Aspects of de Sitter Quantum Gravity

Alejandra Castro University of Cambridge

Aspects of de Sitter Quantum Gravity

Alejandra Castro
University of Cambridge

Focus

Consider Euclidean path integrals in the presence of a positive cosmological.

Focus

Consider Euclidean path integrals in the presence of a positive cosmological.

- Include the effects of matter fields in the gravitational path integral.
- O Direct evaluation in 4D gravity, in situations when there is a relation to 2D models.

$$\mathcal{Z} = \int \mathcal{D}g \, \mathcal{D}\phi_i \, e^{-S_E(g,\phi_i)}$$
Geometries

Geometries

Geometries

Geometries

Focus

Consider Euclidean path integrals in the presence of a positive cosmological.

- Include the effects of matter fields in the gravitational path integral.
- O Direct evaluation in 4D gravity, in situations when there is a relation to 2D models.

There will be no use of holography. Providing examples to argue that

- exact results for the path integral are possible in de Sitter,
- new features arise when quantum gravity is coupled to matter.

Outline

. dS₃ quantum gravity coupled to matter

. Quantum corrections for near-extremal black holes in dS4

dS₃ quantum gravity coupled to matter

Advance methods in Chern-Simons to explore quantum gravity

Based on...

2001.09998

AC, Sabella-Garnier, Zukowski

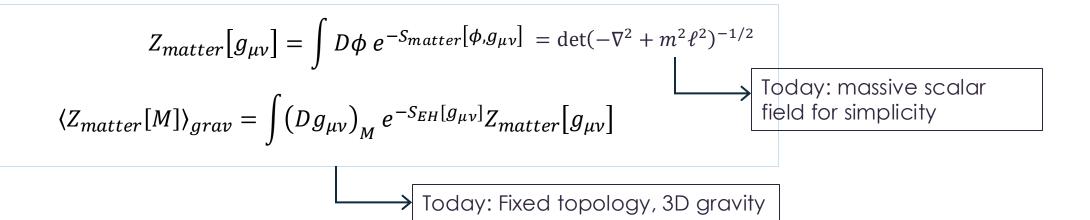
2302.12281+2304.02668

AC, Coman, Fliss, Zukowski

2407.09608

Bourne, AC, Fliss

Einstein-Hilbert: Metric, curvature



Einstein-Hilbert: Metric, curvature

$$Z_{matter}[g_{\mu\nu}] = \int D\phi \ e^{-S_{matter}[\phi,g_{\mu\nu}]} = \det(-\nabla^2 + m^2\ell^2)^{-1/2}$$

$$\langle Z_{matter}[M] \rangle_{grav} = \int (Dg_{\mu\nu})_M \ e^{-S_{EH}[g_{\mu\nu}]} Z_{matter}[g_{\mu\nu}]$$

Chern-Simons: Gauge connections

$$\log(Z_{matter}[g_{\mu\nu}]) = \frac{1}{4} \mathbb{W}_{j}[A_{L}, A_{R}]$$

$$\left\langle \mathbb{W}_{j} \right\rangle_{grav} = \int DA_{L/R} e^{ik_{L}S[A_{L}] + ik_{R}S[A_{R}]} \mathbb{W}_{j}[A_{L}, A_{R}]$$

$$\text{Wilson Spool}$$

dS₃ Quantum Gravity

$$\log(Z_{scalar}[g_{\mu\nu}]) = \frac{1}{4} \mathbb{W}_{j}[A_{L}, A_{R}]$$

$$\left\langle \mathbb{W}_{j} \right\rangle_{grav} = \int DA_{L/R} e^{ik_{L}S[A_{L}] + ik_{R}S[A_{R}]} \mathbb{W}_{j}[A_{L}, A_{R}]$$

Focus mainly on massive fields coupled to dS₃ gravity. Why dS₃?

We can use the full power of SU(2) Chern-Simons theory.

[Carlip 1992; AC, Lashkari, Maloney 2011; Anninos, Denef, Law, Sun 2022]

 \circ Make predictions for G_N corrections without the aid of holography.

