# Non-perturbative de Sitter JT gravity

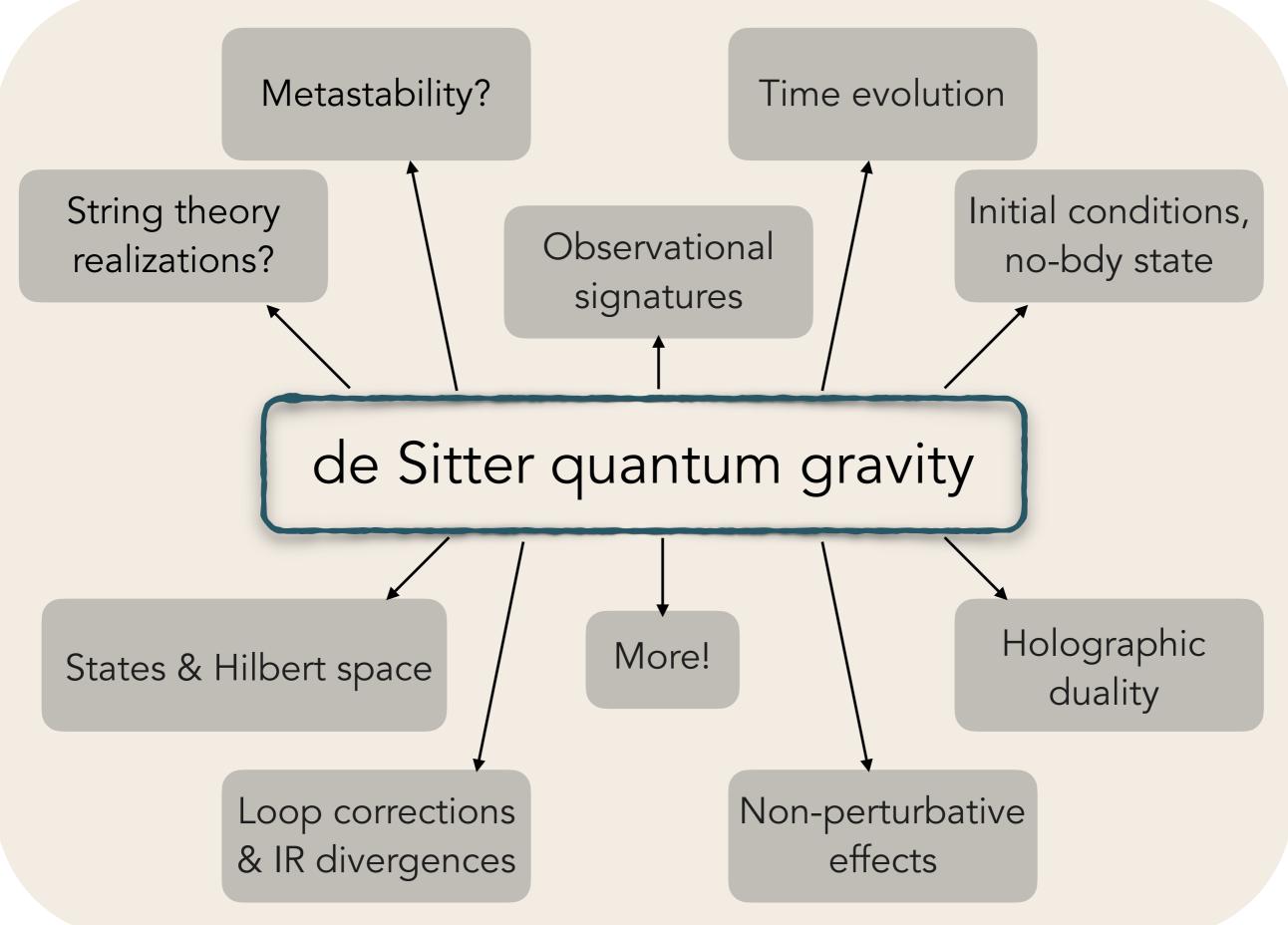
Kristan Jensen (University of Victoria)

based on:

arXiv:2401.01925 [Cotler, KJ]

(see also arXiv:2302.06603, 1911.12358, 1905.03780)

Strings 2025 Abu Dhabi, January 6 2025



## This talk: a 2d toy model, Jackiw-Teitelboim gravity

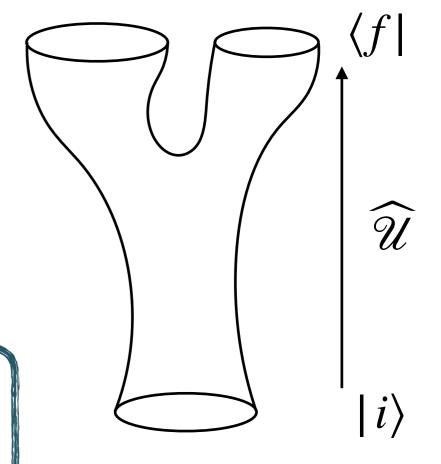
AdS version has been en vogue since ~2016 as a stripped down model of AdS QG.

[Almheiri, Polchinski], [KJ], [Maldacena, Stanford, Yang], [Engelsöy, Mertens, Verlinde], [Fu, Gaiotto, Maldacena, Sachdev], [Saad, Shenker, Stanford], [Stanford, Witten], many more.

Today we are interested in the dS version ( $\Lambda=1$ ). [Maldacena, Turiaci, Yang], [Cotler, KJ, Maloney], more!

