Exploring thermal CFTs

Elli Pomoni

Strings 2025

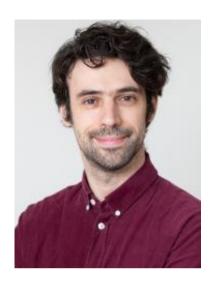
[2306.12417 & 2312.13030 Marchetto, Miscioscia, EP]

[2407.14600 Barrat, Fiol, Marchetto, Miscioscia, EP]

[2411.00978 Barrat, Marchetto, Miscioscia, EP]

Alessio Miscioscia

Enrico Marchetto



Julien Barrat

Bartomeu Fiol

[2306.12417 & 2312.13030 Marchetto, Miscioscia, EP][2407.14600 Barrat, Fiol, Marchetto, Miscioscia, EP][2411.00978 Barrat, Marchetto, Miscioscia, EP]

Motivation

* Quantum critical points: nonzero temperature in the lab.

* Black Holes through AdS/CFT.

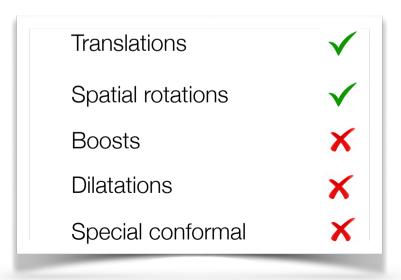
* CFTs on non-trivial manifolds.

Thermal effects are captured by placing the theory on a circle

$$S^1_{\beta} \times \mathbb{R}^{d-1}$$

$$\beta = \frac{1}{T}$$

With periodic boundary conditions for the bosons and anti-periodic for the fermions.



In this talk <u>assume</u> we know the **zero temperature CFT data**:

$$\Delta_{\mathcal{O}}$$
, $f_{\mathcal{O}_1\mathcal{O}_2\mathcal{O}_3}$

and are interested in computing <u>new</u> finite temperature data: the non-zero *thermal one-point functions*:

$$\langle \mathcal{O}(x) \rangle_{\beta} = \frac{b_{\mathcal{O}}}{\beta^{\Delta_{\mathcal{O}}}}$$

for neutral scalar operators.

And more generally for all traceless symmetric tensors:

$$\langle \mathcal{O}^{\mu_1 \dots \mu_J}(x) \rangle_{\beta} = \frac{b_{\mathcal{O}_J}}{\beta^{\Delta_{\mathcal{O}_J}}} (e^{\mu_1} \dots e^{\mu_J} - traces)$$

We can still use the OPE:

$$\mathcal{O}_{1}(x) \times \mathcal{O}_{2}(0) = \sum_{\mathcal{O}} f_{\mathcal{O}_{1}\mathcal{O}_{2}\mathcal{O}} |x|^{\Delta_{\mathcal{O}} - \Delta_{\mathcal{O}_{1}} - \Delta_{\mathcal{O}_{2}} - J} x_{\mu_{1}} \dots x_{\mu_{J}} \mathcal{O}^{\mu_{1} \dots \mu_{J}}(0)$$

But now the radius of convergence is finite: $|x| < \beta$

[lliesiu, Kologlu, Mahajan, Perlmutter, Simmons-Duffin 2018]

The **two-point function** of identical scalars ϕ , using the OPE

$$\langle \phi(\tau, r)\phi(0)\rangle_{\beta} = \sum_{\mathcal{O}} f_{\phi\phi\mathcal{O}} \left(\sqrt{r^2 + \tau^2}\right)^{\Delta_{\mathcal{O}} - 2\Delta_{\phi} - J} x_{\mu_1} \dots x_{\mu_J} \langle \mathcal{O}^{\mu_1 \dots \mu_J} \rangle_{\beta}$$

and the definition of the Gegenbauer polynomials:

$$\langle \phi(\tau, r)\phi(0)\rangle_{\beta} = \sum_{\mathcal{O}} \frac{a_{\mathcal{O}}}{\beta^{\Delta_{\mathcal{O}}}} \left(\sqrt{r^2 + \tau^2}\right)^{\Delta_{\mathcal{O}} - 2\Delta_{\phi}} C_J^{(\nu)} \left(\frac{\tau}{\sqrt{\tau^2 + r^2}}\right)$$

$$a_{\mathcal{O}} = b_{\mathcal{O}} f_{\mathcal{O}\phi\phi} \frac{J!}{2^{J}(\nu)_{I}} \qquad (\nu)_{J} = \frac{\Gamma(\nu+J)}{\Gamma(\nu)} \qquad \nu = \frac{d-2}{2}$$

New Finite Temperature data

Periodicity of the two-point function is captured by the

[Kubo 1957]

[Martin, Schwinger 1959]

KMS condition:

$$\langle \phi(\tau, r)\phi(0,0)\rangle_{\beta} = \langle \phi(\tau+\beta, r)\phi(0,0)\rangle_{\beta}$$

The OPE expression does not manifestly satisfy KMS, thus imposing it gives a nontrivial "thermal crossing equation".