How to couple matter to 3D gravity via the Chern-Simons formulation?

Step 1: cast Euclidean dS₃ gravity in Chern-Simons language

Step 2: describe particles and fields in a group theoretic language

Step 3: incorporate step 2 into Chern-Simons path integral

Step 1: cast Euclidean dS₃ gravity in Chern-Simons language

- O Gauge group: $SU(2) \times SU(2)$ leads to dS_3 Euclidean Gravity, $\Lambda = \frac{1}{\ell^2} > 0$
- o Action: $-ik_L S_{CS}[A_L] ik_R S_{CS}[A_R] = I_{EH}[g_{\mu\nu}] i\delta I_{GCS}[g_{\mu\nu}]$
- 0 Couplings: $k_L = \delta + i \, \frac{\ell}{4G_N}$, $k_R = \delta i \, \frac{\ell}{4G_N}$
- O Dictionary: $A_L = i \left(\omega^a + \frac{e^a}{\ell} \right) L_a$, $A_R = i \left(\omega^a \frac{e^a}{\ell} \right) \bar{L}_a$

Step 1: cast Euclidean dS₃ gravity in Chern-Simons language

Background S³ connections

$$a_{L} = i L_{1} d\rho + i(\sin \rho L_{2} - \cos \rho L_{3})(d\varphi - d\tau)$$

$$a_{R} = -i\overline{L}_{1} d\rho - i(\sin \rho \overline{L}_{2} + \cos \rho \overline{L}_{3})(d\varphi + d\tau)$$

Holonomies

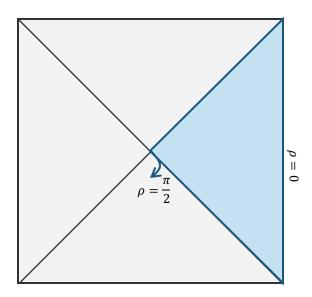
$$P\exp\oint_{\gamma} a_{L/R} \sim e^{2\pi i L_3 h_{L/R}}$$

For a cycle γ that wraps horizon at $\rho = \frac{\pi}{2}$

$$h_L = 1$$
$$h_R = -1$$

Geometry: Static Patch

$$ds^2 = \ell^2(\cos^2\rho \ d\tau^2 + \sin^2\rho \ d\varphi^2 + d\rho^2)$$



Description of **particles** in CS language: Wilson lines/loops

$$W_R(C) = Tr_R\left(P\exp\oint_C A\right) = \int_C DU\exp(-S(U,A)_C)$$

Infinite dimensional representation of G. Encodes quantum numbers of the particle.

Path integral of a massive particle.

Description of **particles** in CS language: Wilson lines/loops

$$W_R(C) = Tr_R\left(P\exp\oint_C A\right) = \int DU\exp(-S(U,A)_C)$$

Infinite dimensional representation of G. Encodes quantum numbers of the particle.

Path integral of a massive particle.

For SU(2) applied to dS_3 , these representations are non-standard (complex/real casimir).

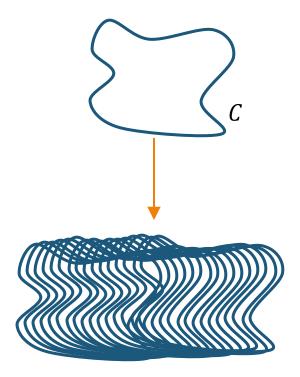
Description of **particles** in CS language: Wilson lines/loops

$$W_R(C) = Tr_R\left(P\exp\oint_C A\right) = \int DU\exp(-S(U,A)_C)$$

Infinite dimensional representation of G. Encodes quantum numbers of the particle.

Path integral of a massive particle.