Basic objective is to study transition amplitudes.

$$S_{\rm JT} = \frac{S_0}{4\pi} \int d^2x \sqrt{-g} \, R + \int d^2x \sqrt{-g} \, \varphi \left( R - 2\Lambda \right) + (\text{bdy})$$



$$g_s = e^{-S_0} \ll 1$$

# Summary of major results:

- 1. Make sense of the gravitational path integral over R=2 metrics.
- 2. States and inner products.
- 3. A topological expansion for transition amplitudes. "S-matrix."
- 4. Aspects of the no-boundary state, horizon entropy.
- 5. Quantum mechanical interpretation.
- 6. "Holographic dual."

[Cotler, KJ] '24

building on [Maldacena, Turiaci, Yang] '19, [Cotler, KJ, Maloney] '19 [Cotler, KJ] '19, '23

(cf also Trivedi's talk)

# The plan:

- 1. Setting up
- 2. Results
- 3. Prospects

#### Asymptotic states:

$$S_{\rm JT} = \frac{S_0}{4\pi} \int d^2x \sqrt{-g} \, R + \int d^2x \sqrt{-g} \, \varphi \left(R - 2\right) + (\text{bdy})$$

dS JT has boundary conditions analogous to nearly AdS bc.\*

After a suitable coordinate transformation the metric/dilaton can be put into the form:  $\langle \Phi_+ |$ 

$$t \to \pm \infty : \begin{cases} ds^2 = -dt^2 + (e^{\pm 2t} + O(1))d\theta^2, \\ \varphi = \pm \frac{\Phi_{\pm}}{2\pi}e^{\pm t} + O(1). \end{cases}$$

Future/past circles are labeled by  $\Phi_{\pm}$  (with  $i\epsilon$  prescription).

Path integral with these bc prepares asymptotic states.

$$|\Phi_{-}\rangle$$

\*More general bc are specified by 
$$\varphi = \pm \frac{\Phi_{\pm}(\theta)}{2\pi} e^{\pm t} + O(1)$$
.

In this talk I focus on states where  $\Phi(\theta)$  has no roots. Recently [Alonso-Monsalve, Harlow, Jefferson] and [Held, Maxfield] have observed that the case with roots is acceptable and physically interesting.

## Setting up the gravitational path integral (GPI):

$$S_{\rm JT} = \frac{S_0}{4\pi} \int d^2x \sqrt{-g} \, R + \int d^2x \sqrt{-g} \, \varphi(R-2) + (bdy)$$

dS JT gravity is a theory of R=2 metrics.

Problem: What do we sum over?



More generally we must consider a complex time contour.

On a general surface  $\Sigma_{g,n}$  we have hyperbolic metrics in (-,-) signature, i.e.  $ds^2 = -ds_{\text{locally }\mathbb{H}^2}^2$ . Akin to [Maldacena, '03].

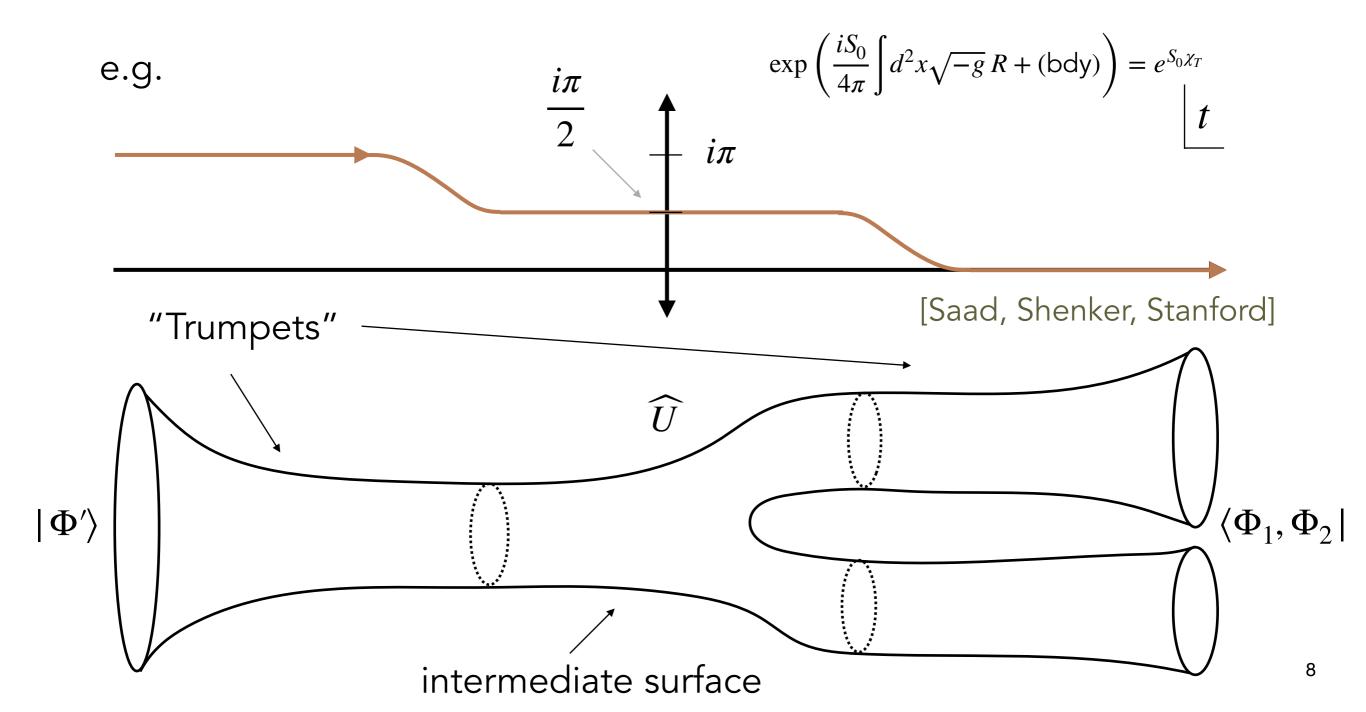
Integration domain is symplectic with  $\Omega_{\mathrm{WP}}$ . We use measure  $\mathrm{Pf}(-\Omega_{\mathrm{WP}})$ .\*

