravitational weak-coupling limit (A, <« M):
1. Lightest tower of states is KK tower with mass m << A..

2. In absence of KK tower, lightest tower of states has exponential degeneracy
p(E) ~ et

* Exponential degeneracy reminiscent of excitations of critical string!  log p(E) ~ E/M,




Relation to Emergent String Conjecture

What do our results imply for the light towers of states?
 There are two possibilities in gravitational weak-coupling limit (A, <« M):
1. Lightest tower of states is KK tower with mass m << A..

2. In absence of KK tower, lightest tower of states has exponential degeneracy
p(E) ~ et

* Exponential degeneracy reminiscent of excitations of critical string!  log p(E) ~ E/M,

* Compare to Emergent String Conjecture: [Lee, Lerche, Weigand '19]

Lightest tower of states in infinite distance limits is either a) a KK-tower, or
b) the excitation tower of a critical string.

* Our results provide bottom-up evidence for such a binary choice!
(Though from bottom-up we do not see that states always have to come from a
fundamental string).
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Summary

» Species Scale encodes crucial information about quantum gravity and is calculable via
higher-derivative terms.

» In explicit examples can give an upper bound on A from terms protected e.g. by supersymmetry

— can give a bound on the maximally possible value for QG cutoff (Desert point).

ma
AT < M,
2 —
M3

VA,
<
d—2

» Slope of species scale bounded everywhere in moduli space: X

A

» In gravitational weak-coupling limit A; < M, — density of one-particle states p(E) has

has universal behavior!

» From basic properties of gravity (black hole thermodynamics, scattering amplitudes)

— argue that lightest tower of states either KK-tower or has p(E) ~ exp(E/A,)

— Bottom-up evidence for Emergent String Conjecture
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Thank you!




