Geometric Transitions in N=1 Theories

Lara B. Anderson – Virginia Tech

Based on work with James Gray and Callum Brodie arXiv:2211.05804

And with James Gray, Sunit Patil, and Caoimhin Scanlon, 25xx.xxxx

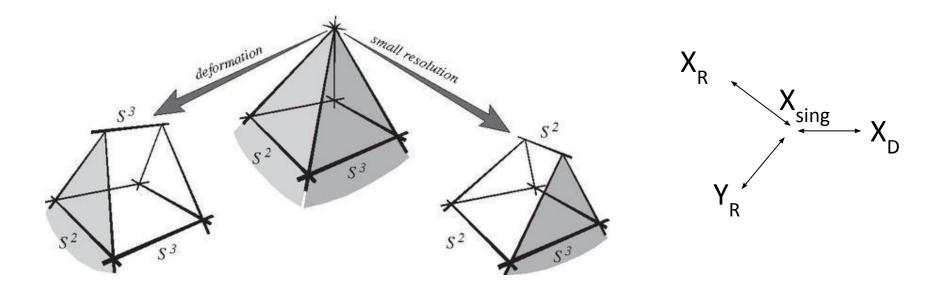
and James Gray and Xingyang Yu, 25xx.xxxxx

Motivating Questions

- 4D N=1 theories arising from string compactifications come from many topologically distinct geometries
- In string compactifications:
 - which field theories <-> which geometries?
- Are these bounded? How do we classify what geometry (pieces/combinations of manifolds, branes, bundles, fluxes, etc) "matters" to the 4D EFT?
- Is it possibly to dynamically change topology?
- Can we understand geometric transitions in the N=1 context?

Geometric Transitions

Topology changing transitions in CY 3-folds: Conifolds and Flops

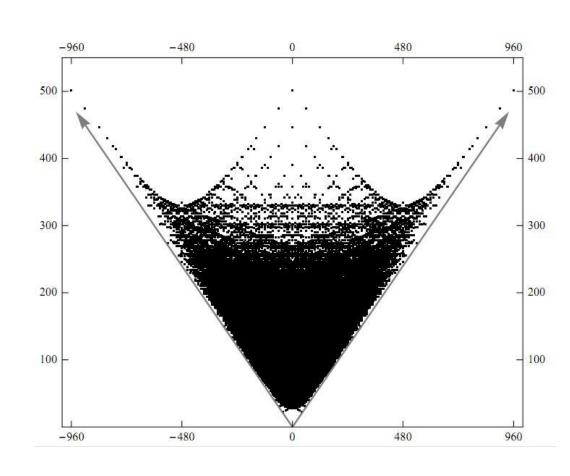


- At the level of CY geometry, these transitions are well understood.
- They are also well understood field-theoretically in some contexts (i.e. Type IIA/B, N=2 4D) (Strominger, Greene+Morrison, etc)

Geometric Transitions

- Connect (most)
 known CY manifolds
- All CY manifolds? (Reid)
- All SU(3) Structure manifolds??
- Key for attempts at bounding all CY or SU(3) structure manifolds
- More generally: Topology changing transitions touch a

wide amount of amostices

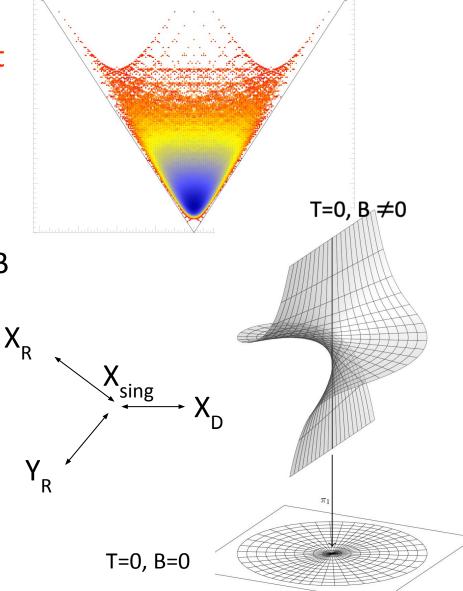


Geometric Transitions

String Duality <-> Geometric "Redundancy"

 We know in many contexts that more than one geometry can lead to the same EFT in string theory

- E.g. N=2 Theories
- Mirror Symmetry (Here Type IIB
 <-> IIA)
- Type IIB Flops (B-field allows for field space to stay smooth, despite the CY singularity)
- E.g.s of dualities, branch changes...