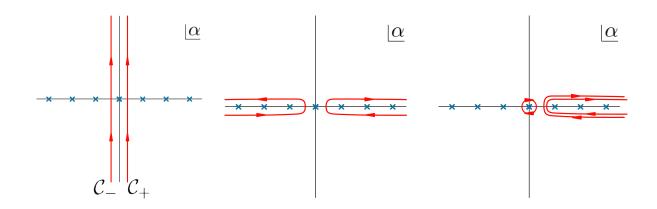
$$\log \det(-\nabla^2 + m^2 \ell^2) \sim \sum_{n=1}^{\infty} \frac{1}{n} \operatorname{Tr}_{j} (P e^{\frac{n}{2\pi} \oint A})$$



Description of **fields** in CS language: Wilson spool. Derivation relies on a group theoretic understanding of one-loop determinants. For massive scalar fields

$$W_{j}[A_{L}, A_{R}] = i \int_{\mathcal{C}} \frac{d\alpha}{\alpha} \frac{\cos\frac{\alpha}{2}}{\sin\frac{\alpha}{2}} \operatorname{Tr}_{j}(Pe^{\frac{\alpha}{2\pi}} {}^{\oint A_{L}}) \operatorname{Tr}_{j}(Pe^{-\frac{\alpha}{2\pi}} {}^{\oint A_{R}})$$

where $C = C_+ \cup C_-$



Description of **fields** in CS language: Wilson spool. Derivation relies on a group theoretic understanding of one-loop determinants. For massive scalar fields

$$W_{j}[A_{L}, A_{R}] = i \int_{\mathcal{C}} \frac{d\alpha}{\alpha} \frac{\cos\frac{\alpha}{2}}{\sin\frac{\alpha}{2}} \operatorname{Tr}_{j}(Pe^{\frac{\alpha}{2\pi}} {}^{\oint A_{L}}) \operatorname{Tr}_{j}(Pe^{-\frac{\alpha}{2\pi}} {}^{\oint A_{R}})$$

This expression can be taken off-shell for the metric: A_L and A_R appear in a simple way!

Einstein-Hilbert: Metric, curvature

$$Z_{matter}[g_{\mu\nu}] = \int D\phi \ e^{-S_{matter}[\phi,g_{\mu\nu}]} = \det(-\nabla^2 + m^2\ell^2)^{-1/2}$$

$$\langle Z_{matter}[M] \rangle_{grav} = \int (Dg_{\mu\nu})_{M} e^{-S_{EH}[g_{\mu\nu}]} Z_{matter}[g_{\mu\nu}]$$

Chern-Simons: Gauge connections

$$\log(Z_{matter}[g_{\mu\nu}]) = \frac{1}{4} \mathbb{W}_j[A_L, A_R]$$

$$\langle \mathbb{W}_j \rangle_{grav} = \int DA_{L/R} e^{ik_L S[A_L] + ik_R S[A_R]} \mathbb{W}_j[A_L, A_R]$$

$$\log(Z_{matter}[S^3]) = \frac{1}{4} \mathbb{W}_j[A_L, A_R]$$

$$\left\langle \mathbb{W}_j[S^3] \right\rangle_{grav} = \int DA_{L/R} e^{ik_L S[A_L] + ik_R S[A_R]} \mathbb{W}_j[A_L, A_R]$$

There are three things to keep in mind:

- Level is complex: $k = \delta i \frac{\ell}{4G_N}$
- Background connection is not trivial.
- Assure that exact results are compatible with the non-standard representations

$$\log(Z_{matter}[S^3]) = \frac{1}{4} \mathbb{W}_j[A_L, A_R]$$

$$\langle \mathbb{W}_j[S^3] \rangle_{grav} = \int DA_{L/R} e^{ik_L S[A_L] + ik_R S[A_R]} \mathbb{W}_j[A_L, A_R]$$

There are three things to keep in mind:

- Level is complex: $k = \delta i \frac{\ell}{4G_N}$
- Background connection is not trivial.
- Assure that exact results are compatible with the non-standard representations

We adapted exact methods to incorporate these tweaks:

- Abelianisation [Blau-Thompson]
- Supersymmetric Localization [Kapustin-Willet-Yaakov]

$$\log(Z_{matter}[S^3]) = \frac{1}{4} \mathbb{W}_j[A_L, A_R]$$

$$\left\langle \mathbb{W}_{j}[S^{3}]\right\rangle _{grav}=\int DA_{L/R}e^{ik_{L}S[A_{L}]+ik_{R}S[A_{R}]}\mathbb{W}_{j}[A_{L},A_{R}]$$