 $\langle \Phi_{+} |$ 

<sup>\*</sup>This follows from using (-,-) metric to form inner product of fluctuations.

## Mapping boundary conditions:

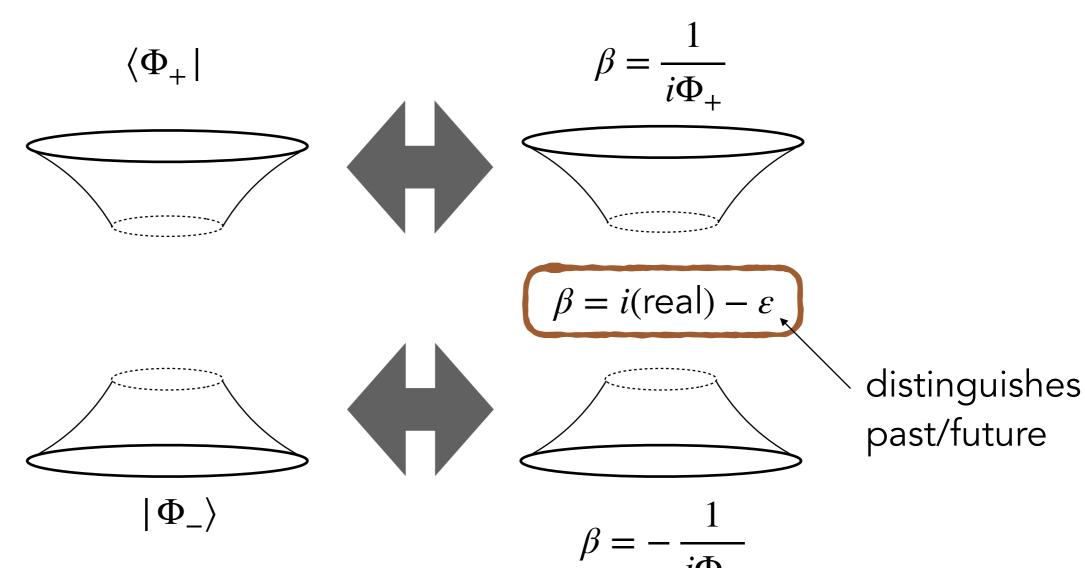
More precisely we consider complex time contours that connect asymptotically Lorentzian regions through an intermediate (-,-) surface.



## Mapping boundary conditions:

In JT gravity we can push the contour so as to always have (-,-) signature.

Nearly dS bc are mapped to nearly (Euclidean) AdS bc:

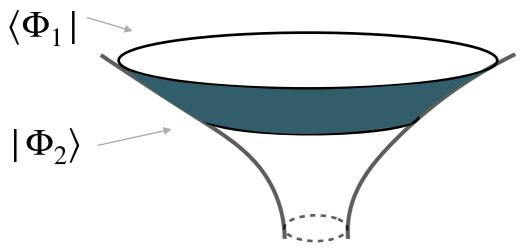


### Inner product:

With the definitions in place we can compute transition amplitudes between unnormalized versions of  $|\Phi\rangle$ .

We define a GPI that computes an inner product of asymptotic states in order to obtain the *normalized* version of transition amplitudes.

Basic idea in [Cotler, KJ] '19.



$$\lim_{t \to 0} e^{-i\hat{H}t} = 1$$

Extends to multi-bdy states, where *n*-universe states form a Fock space isomorphic to that of identical bosons.

No genus corrections.

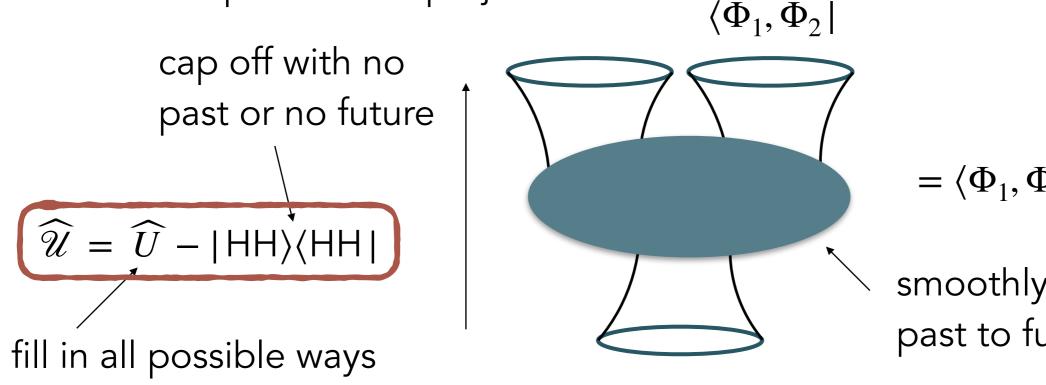
 $\langle \Phi_1 \, | \, \Phi_2 \rangle = \sqrt{\Phi_1 \Phi_2} \, \delta(\Phi_1 - \Phi_2)$  Sign depends on measure! Non-trivial.