Variation of KMS:

$$\left\langle \phi \left(\beta/2 + \tau \right) \phi(0) \right\rangle_{\beta} = \left\langle \phi \left(\beta/2 - \tau \right) \phi(0) \right\rangle_{\beta} \qquad \text{[El-Showk, Papadodimas 2011]}$$

Plan of the talk

- * Derive and test thermal Sum Rules.
- * Heavy operators: asymptotic thermal OPE density.
- * Propose a numerical thermal bootstrap method.
- * Temporal line defects (Polyakov loops).

Sum Rules

* OPE expand both sides of the El-Showk - Papadodimas formula

$$\left\langle \phi \left(\beta/2 + \tau, r \right) \phi(0) \right\rangle_{\beta} = \left\langle \phi \left(\beta/2 - \tau, r \right) \phi(0) \right\rangle_{\beta}$$

- ***** Then further expand the result in powers of τ and r.
- * Use the definition of Gegenbauer polynomials and the binomial theorem.

$$\sum_{\mathcal{O} \in \phi \times \phi} b_{\mathcal{O}} f_{\mathcal{O}\phi\phi} F_{\ell,n}(h,J) = 0 \qquad n \in \mathbb{N}, \ell \in 2\mathbb{N} + 1$$

$$h = \Delta - J$$

$$F_{\ell,n}(h,J) = \frac{1}{2^{h+J}} \begin{pmatrix} \frac{h-2\Delta_{\phi}}{2} \\ n \end{pmatrix} \begin{pmatrix} h+J-2\Delta_{\phi}-2n \\ \ell \end{pmatrix} {}_{3}F_{2} \begin{bmatrix} \frac{1-J}{2}, -\frac{J}{2}, \frac{h}{2}-\Delta_{\phi}+1 \\ \frac{h}{2}-\Delta_{\phi}-n+1, -J-\nu+1 \end{bmatrix} 1$$

$$\sum_{\substack{b \in \phi \times \phi \text{ New} \\ \text{Finite} \\ \text{Temperature}}} b_{\mathcal{O}} f_{\mathcal{O}\phi\phi} F_{\ell,n}(h,J) = 0 \qquad \text{$n \in \mathbb{N}$, $\ell \in 2\mathbb{N}$ + 1} \\ h = \Delta - J \qquad \qquad h = \Delta - J$$

We have an **infinite set** of **linear equations** for the combinations $a_{\mathcal{O}} \propto b_{\mathcal{O}} f_{\mathcal{O}\phi\phi}$

<u>Difficulty:</u> Thermal one-point functions not sign-definite.

Which is crucial for <u>linear programming</u> methods (standard numerical bootstrap).

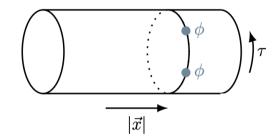
$$\sum_{\substack{b \in \phi \times \phi \text{ New}\\ \text{Finite}\\ \text{Temperature}}} b_{\mathcal{O}} f_{\mathcal{O}\phi\phi} F_{\ell,n}(h,J) = 0 \qquad \text{$n \in \mathbb{N}$, $\ell \in 2\mathbb{N}$ + 1}\\ h = \Delta - J$$

Interpretation of the integers:

$$\frac{\partial^{2\ell+1}}{\partial \tau^{2\ell+1}} \frac{\partial^n}{\partial r^n} \langle \phi(\tau, r) \phi(0, 0) \rangle_{\beta} \bigg|_{\tau = \frac{\beta}{2}, r = 0}$$

The sum rules for $a_{\mathcal{O}} \propto b_{\mathcal{O}} f_{\mathcal{O}\phi\phi}$

further simplified for r = 0



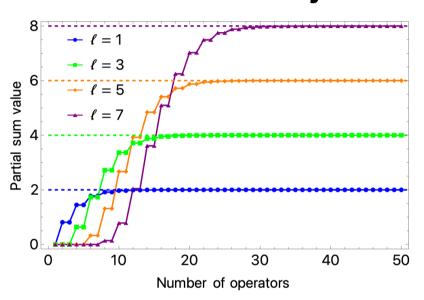
$$\frac{\Gamma\left(2\Delta_{\phi}+\mathscr{\ell}\right)}{\Gamma\left(2\Delta_{\phi}\right)} = \sum_{\Delta \neq 0} \frac{a_{\Delta}}{2^{\Delta}} \frac{\Gamma\left(\Delta-2\Delta_{\phi}+1\right)}{\Gamma\left(\Delta-2\Delta_{\phi}-\mathscr{\ell}+1\right)} \qquad \mathscr{\ell} \in 2\mathbb{N}+1$$

$$a_{\Delta} = \sum_{\mathcal{O} \in \phi \times \phi} a_{\mathcal{O}} \, C_J^{(\nu)}(1) \text{ for fixed } \Delta$$

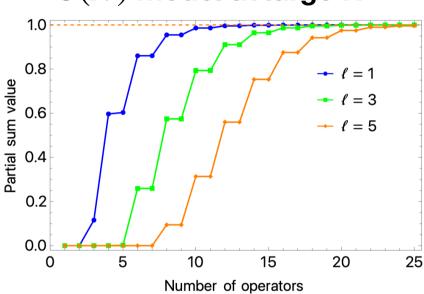
Operators of same Δ but different J cannot be distinguished because of r=0. Generically this does not occur, unless there is extra symmetry, like for free theory.