Key questions for this talk

- Are there phenomena like mirror symmetry or "smooth" geometric transitions (i.e. flops) in the context of N=1 compactifications?
- Can we fully characterize what "geometry" matters for the N=1 compactifications (i.e. manifolds+bundles, branes, fluxes)?
 Redundancy?
- Can we understand/characterize/bound topology changing transitions in the N=1 context?
- Difficulties:
- 1. Notions of "moduli space" (For N=1: non-trivial superpotentials, etc).
- 2. Intrinsically coupled problem between manifolds and other background geometry (bundles, branes, etc)

- Conifolds in the N=1 context?
- In heterotic string theory cannot ignore the gauge fields/bundle. The theory has a Bianchi Identity:

$$dH = -\alpha' \operatorname{tr} F \wedge F + \alpha' \operatorname{tr} R \wedge R$$

Three-form

Negative sources from gauge and positive sources from gravitational sectors

Chern class condition:

$$[\operatorname{tr} R \wedge R] = [\operatorname{tr} F \wedge F] \Rightarrow c_2(\Omega_X) = c_2(V)$$

With 5 brance:
$$c_2(\Omega_X) = c_2(V) + [C]$$

With 5-branes:

This means that we cannot set the gauge fields to zero.

Need to understand the change in the bundle during a geometric transition in addition to the CY geometry itself. This has been a stumbling block for decades.

Motivation:

Try and understand what happens to the gauge fields in heterotic string theory during a certain type of geometric transition (a conifold). See also Collins, Gukov, Picard, Yau math.DG/2102.11170 and Candelas, de la Ossa, He, Szendroi hep-th/0706.3134

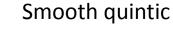
Where to start?...

Examples observed of N=1 "redundancy" (not descended from N=2)

- Known examples of heterotic compactifications with distinct geometry (i.e. pairs $(X, \pi: X \to V)$) that lead to the same massless spectrum
- E.g. (0,2) GLSM realizations (0,2) Target Space Duality (Distler/Kachru, Blumenhagen). (0,2) GLSMs that share a non-geometric (LG or hybrid) phase

Calabi-Yau Defining Relations Monad Maps

 Observation: base CY manifolds (X, X') in these examples generically related by conifold transitions.

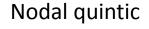


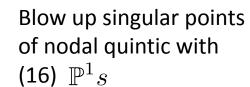
$$X_D = \left[\begin{array}{c|c} \mathbb{P}^4 & 5 \end{array} \right]$$

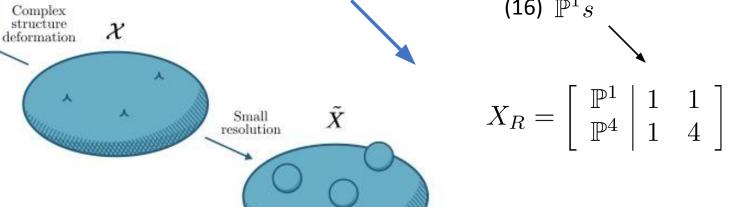
Deform complex structure

X

$$X_0: l_1q_2 - l_2q_1 = 0$$







These manifolds come equipped with bundles:

Deformation side bundle:

$$0 \to \mathcal{O}(-5) \to \mathcal{O}(-1)^{\oplus 5} \to V_D \to 0$$

Resolution side bundle:

$$\begin{array}{cccc} \mathcal{O}(-1,-5) & \mathcal{O}(-1,0) \oplus \mathcal{O}(0,-5) \\ 0 \to & \oplus & \to & \oplus & \to V_R \to 0 \\ \mathcal{O}(0,-4) & \mathcal{O}(0,-1)^{\oplus 4} \end{array}$$

What happens to the degrees of freedom of the theory? E.g. Singlets:

Deformation side:

Kahler moduli:

Complex Structure:

Bundle Moduli:

$$h^{1,1} = 1$$

$$h^{2,1} = 101$$

$$h^1(\operatorname{End}_0(V)) = 324$$

Total = 426

Resolution side:

Kahler moduli:

Complex Structure:

Bundle Moduli:

$$h^{1,1} = 2$$

$$h^{2,1} = 86$$

$$h^1(\operatorname{End}_0(V)) = 338$$

Total = 426

(SO(10) Gauge symmetry and charged matter also agrees)

Heterotic Conifold Transitions

- With Gray + Brodie, we pulled apart the geometry of examples like these and developed more general rules for how a bundle must adjust across a conifold to maintain a consistent heterotic theory.
- Contains (0,2) TSD, but more general.
- Can be applied to other classes of N=1 compactifications (i.e. Type I, Type IIB orientifolds, F-theory, etc).
- Will give a heterotic overview and then talk about the more general effect.

How do the tangent bundles change?