### <u>Transition amplitudes</u>:

Extract normalized amplitudes by rescaling  $|\Phi\rangle \to \frac{|\Phi\rangle}{\sqrt{i\Phi}}$ .

Also dS JT version of no-boundary state  $|\emptyset\rangle$  prepared by capped-off geometry. GPI with no past asymptotic region computes its wavefunction.

However, both  $|\emptyset\rangle$  and its evolution to the far future, Hartle-Hawking,  $|HH\rangle$ , are non-normalizable in dS JT, and so in studying infinite-time transition amplitudes we project it out.



 $= \langle \Phi_1, \Phi_2 | \widehat{\mathcal{U}} | \Phi' \rangle$ 

smoothly connects past to future

## Takeaways:

- 1. Integrate over metrics with a complex time contour. Path integral measure for dS JT different than for AdS JT.
- 2. GPI defines an inner product of asymptotic states as well as infinite-time evolution  $\widehat{\mathcal{U}}$ .
- 3.  $i\epsilon$  prescription distinguishes kets/bras.
- 4. In dS JT, no-boundary state is non-normalizable ( $\langle \emptyset | \emptyset \rangle \approx Z_{\mathbb{S}^2} \to \infty$ ) Consequently divergent horizon entropy.

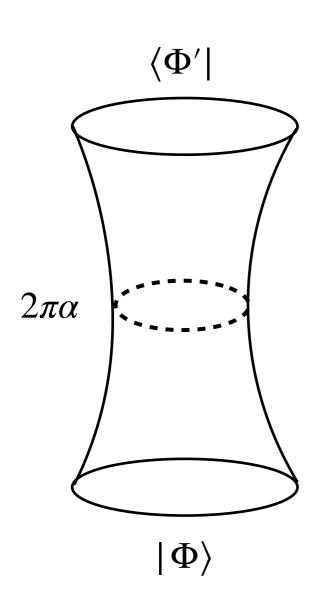
(Unlike other minimal strings [Anninos, Bautista, Muehlmann], [Mahajan, Stanford, Yan] and higher-dim Einstein gravity at one-loop. [Anninos, et al].)

# The plan:

- 1. Setting up
- 2. Results
- 3. Prospects

### Cylinder:

Begin with the cylinder (global  $dS_2$ ). We can compute it directly in Lorentzian signature, or as a sum over (-,-) double trumpets.



$$ds^2 = -dt^2 + \alpha^2 \cosh^2(t)d\theta^2$$

Moduli  $(\alpha, \tau)$ , bdy Schwarzian modes.

Moduli space integral converges with our  $i\varepsilon$  prescription.

Normalized result:  $\langle \Phi' | \widehat{\mathcal{U}} | \Phi \rangle \approx \frac{i}{2\pi} \frac{1}{\Phi' - \Phi}$ 

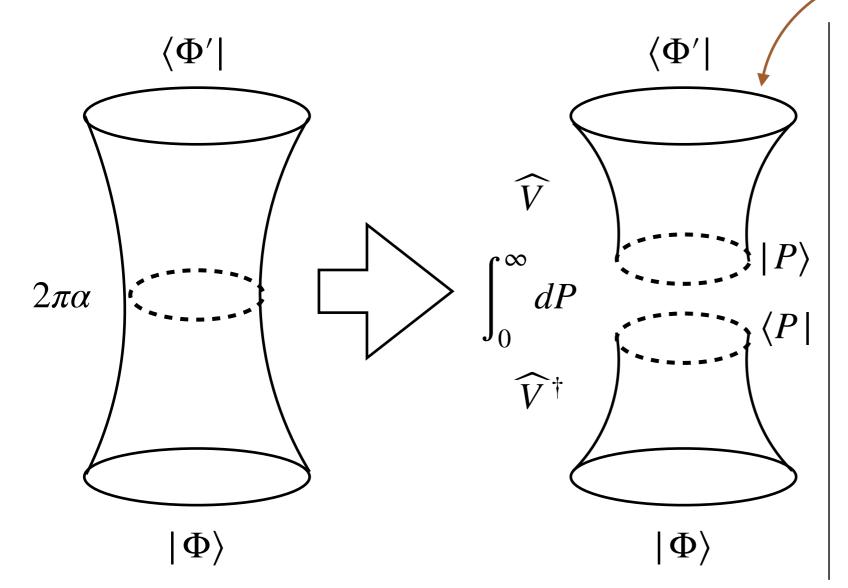


Global dS<sub>2</sub> saddle when  $\Phi = \Phi'$ 

#### **Cutting**:

One more Lorentzian definition that is useful to dissect amplitudes.

We can cut the cylinder amplitude in half to obtain bulk states  $|P = \alpha^2\rangle$ , with P > 0:



[Cotler, KJ] '23

dS JT "trumpet"

Sign depends on Pf( $-\Omega_{WP}$ )!