KMS sum rules: test & learn

4-dim free theory



$\mathrm{O}(N)$ model at large N



Dashed straight lines: the LHS of the sum rule (identity contribution). The RHS plot adding operators.

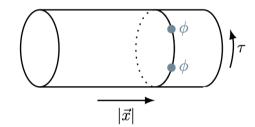
$$\frac{\Gamma\left(2\Delta_{\phi} + \ell\right)}{\Gamma\left(2\Delta_{\phi}\right)} = \sum_{\Delta \neq 0} \frac{a_{\Delta}}{2^{\Delta}} \frac{\Gamma\left(\Delta - 2\Delta_{\phi} + 1\right)}{\Gamma\left(\Delta - 2\Delta_{\phi} - \ell + 1\right)}$$

Observation: for small ℓ only few light operators contribute.

Heavy Operators

We want to bound the thermal OPE density for $\Delta \to \infty$. Inspired by [Qiao, Rychkov 2017]

Consider the simplified two-point function at r = 0:



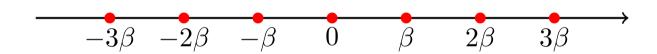
$$\langle \phi(\tau)\phi(0)\rangle_{\beta} = \tau^{-2\Delta_{\phi}} \sum_{\emptyset \in \phi \times \phi} \frac{a_{\emptyset}}{\beta^{\Delta_{\emptyset}}} \tau^{\Delta_{\emptyset}} = \tau^{-2\Delta_{\phi}} \int_{0}^{\infty} d\Delta \, \rho(\Delta) \, \frac{\tau^{\Delta_{\phi}}}{\beta^{\Delta_{\phi}}}$$

via introducing the spectral density
$$\rho(\Delta)=\sum_{\Delta'}\delta(\Delta'-\Delta)\,a_\Delta$$

$$a_\Delta=\sum_{\varnothing\in\phi\times\phi}a_{\varnothing}\,C_J^{(\nu)}(1)\ \ \text{for fixed Δ}.$$

We will need:

The locations of the poles of the two-point function on the real axis:



due to periodicity.

$$\langle \phi(\tau)\phi(0)\rangle_{\beta} \stackrel{\tau \to k\beta}{\sim} (k\beta - \tau)^{-2\Delta_{\phi}}$$

Make an **Ansatz** for the asymptotic behaviour of the density

$$\rho(\Delta) \stackrel{\Delta \to \infty}{\sim} A \Delta^{-\alpha}$$

Sensible due to Tauberian theory

Doing the integral

$$\langle \phi(\tau)\phi(0)\rangle_{\beta} \stackrel{\tau \to \beta}{\sim} A \Gamma(2-\alpha)\tau^{-2\Delta_{\phi}} \left(1-\frac{\tau}{\beta}\right)^{\alpha-2}$$

Comparing with the poles of the two-point function $\alpha = -2\Delta_{\phi} + 2$, $A = \frac{1}{\Gamma(2\Delta_{\phi})}$

$$\alpha = -2\Delta_{\phi} + 2$$
, $A = \frac{1}{\Gamma(2\Delta_{\phi})}$

$$\rho(\Delta) \stackrel{\Delta \to \infty}{\sim} \frac{1}{\Gamma(2\Delta_{\phi})} \Delta^{2\Delta_{\phi}-1}$$

Interpretation: the asymptotic thermal density of OPE of Heavy operators.

$$\rho(\Delta) \stackrel{\Delta \to \infty}{\sim} \frac{1}{\Gamma(2\Delta_{\phi})} \Delta^{2\Delta_{\phi}-1}$$

Keep in mind, the physical spectrum is discrete $\; \rho(\Delta) \stackrel{\Delta \to \infty}{\sim} \; \sum_{\Delta'} \delta(\Delta' - \Delta) \, a_\Delta \;$

More correctly: average density of OPE of Heavy operators

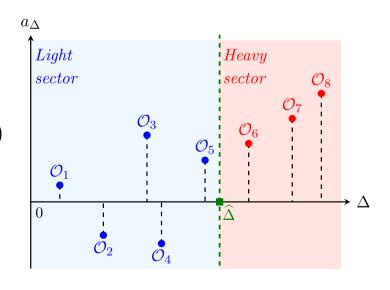
$$\int_{0}^{\Delta} \rho(\tilde{\Delta}) d\tilde{\Delta} \stackrel{\Delta \to \infty}{\sim} \frac{\Delta^{2\Delta_{\phi}}}{\Gamma(2\Delta_{\phi} + 1)} \left(1 + \mathcal{O}\left(\frac{1}{\Delta}\right) \right)$$

This result is the correct formal math result (Tauberian theorems) with an error.

This was a heuristic derivation (nonetheless captures the intuition).