There are three things to keep in mind:

- Level is complex: $k = \delta i \frac{\ell}{4G_N}$
- o Background connection is not trivial.
- Assure that exact results are compatible with the non-standard representations

We adapted exact methods to incorporate these tweaks:

- Abelianisation [Blau-Thompson]
- Supersymmetric Localization [Kapustin-Willet-Yaakov]

- ✓ Path integral on S³
- ✓ Wilson Loops on S³
- ✓ Wilson Spool on S³

Massive spinning fields coupled to dS₃ quantum gravity

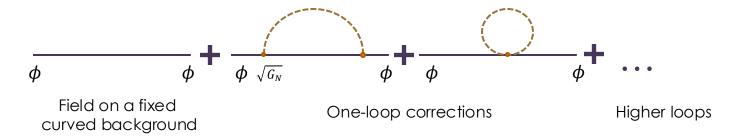
$$\frac{\langle \log Z_{matter}[S^3] \rangle_{grav}}{Z_{grav}[S^3]} = \log Z_{matter}[S^3] + \sum_{m=1}^{\infty} \left(\frac{G_N}{\ell}\right)^{2m} (\log Z)_{2m}$$

Mass renormalization: $\ell^2 m^2 = (s-1)^2 + \mu^2$

$$\mu_R = \mu + \left(-\frac{48}{5}\mu^3 + \left(\frac{24}{\pi} - \frac{16\pi}{3} + 32\pi^2 s^2\right)\mu^2\right)e^{-2\pi\mu}\left(\frac{G_N}{\ell}\right)^2 + \cdots$$

Presenting $\mu \gg 1$ limit. Exact results in references.

Concrete predictive statement about how dynamical gravity renormalizes field



Massive spinning fields coupled to dS₃ quantum gravity

$$\frac{\langle Z_{matter}[S^3] \rangle_{grav}}{\mathcal{Z}_{matter}[S^3]} = Z_{grav}[S^3] + \sum_{m=1}^{\infty} \left(\frac{G_N}{\ell}\right)^{2m} (Z_{grav})_{2m}$$

Renormalization G_N : integrate out massive field

$$G_N = G_{N,R} \left(1 + \left(\frac{16\pi}{5} \mu^5 - \left(8 - \frac{16\pi^2}{9} + \frac{32\pi^2}{3} s^2 \right) \mu^4 \right) e^{-2\pi\mu} \left(\frac{G_{N,R}}{\ell} \right)^2 + \cdots \right)$$

Presenting $\mu \gg 1$ limit. Exact results in references. We have introduced a new object: the Wilson spool.

- Allows us to incorporate matter fields in the Chern-Simons formulation of 3D gravity.
- \circ Tested at $G_N \to 0$, where the Wilson spool reproduces the one-loop determinant of massive spinning fields.

$$\log(Z_{matter}[S^3]) = \log \det(-\nabla^2 + m^2 \ell^2)^{-\frac{1}{2}}$$
$$= \frac{1}{4} \mathbb{W}_j[a_L, a_R]$$

 We can also make predictions for quantum corrections, without the aid of holography.

Overview

dS₃ gravity

- ✓ Massive spinning fields in S³ via CS theory
- One-loop determinants on Lens Spaces via CS theory

[wip Bourne, AC, Fliss, Law]

Mass renormalization in metric formulation (2-loops)

AdS₃ gravity

- ✓ One-loop determinants on rotating BTZ via CS theory
- One-loop determinants on handlebodies via CS theory [wip Bourne, Fliss, Knighton]