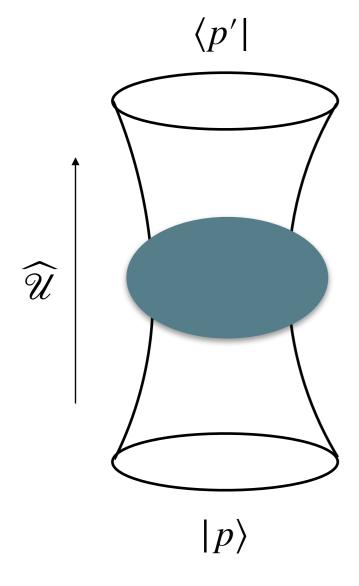
$$\langle P | P' \rangle = \stackrel{\downarrow}{\delta} (P - P') + O(e^{-2S_0})$$

$$\langle \Phi \mid \widehat{V} \mid P \rangle = \frac{1}{\sqrt{2\pi}} e^{i\Phi P}$$

$$\langle P | \emptyset \rangle = e^{S_0} \delta'(P-1) + O(e^{-S_0})$$

### Leading order unitarity:

Useful: go to canonical conjugate variable:  $[\hat{\Phi}, \hat{p}] = i$ .



Then to leading order in topological expansion and between states with any number of circles,

$$\widehat{\mathcal{U}} = \Theta(\hat{p}) + O(e^{-S_0})$$

Evolution is approximately unitary for p > 0 states.

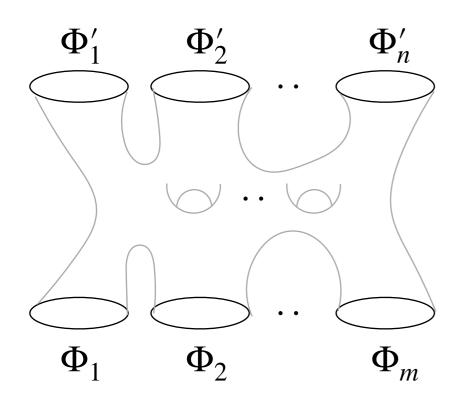
p < 0 states prepare crunching spacetimes. Projected out under evolution thanks to sum over non-singular metrics.

## <u>Transition amplitudes</u>:

On a general surface of genus g with n future circles, m past circles:

Analytically continued WP volumes

$$\frac{(-1)^{3-3g-n-m}}{\sqrt{n!m!}} \int_{0}^{\infty} dP'_{1} \dots dP'_{n} dP_{1} \dots dP_{m} V_{g,n+m} (2\pi i \sqrt{P'_{1}}, \dots, 2\pi i \sqrt{P'_{n}}, 2\pi i \sqrt{P_{1}}, \dots, 2\pi i \sqrt{P_{m}})$$



$$\times \widetilde{Z}_{T}(\Phi'_{1}, P'_{1}) \dots \widetilde{Z}_{T}(\Phi'_{n}, P'_{n}) \widetilde{Z}_{T}^{*}(\Phi_{1}, P_{1}) \dots \widetilde{Z}_{T}^{*}(\Phi_{m}, P_{m})$$

"dS trumpet"

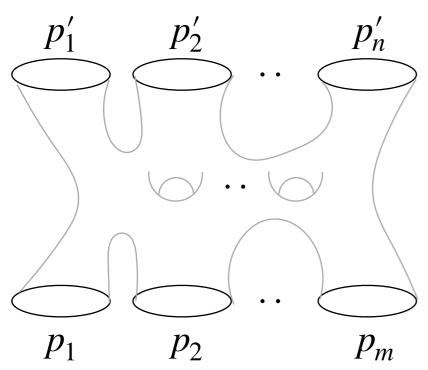
$$\widetilde{Z}_{T}(\Phi, P) = \langle \Phi \mid \widehat{V} \mid P \rangle = \frac{1}{\sqrt{2\pi}} e^{i\Phi P}$$

### <u>Transition amplitudes</u>:

In the conjugate  $\hat{p}$  basis things are even simpler:

$$\langle p'_1, \dots, p'_n | \widehat{\mathcal{U}} | p_1, \dots, p_m \rangle_{g, \text{conn}} = \frac{(-1)^{3-3g-n-m}}{\sqrt{n!m!}} \Theta(p'_i, p_j)$$

$$\times V_{g,n+m}(2\pi i \sqrt{p'_1}, \dots, 2\pi i \sqrt{p'_n}, 2\pi i \sqrt{p_1}, \dots, 2\pi i \sqrt{p_m})$$



#### **Decomposition:**

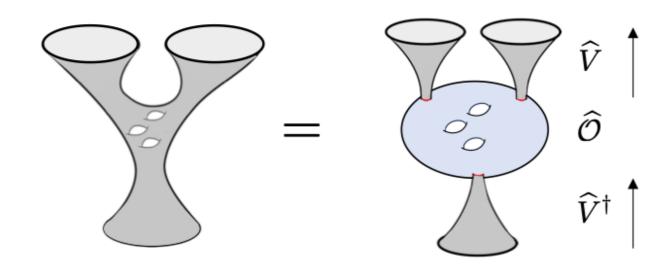
This allows us to decompose these amplitudes in an interesting way!

$$\widehat{\mathcal{U}} = \widehat{V} \widehat{O} \widehat{V}^{\dagger}$$

 $\widehat{V}$ : dS trumpet, no genus corrections.