In the paper we give a rigorous derivation using **Tauberian theorems** under the assumptions:

- * Unitarity (reality of the thermal OPE coefficients)
- * Boundedness of the thermal OPE from below (we proved)
- $\bigstar \Delta_{\phi} > 1/2$ which is correct because of unitarity ($d \geq 3$)



$$a_{\Delta} \ge -c$$

Free theory in 4d

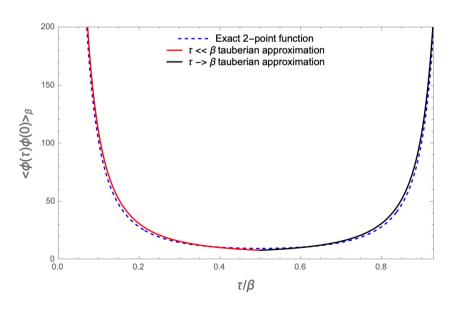
The exact two-point function:

Tauberian approximation:

$$\langle \phi(\tau)\phi(0)\rangle_{\beta} = \left(\frac{\pi}{\beta}\right)^2 \csc^2\left(\frac{\pi}{\beta}\tau\right)$$

$$\langle \phi(\tau)\phi(0)\rangle_{\beta} \simeq \begin{cases} \int_{0}^{\infty} d\Delta \frac{\Delta^{2\Delta_{\phi}-1}}{\Gamma(2\Delta_{\phi})} \frac{(\beta-\tau)^{\Delta-2\Delta_{\phi}}}{\beta^{\Delta}} & \tau/\beta \ll 1\\ \int_{0}^{\infty} d\Delta \frac{\Delta^{2\Delta_{\phi}-1}}{\Gamma(2\Delta_{\phi})} \frac{\tau^{\Delta-2\Delta_{\phi}}}{\beta^{\Delta}} & \tau/\beta \sim 1 \end{cases}$$





The Tauberian approximation is very good!

Lagrangian description:

Lagrangian description:
$$\mathscr{L} = \frac{1}{2} (\partial \phi_i)^2 + \frac{1}{2} \sigma \phi_i^2 - \frac{\sigma^2}{4\lambda}$$

Hubbard-Stratonovich field

Wilson-Fisher expansion $\epsilon = 4 - d \ll 1$ weakly coupled in large N: $\lambda_* = \frac{8\pi^2}{N+8}\epsilon$

d=3 non-trivial IR fixed point.

The two-point function:

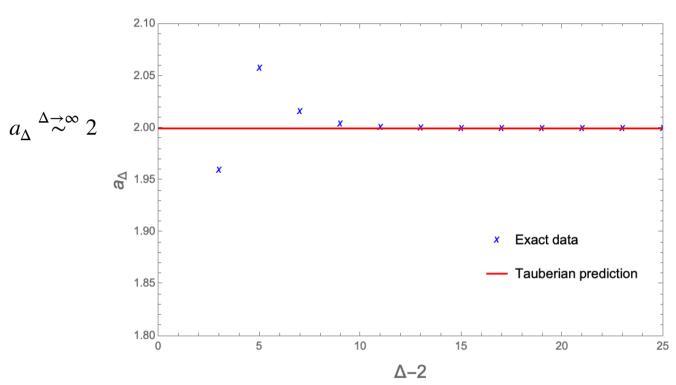
$$\langle \phi_{i}(\tau, r)\phi_{j}(0, 0)\rangle_{\beta} = \delta_{ij} \sum_{m=-\infty}^{\infty} \int \frac{d^{2}k}{(2\pi)^{2}} \frac{e^{-i\vec{k}\cdot\vec{x}-i\omega_{m}\tau}}{\omega_{n}^{2} + \vec{k}^{2} + m_{th}^{2}} = \delta_{ij} \sum_{m=-\infty}^{\infty} \frac{e^{-m_{th}\sqrt{(\tau + m\beta)^{2} + r^{2}}}}{\sqrt{(\tau + m\beta)^{2} + r^{2}}}$$

$$\langle \sigma \rangle_{\beta} = m_{th}^2 = \frac{4}{\beta^2} \log^2 \left(\frac{1 + \sqrt{5}}{2} \right)$$
 [Sachdev, Ye 1992] [Iliesiu, Kologlu et al. 2018]

$$\Delta_{\phi_i} = \frac{1}{2} + \mathcal{O}\left(\frac{1}{N}\right)$$

$$\Delta_{\sigma} = 2 + \mathcal{O}\left(\frac{1}{N}\right)$$

$$a_{\Delta} \stackrel{\Delta \to \infty}{\sim} \frac{\Delta^{2\Delta_{\phi}-1}}{\Gamma(2\Delta_{\phi})} \delta \Delta$$