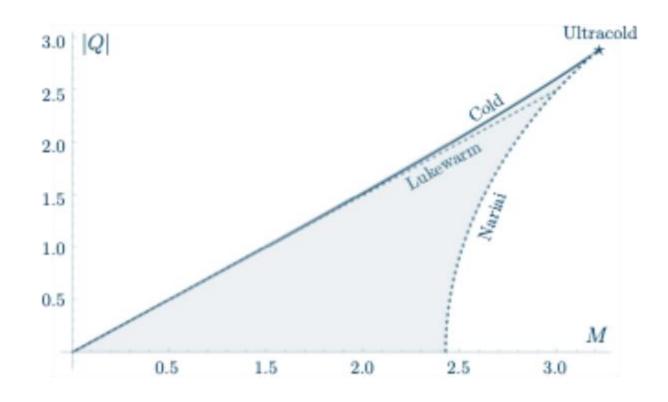
Near-extremal BHs in dS₄

Limitations of 2D models and pathologies of de Sitter [to appear M. Blacker, AC, W. Sybesma, C. Toldo]

Charged BHs in dS₄

Einstein-Maxwell + positive c.c.

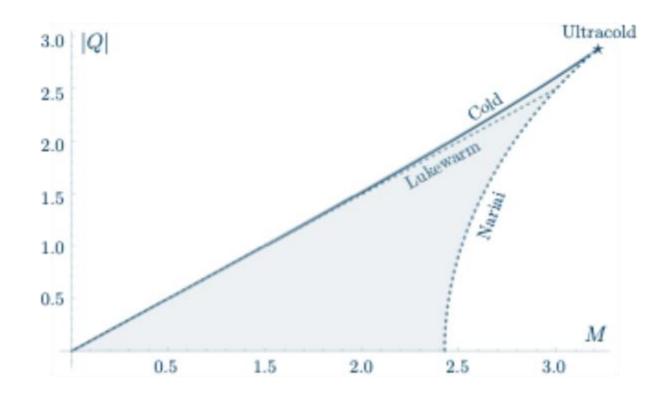
$$S_E = \frac{1}{16\pi G_N} \int d^4x \sqrt{g} \left(R - 2\Lambda - F_{\mu\nu} F^{\mu\nu} \right)$$



Charged BHs in dS₄

Extremal limits:

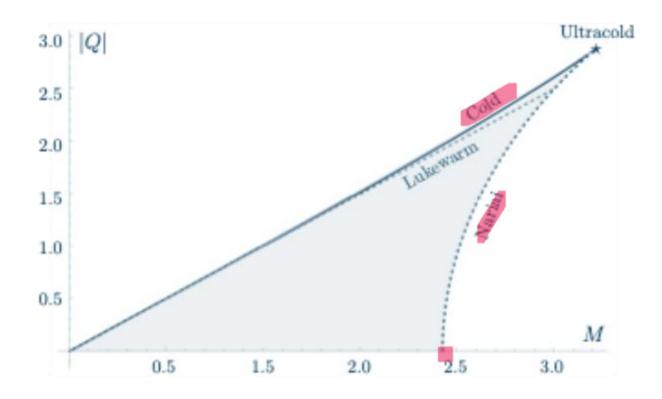
- Ocold branch, $r_+ = r_-$, AdS₂ × S²
- O Nariai, $r_c = r_+$, $dS_2 \times S^2$
- O Ultracold, $r_c = r_+ = r_-$, Mink₂ × S²



Charged BHs in dS₄

Extremal limits:

- Ocold branch, $r_+ = r_-$, AdS₂ × S²
- O Nariai, $r_c = r_+$, $dS_2 \times S^2$
- Ultracold, $r_c = r_+ = r_-$, Mink₂ × S²



Near-extremal GPI

$$\mathcal{Z} = \int\limits_{\mathcal{M}} \mathcal{D}g \, \mathcal{D}A \, e^{-S_E(g,A)}$$