 $\widehat{O}$ : Bulk inner product, receives genus corrections, described by continued WP volumes.

$$\widehat{O} = \Theta(\widehat{P}) + O(e^{-S_0})$$



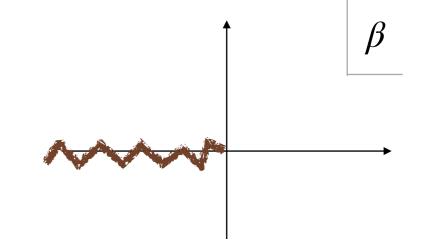
## Holographic dual?:

I have described a direct computation of dS JT amplitudes as a sum over (-,-) metrics.

Ex post facto, the de Sitter amplitudes are suitable continuations of (Euclidean) AdS JT amplitudes, in both the string coupling and  $\beta$ 's.

To go from AdS amplitudes to dS ones,

1. 
$$S_0 \to S_0 + \frac{3i\pi}{2}$$
, i.e.  $e^{-S_0} \to ie^{-S_0}$ ,



- 2. Continue from  $Re(\beta) > 0$  to  $Re(\beta) < 0$  by going CCW around 0.
- (1) Turns the genus expansion into an alternating series.
- (2) Means that, after inverse Laplace transform, amplitudes are supported along E < 0.

## Holographic dual?:

After a suitable integral transform (analogous to the AdS one) the dS JT amplitudes obey topological recursion, with a spectral curve and an effectively negative number of dof:

$$\tilde{y}(\tilde{z}) = -\frac{1}{\sqrt{2}}\sinh(2\tilde{z}), \qquad \tilde{z}^2 = E \qquad \qquad N_{\text{eff}} = -e^{2S_0}$$

This is an analytic continuation of the AdS JT spectral curve.

If this is itself a formal matrix integral\*, then it has a leading, oscillatory density of states:

$$\tilde{\rho}_0(E) = \frac{1}{\sqrt{2}\pi} \sin(2\sqrt{-E})\Theta(-E)$$

 $\tilde{\rho}_0(E) = \frac{1}{\sqrt{2\pi}} \sin(2\sqrt{-E})\Theta(-E)$  \*"Formal matrix integral" is a standby for the formal power series (with poly V): the formal power series (with poly V):

This may yet come from a formal matrix integral with a complex potential.

$$\sum_{n=0}^{\infty} \frac{1}{n!} \int dH e^{-V_{\text{gaussian}}(H)} (-V_{\text{non-gaussian}}(H))^n$$

# The plan:

- 1. Basic features
- 2. Some physics
- 3. Prospects

## Holographic duality?

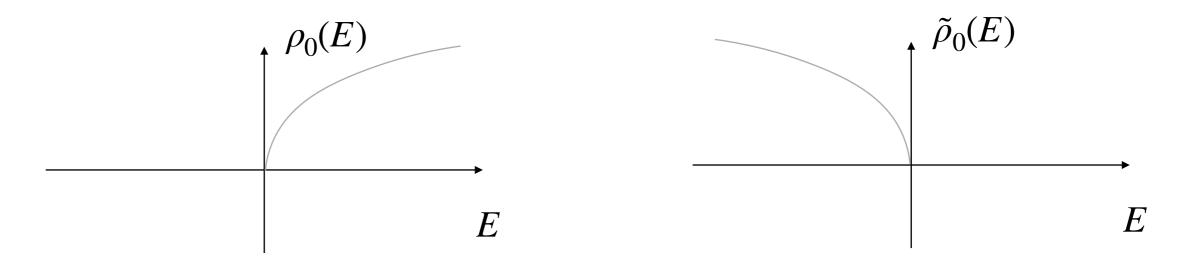
We can obtain dS JT amplitudes from a continuation of AdS JT.

<u>O</u>: Does dS JT admit a bona fide matrix integral completion?

Easier: Consider topological gravity (i.e. the Airy model) under the same continuation.

Under  $e^{-S_0} \rightarrow ie^{-S_0}$  the Airy model is sent to another double-scaled matrix integral, namely itself but with  $E \rightarrow -E$ .

Resonant with  $Re(\beta) < 0$ . What about in dS JT?!



## Relation to complex Liouville string?

Recently [Collier, et al] have studied a variant of the minimal string with two copies of Liouville at  $c=13\pm i\nu$ . "Complex Liouville string."

They provide a 2d dilaton gravity target space interpretation with Euclidean AdS and dS (really Euclidean AdS in (-,-)) saddles.

$$S_{\text{dil}}[\Phi, g] = \frac{i}{2b^2} \int_{\Sigma_{g,n}} d^2x \sqrt{g} \left( \Phi \mathcal{R} - \pi^{-1} \sin(2\pi\Phi) \right) ,$$

Propose a two-matrix model dual, although also oscillatory  $\langle \rho \rangle$ .

<u>O</u>: Are these two constructions related? If so, how?

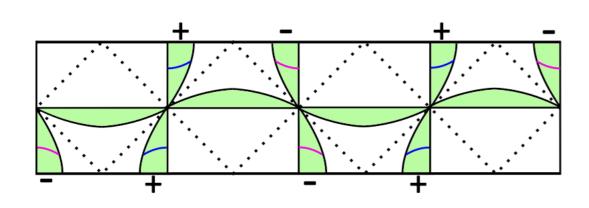
## Other asymptotic states?