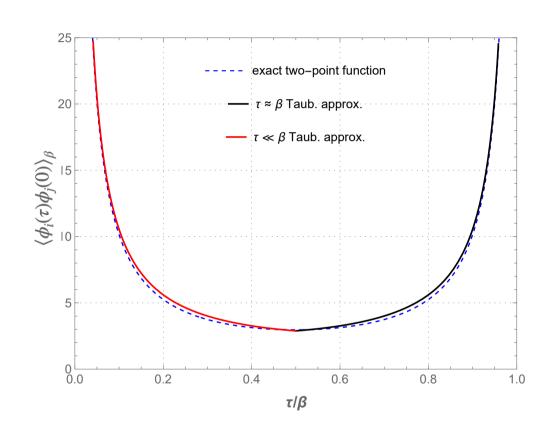
The two-point function for r = 0:

$$\langle \phi_{i}(\tau)\phi_{j}(0)\rangle_{\beta} = \delta_{ij} \left(\frac{e^{m_{th}(\tau-\beta)}}{\beta-\tau} {}_{2}F_{1} \left(\left\{ \begin{array}{c} 1, \frac{\beta-\tau}{\beta} \\ \frac{2\beta-\tau}{\beta} \end{array} \right\} \middle| e^{-m_{th}\beta} \right) + \frac{e^{-m_{th}\tau}}{\tau} {}_{2}F_{1} \left(\left\{ \begin{array}{c} 1, \frac{\tau}{\beta} \\ \frac{\beta+\tau}{\beta} \end{array} \right\} \middle| e^{-m_{th}\beta} \right) \right)$$

The Tauberian approximation:

$$\langle \phi(\tau)\phi(0)\rangle_{\beta} \simeq \begin{cases} \int_{0}^{\infty} d\Delta \frac{\Delta^{2\Delta_{\phi}-1}}{\Gamma(2\Delta_{\phi})} \frac{(\beta-\tau)^{\Delta-2\Delta_{\phi}}}{\beta^{\Delta}} & \tau/\beta \ll 1 \\ \int_{0}^{\infty} d\Delta \frac{\Delta^{2\Delta_{\phi}-1}}{\Gamma(2\Delta_{\phi})} \frac{\tau^{\Delta-2\Delta_{\phi}}}{\beta^{\Delta}} & \tau/\beta \sim 1 \end{cases}$$

Gives the two-point function with **less** than 10% error!



The Tauberian approximation is very good!

Setting up the Numerics

Numerical method

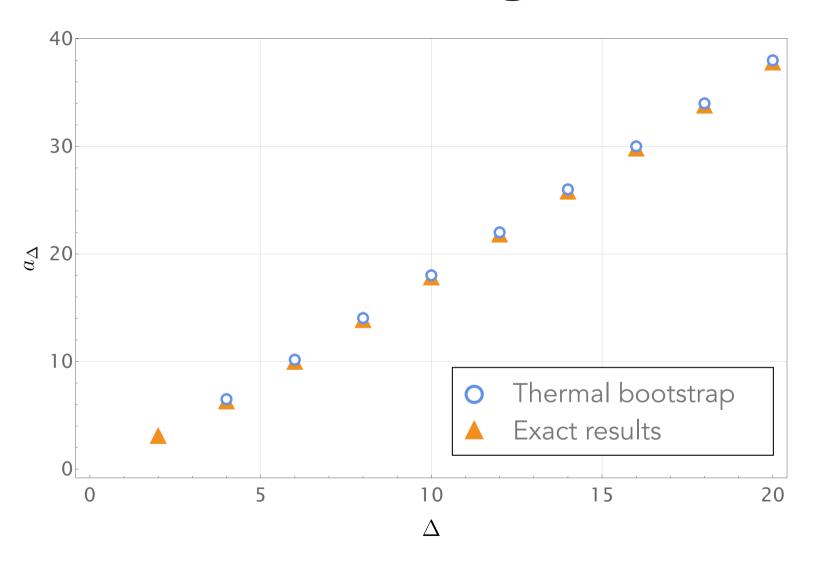
Inspired by [Gliozzi 2013] [Poland, Prilepina, Tadić' 2023] [W. Li 2023]

- 1. Input: zero Temperature spectrum and Output: $a_{\Delta} \& c_i$.
- 2. Truncate the sum + *improved* Tauberian asymptotic:

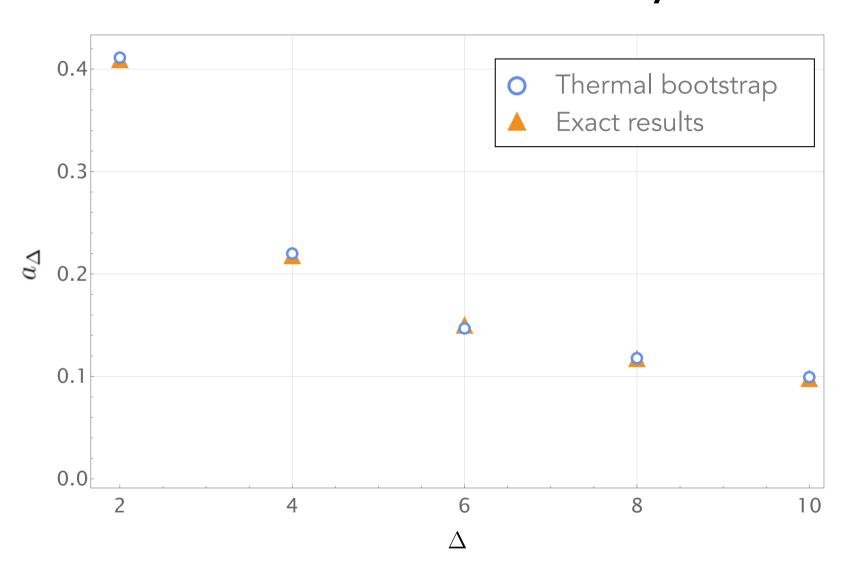
3. Numerically minimize with "random" coefficients the square of the sum rules.