Near-extremal GPI

$$\mathcal{Z} = \int\limits_{\mathcal{M}} \mathcal{D}g \, \mathcal{D}A \, e^{-S_E(g,A)} = e^{-I(g_e,A_e)} \int\limits_{\mathcal{M}} \mathcal{D}h \, \mathcal{D}a \, e^{-S_{(1)}(h,a)+\cdots} + \cdots$$

$$g = g_{extremal} + h$$

$$A = A_{extremal} + a$$
One-loop determinants

Around near-horizon of extremal black holes, infinitely many normalizable zero modes (h^0, a^0) :

$$\int\limits_{\mathcal{M}} \mathcal{D}h^0 \, \mathcal{D}a^0 = \infty$$

Near-extremal GPI

$$\mathcal{Z} = \int\limits_{\mathcal{M}} \mathcal{D}g \, \mathcal{D}A \, e^{-S_E(g,A)} = e^{-I(g_e + \delta g,A_e + \delta A)} \int\limits_{\mathcal{M}} \mathcal{D}h \, \mathcal{D}a \, e^{-S_{(1)}(h,a) + \cdots} + \cdots$$

$$g = g_{extremal} + \delta g + h^0 + \delta h^0_T$$

$$A = A_{extremal} + \delta A + a^0 + \delta a^0_T$$
 with $\delta g \sim O(T)$, $\delta a \sim O(T)$

Around near-horizon of near-extremal black holes, zero modes are lifted:

$$\int_{\mathcal{M}} \mathcal{D}h^0 \, \mathcal{D}a^0 \, e^{-\lambda_h(T) \left\langle h^0 \middle| h^0 \right\rangle} \, e^{-\lambda_a(T) \left\langle a^0 \middle| a^0 \right\rangle} \sim T^{\#}$$

with
$$\lambda_{h,a}(T) \sim O(T)$$

Extremal dS ₄ BH	Tensor modes		Vector modes		U(1) modes		σ
	$\langle h^0 h^0\rangle$	$\lambda_h(T)$	$\langle h^0 h^0\rangle$	$\lambda_h(T)$	$\langle a^0 a^0\rangle$	$\lambda_a(T)$	\mathcal{Z}_{low-T}
$AdS_2 \times S^2$							
(+,+,+,+)							
$dS_2 \times S^2$							
(-,-,+,+)							
$dS_2 \times S^2$							
(-,-,-)							
$dS_2 \times S^2$							
Q=0							

 dS_2 JT sector

Extremal dS ₄ BH	Tensor modes		Vector modes		U(1) modes		a a
	$\langle h^0 h^0\rangle$	$\lambda_h(T)$	$\langle h^0 h^0\rangle$	$\lambda_h(T)$	$\langle a^0 a^0\rangle$	$\lambda_a(T)$	Z_{low-T}
$AdS_2 \times S^2$ (+,+,+,+)	+	+	+	+	+	+	$\sim T^{7/2}$
$dS_2 \times S^2$ (-,-,+,+)							
$dS_2 \times S^2$ (-,-,-)							
$dS_2 \times S^2$ $Q=0$							

$$\mathcal{Z}_{low-T} \sim \int\limits_{\mathcal{M}} \mathcal{D}h^0 \, \mathcal{D}a^0 \, e^{-\lambda_h(T) \left\langle h^0 \middle| h^0 \right\rangle} \, e^{-\lambda_a(T) \left\langle a^0 \middle| a^0 \right\rangle} + \cdots$$

Extremal dS ₄ BH	Tensor modes		Vector modes		U(1) modes		or .
	$\langle h^0 h^0\rangle$	$\lambda_h(T)$	$\langle h^0 h^0\rangle$	$\lambda_h(T)$	$\langle a^0 a^0\rangle$	$\lambda_a(T)$	Z_{low-T}
$AdS_2 \times S^2$ (+,+,+,+)	+	+	+	+	+	+	$\sim T^{7/2}$
$dS_2 \times S^2$ (-,-,+,+)							
$dS_2 \times S^2$ (-,-,-)							
$dS_2 \times S^2$ $Q=0$	+	-	-	-			

$$\mathcal{Z}_{low-T} \sim \int\limits_{\mathcal{M}} \mathcal{D}h^0 \, \mathcal{D}a^0 \, e^{-\lambda_h(T) \left\langle h^0 \middle| h^0 \right\rangle} \, e^{-\lambda_a(T) \left\langle a^0 \middle| a^0 \right\rangle} + \cdots$$