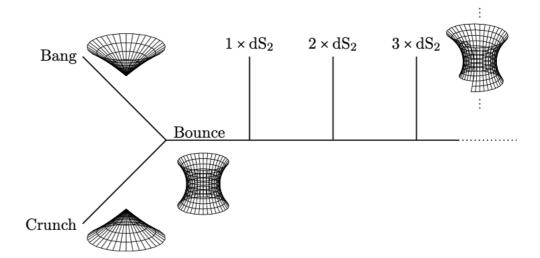
In this talk I focused on states prepared by bc where the asymptotic dilaton has no roots. Recently [Alonso-Monsalve, Harlow, Jefferson] and [Held, Maxfield] have found classical saddles where the asy dilaton has roots.

The resulting states appear to decouple from those with no roots. [WIP]

<u>Q</u>: What is the physics of these states? Dual description?

<u>O</u>: Amplitudes between these states?



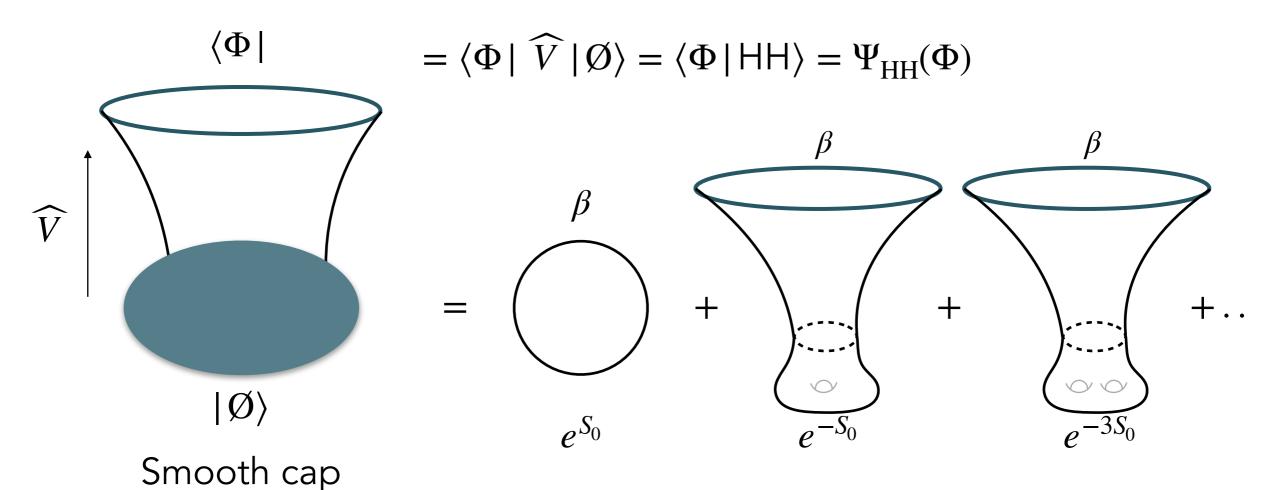


Thank you!

#### No-boundary state:

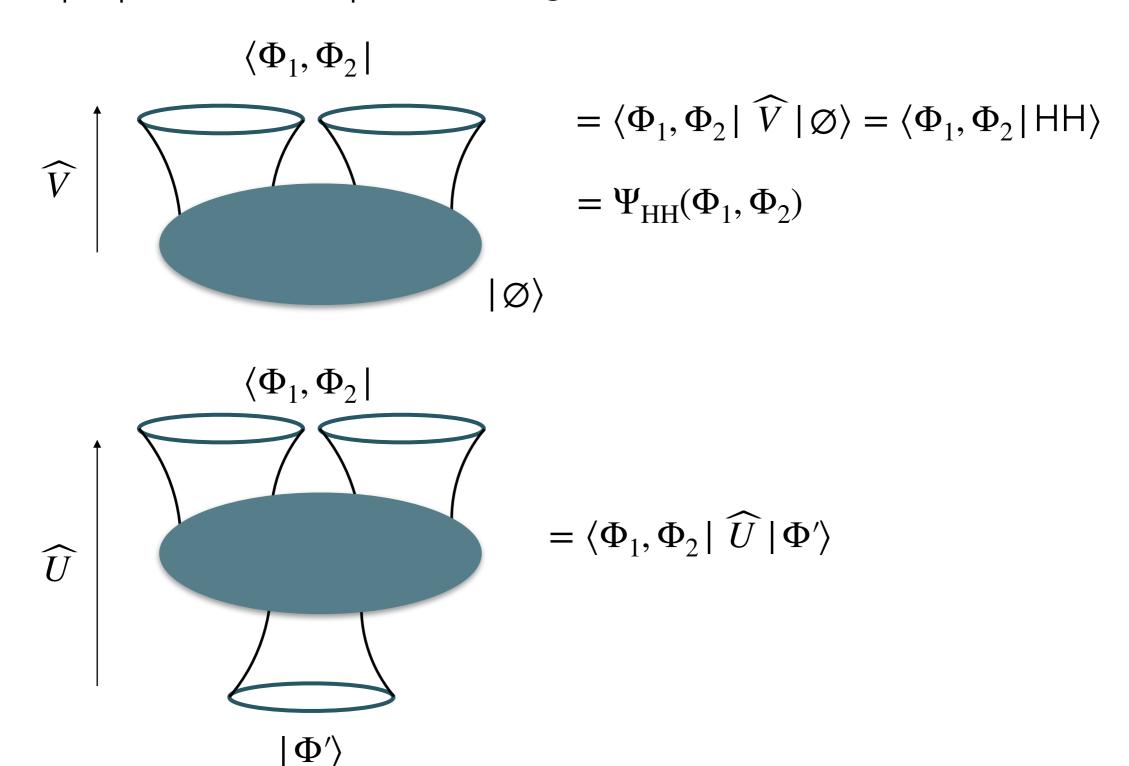
Besides asymptotic states corresponding to asymptotically dS regions, we have the dS JT version of the no-boundary state  $|\emptyset\rangle$ .