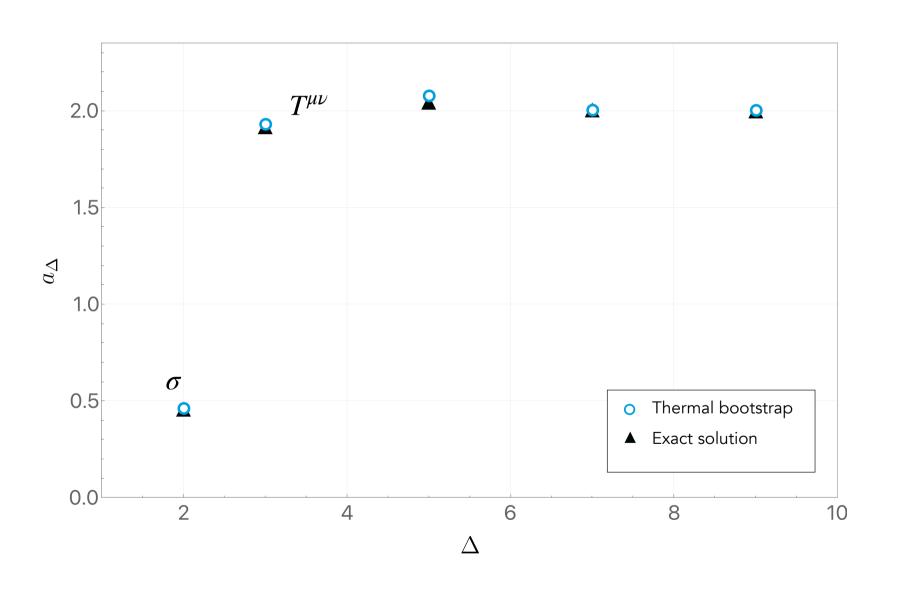
$$\min \left[\sum_{\ell \leq \ell_{max}} r_{\ell} \ f^{2}(\ell) \right] \qquad \text{Random coefficients}$$