Extremal dS ₄ BH	Tensor modes		Vector modes		U(1) modes		, a
	$\langle h^0 h^0\rangle$	$\lambda_h(T)$	$\langle h^0 h^0\rangle$	$\lambda_h(T)$	$\langle a^0 a^0\rangle$	$\lambda_a(T)$	${\cal Z}_{low-T}$
$AdS_2 \times S^2$ (+,+,+,+)	+	+	+	+	+	+	$\sim T^{7/2}$
$dS_2 \times S^2$ (-,-,+,+)	+	-	-	-	-	+	
$dS_2 \times S^2$ (-,-,-)	+	+	+	+	-	-	
$dS_2 \times S^2$ $Q=0$	+	-	-	-			

$$\mathcal{Z}_{low-T} \sim \int\limits_{\mathcal{M}} \mathcal{D}h^0 \, \mathcal{D}a^0 \, e^{-\lambda_h(T) \left\langle h^0 \middle| h^0 \right\rangle} \, e^{-\lambda_a(T) \left\langle a^0 \middle| a^0 \right\rangle} + \cdots$$

Extremal dS ₄ BH	Tensor modes		Vector modes		U(1) modes		a a
	$\langle h^0 h^0\rangle$	$\lambda_h(T)$	$\langle h^0 h^0\rangle$	$\lambda_h(T)$	$\langle a^0 a^0\rangle$	$\lambda_a(T)$	${\cal Z}_{low-T}$
$AdS_2 \times S^2$ (+,+,+,+)	+	+	+	+	+	+	$\sim T^{7/2}$
$dS_2 \times S^2$ (-,-,+,+)	+	-	-	-	-	+	•••
$dS_2 \times S^2$ (-,-,-)	+	+	+	+	-	-	•••
$dS_2 \times S^2$ $Q=0$	+	-	-	-			•••

$$\mathcal{Z}_{low-T} \sim \int\limits_{\mathcal{M}} \mathcal{D}h^0 \, \mathcal{D}a^0 \, e^{-\lambda_h(T) \left\langle h^0 \middle| h^0 \right\rangle} \, e^{-\lambda_a(T) \left\langle a^0 \middle| a^0 \right\rangle} + \cdots$$

Overview

Near-extremal black holes in dS_4 provide a sharp lab to connect with toy models in 2D and quantify the role of extra dimensions (matter).

- \circ Cold branch: AdS₂ × S²
- o Nariai: $dS_2 \times S^2$
- o Ultracold: Mink₂ \times S²

Quantum corrections of dS_4 BHs display pathologies that are not present for BHs in Mink₄/AdS₄. Resolving them could be important for the interpretation of the Euclidean GPI in de Sitter.

Conclusions

Future Directions

I. dS₃ quantum gravity coupled to matter

Higher form symmetries in QG

 $\langle \log Z_{scalar} \rangle$ versus $\log \langle Z_{scalar} \rangle$

Microscopic interpretation: edge modes within

Quantum corrections to Wilson spool in AdS₃

Future Directions

I. dS₃ quantum gravity coupled to matter

Higher form symmetries in QG

 $\langle \log Z_{scalar} \rangle$ versus $\log \langle Z_{scalar} \rangle$

Microscopic interpretation: edge modes within

Quantum corrections to Wilson spool in AdS₃

II. Quantum corrections for near-extremal black holes in dS_4

Microscopic interpretation: analytic continuations

Ultracold limit and its ties to Mink₂ gravity.

Future Directions

I. dS₃ quantum gravity coupled to matter

Higher form symmetries in QG

 $\langle \log Z_{scalar} \rangle$ versus $\log \langle Z_{scalar} \rangle$

Microscopic interpretation: edge modes within

Quantum corrections to Wilson spool in AdS₃

 \blacksquare . Quantum corrections for near-extremal black holes in dS₄

Microscopic interpretation and analytic continuations

Ultracold limit and its ties to Mink₂ gravity.

Thank you!