We interpret GPI with only future asymptotic regions as computing the wavefunction of this state in the basis of asymptotic states. (Only past computes the conjugate wavefunction.)



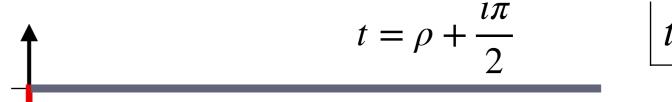
## Amplitudes:

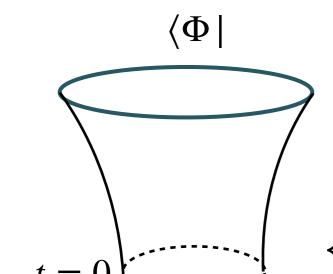
We propose the interpretation e.g.



### Non-normalizability of the no-boundary state:

#### Disk/HH:





$$\frac{i\pi}{2}$$

$$\begin{cases} ds^2 = -dt^2 + \cosh^2(t)d\theta^2, \\ \varphi = \frac{\Phi}{2\pi}\sinh(t). \end{cases} \Rightarrow \begin{cases} ds^2 = -(d\rho^2 + \sinh^2(\rho)d\theta^2), \\ \varphi = -\frac{i\Phi}{2\pi}\cosh(\rho). \end{cases}$$

[Maldacena, Turiaci, Yang], [Cotler, KJ, Maloney] '19

After normalizing  $\langle \Phi |$ , we get:  $\Psi_{\rm HH}(\Phi) \approx \frac{-i\Phi}{\sqrt{2\pi}} e^{S_0 + i\Phi} \left(1 + O(e^{-2S_0})\right)$ 

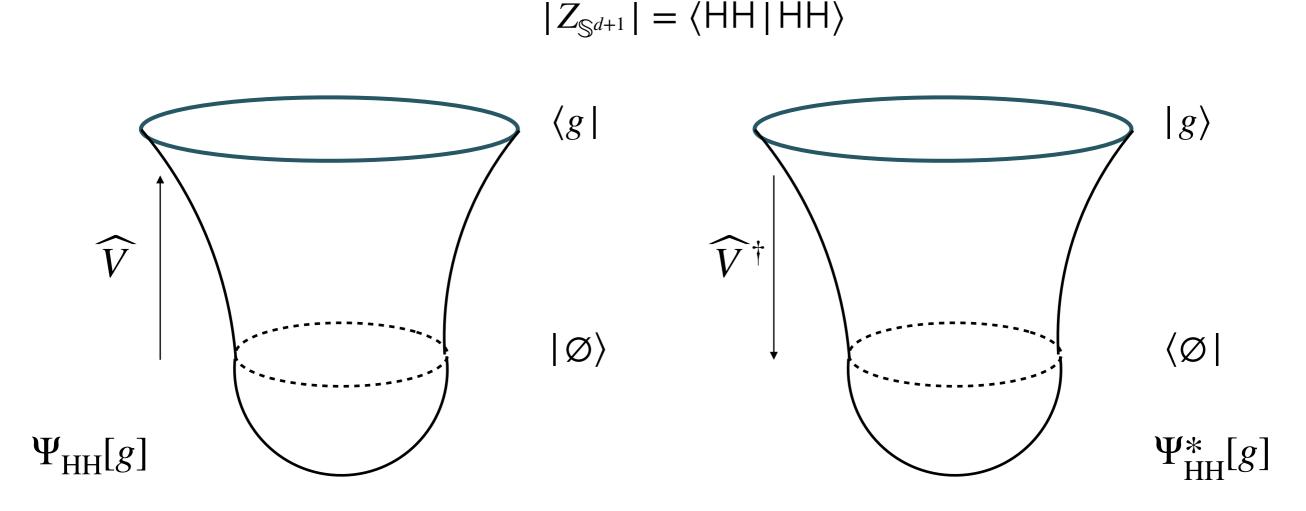
No moduli, bdy Schwarzian mode

 $(\langle HH|HH\rangle \approx Z_{\mathbb{S}^2})$ 

HH is nonnormalizable!  $\langle \text{HH} | \text{HH} \rangle \approx \int_{-\infty}^{\infty} d\Phi |\Psi_{\text{HH}}(\Phi)|^2 = \infty$ 

## Another prospect: $|Z_{\mathbb{S}^{d+1}}| \approx_? \langle HH|HH \rangle$

There is an expectation in higher-dim gravity that, at least semiclassically, and at the level of one-universe states,



Q: Is it? dS<sub>3</sub>: [WIP, Cotler, KJ]

dS<sub>4</sub>: [WIP, Cotler, Harvey, KJ]

## Holographic dual?:

The more conservative statement is that the genus expansion of dS JT is a suitable continuation of the AdS JT "formal matrix integral."

Even so, this is the most complete realization of dS holography to date.

In a slogan, bulk QM emerges from (a continuation) of dH.

Because we do not know if dS JT comes from a bona fide matrix integral the status of doubly non-perturbative effects is unclear.