Free theory in 4d

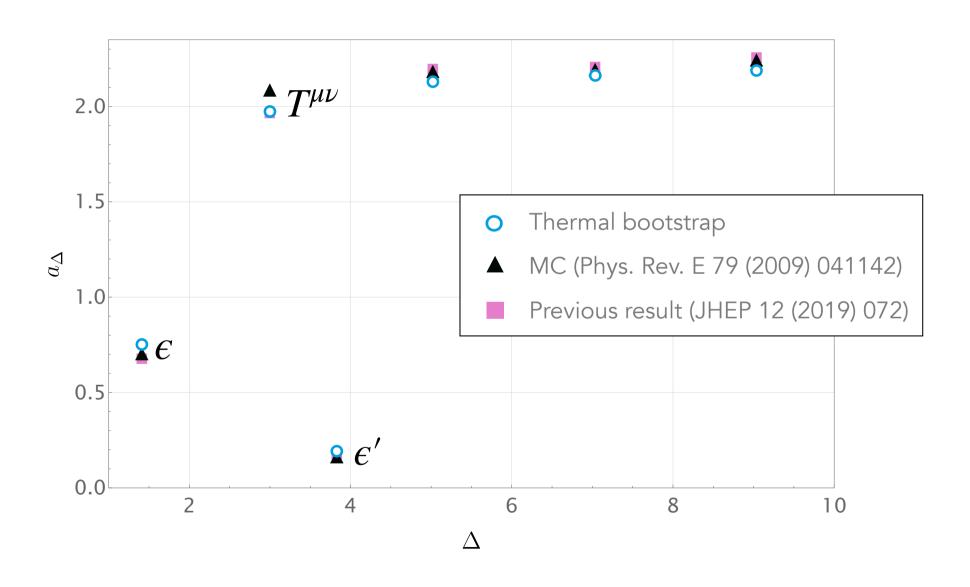


2d Ising $\langle \sigma \sigma \rangle_{\beta}$

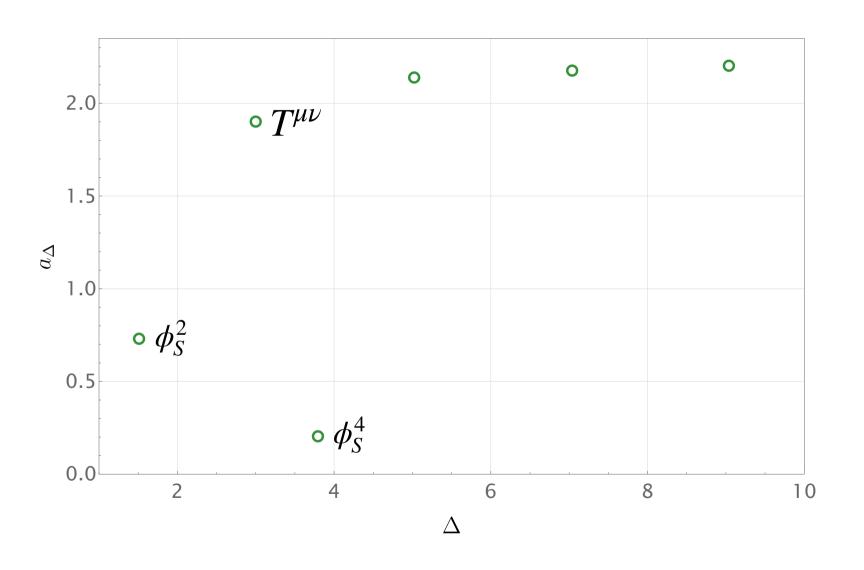




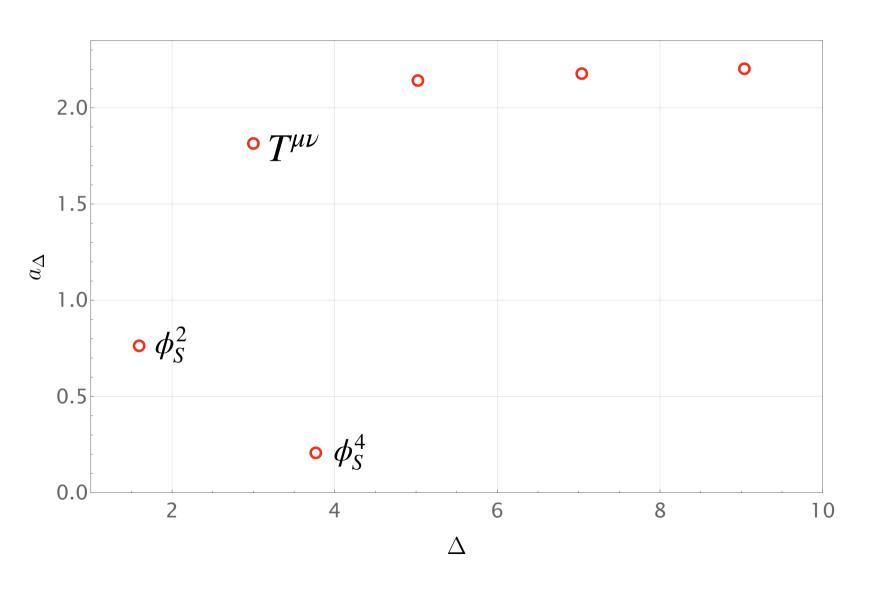
The 3d Ising model



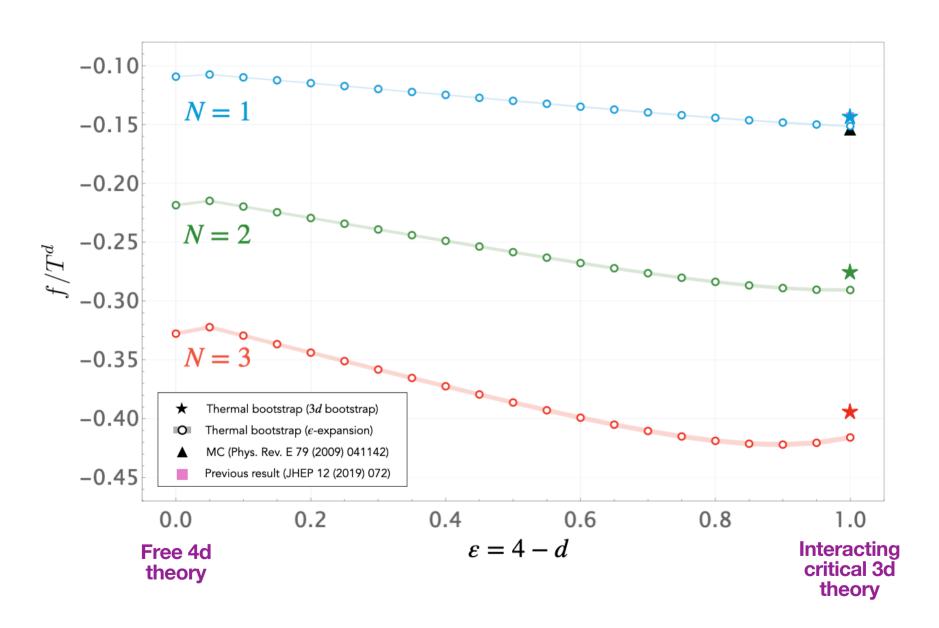
The 3d O(2) XY model



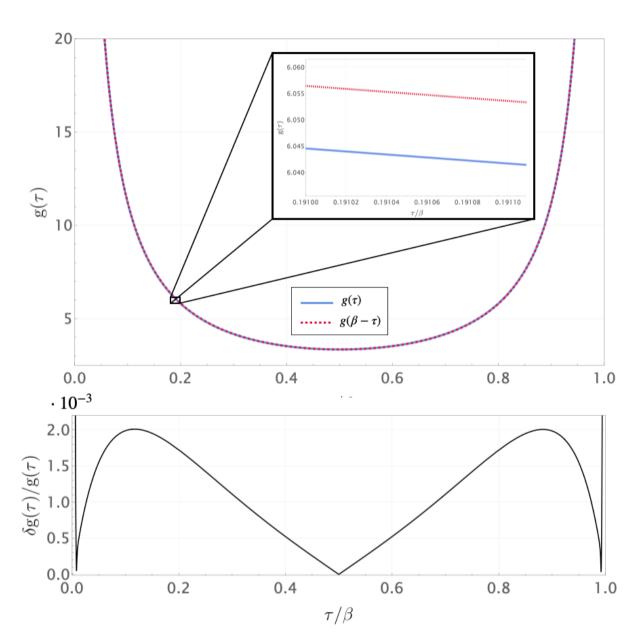
The 3d O(3) Heisenberg model



Free energy across dimensions



Two-point function of 3d Ising



$$g(\tau) = \tau^{-2\Delta_{\phi}} \sum_{\Delta} \frac{a_{\Delta}}{\beta^{\Delta}} \tau^{\Delta}$$

$$\frac{\partial^{\ell}}{\partial \tau^{\ell}} \left[g \left(\frac{\beta}{2} + \tau \right) - g \left(\frac{\beta}{2} - \tau \right) \right]_{\tau=0} = 0$$

The failure of KMS is only of order 10⁻³!

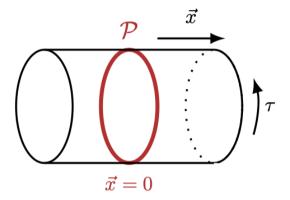
Each plot takes a couple of minutes on a laptop!

Keeping only the first 3 light operators and seven derivatives

Temporal line defects

Polyakov loops

Polyakov loops are temporal Wilson loops wrapping the thermal circle



They were introduced as a criterion for confinement. [Polyakov 1978]

- * In the weak coupling using Feynman diagrams.
- In the strong coupling using holography.

Can we use the thermal bootstrap to compute them?

Temporal line defects

The line defects can be studied using "thermal" 1d defect CFT methods.

OPE from bulk to defect

Zero temperature data

$$\mathcal{O}(\tau, \overrightarrow{x}) = \sum_{\hat{\mathcal{O}}^{i_1...i_s}} \mu_{\mathcal{O}\hat{\mathcal{O}}} |\overrightarrow{x}|^{\hat{\Delta} - \Delta - s} x_{i_1}...x_{i_s} \hat{\mathcal{O}}^{i_1...i_s}(\tau)$$

"Thermal" 1d defect CFT, non-perturbative exact result:

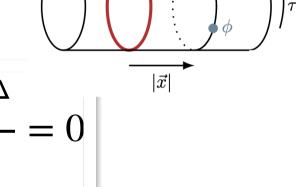
$$\langle \mathcal{O}(\tau, \overrightarrow{x}) \mathcal{P} \rangle_{\beta} = \sum_{\hat{\mathcal{O}}^{i_1 \dots i_s}} b_{\hat{\mathcal{O}}} \mu_{\mathcal{O}\hat{\mathcal{O}}} \frac{|x|^{\hat{\Delta} - \Delta}}{\beta^{\hat{\Delta}}}$$

New finite Temperature vevs of 1d defect CFT

Zero temperature data

$$\langle \phi(\beta/2 - \tau)\phi(0)\mathcal{P}\rangle_{\beta} = \langle \phi(\beta/2 + \tau)\phi(0)\mathcal{P}\rangle_{\beta}$$

The sum rules obtained are of the form:



$$\sum_{\Delta,\widehat{\Delta}} \widehat{b}_{\widehat{\mathcal{O}}} f_{\phi\phi\widehat{\mathcal{O}}} \lambda_{\widehat{\mathcal{O}}\widehat{\mathcal{O}}} \begin{pmatrix} \Delta - 2\Delta_{\phi} \\ n \end{pmatrix} \frac{z^{\widehat{\Delta} - \Delta}}{2^{\Delta}} = 0$$

New finite Temperature vevs of 1d defect CFT

Zero temperature data

Defect thermal sum rules are very similar to their bulk counterparts.

Where we currently are

- * Derived and tested thermal sum rules.
- * Heavy operators: asymptotic thermal OPE density.
- * Proposed an efficient numerical thermal bootstrap.
- * Temporal line defects (Polyakov loops).

Where are we going?

- * Analytical approach using a new, thermal dispersion relation.
- **★** More theories *№*4 SYM, ABJM, ...
- * Numerical approach for Polyakov loops.
- * Study the $S^1 \times S^{d-1}$ geometry.
- * Black holes, hydro and CFT data.

Thank you!