Topology change:

$$ch_2(X_R) = ch_2(X_D) + [\mathbb{P}^1]$$

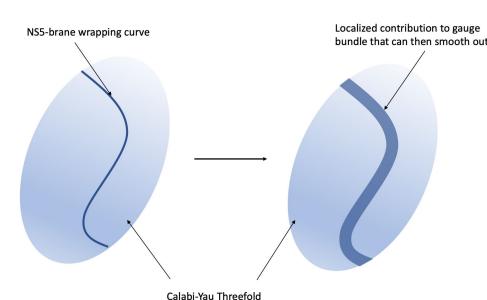
 $h^{1,1}(X_R) = h^{1,1}(X_D) + 1$
 $h^{2,1}(X_R) = h^{2,1}(X_D) - \Delta$

As bundles on the resolution manifold

$$0 \to f^*\Omega_{X_0} \to \Omega_{X_R} \to \mathcal{O}_{\mathbb{P}^1s}(-2) \to 0$$

Small contraction: $f: X_R \to X_0$

 This looks familiar: Small Instanton Transition (Hecke Transform)



Including a gauge bundle in the transition

 Recall the anomaly cancelation condition in heterotic string-theory:

$$c_2(\Omega_{X_R}) = c_2(V_R)$$

How does this change during the transition?

$$c_2(\Omega_{X_R}) + \left[\mathbb{P}^1 s\right] = c_2(V_R) + \left[\mathbb{P}^1 s\right]$$

This is how the gravitational sector changes given the transition we have seen in the cotangent bundle.

The gauge sector must change in the same way.

The full structure of the transition

- On the next slide is the map of the transition, presented at the level of classes for clarity.
- All of the sequences of sheaves required for this process to occur exist and can be written down explicitly.

• In what follows V_s is a "spectator bundle" which goes through the transition in a trivial manner.

$$c_2(\Omega_{X_R}) = c_2(V_R)$$

"Pair create" curve supported sheaves "Pair create" curve supported sheaves

$$c_2(\Omega_{X_R}) + \left[\mathbb{P}^1 s\right] = c_2(V_R) + \left[\mathbb{P}^1 s\right]$$

SIT in cotangent bundle SIT in gauge bundle

$$c_2(f^*\Omega_{X_0}) = c_2(V_s) + [\mathcal{C}_R] + [\mathbb{P}^1 s]$$

"Brane" recombination

$$c_2(f^*\Omega_{X_0}) = c_2(V_s) + [\mathcal{C}_D]$$

SIT in gauge bundle

$$c_2(f^*\Omega_{X_0}) = c_2(V_D)$$

$$c_2(\Omega_{X_R}) = c_2(V_R)$$

"Pair create" curve supported sheaves "Pair create" curve supported sheaves

$$c_2(\Omega_{X_R}) + \left[\mathbb{P}^1 s\right] = c_2(V_R) + \left[\mathbb{P}^1 s\right]$$

SIT in cotangent bundle SIT in gauge bundle

$$c_2(f^*\Omega_{X_0}) = c_2(V_s) + [\mathcal{C}_R] + [\mathbb{P}^1 s]$$

"Brane" recombination

$$c_2(f^*\Omega_{X_0}) = c_2(V_s) + [\mathcal{C}_D]/$$

SIT in gauge bundle

$$c_2(f^*\Omega_{X_0}) = c_2(V_D)$$

Bridging Branes

- The spectra matching we find in the heterotic case is based on the properties of special (spacetime filling) NS 5-branes (C_D, C_R) that are linked to the conifold pair. We call these Bridging Branes.
- Geometric property: Curves in X_R which do not collapse in conifold, but intersect collapsing cycles at a point.
- Moduli of pure 5-brane theory: $h^{1,1}(X) + h^{1,1}(X) + h^0(C, N_C)$

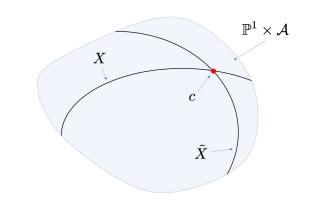
For Bridging Curves:

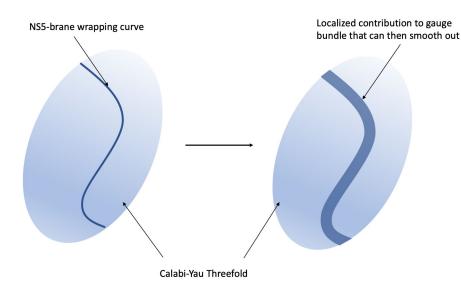
 $h^0(C, N_C)$ adjusts across the conifold to exactly compensate for the change in hodge numbers! Every CY conifold determines a pair (C_D, C_R)

5-brane duality

$$\left[egin{array}{c|c} \mathcal{A} & \mathbf{v}_0 + \mathbf{v}_1 & \mathbf{R} \end{array} \right] \longleftrightarrow \left[egin{array}{c|c} \mathbb{P}^1 & 1 & 1 & 0 \\ \mathcal{A} & \mathbf{v}_0 & \mathbf{v}_1 & \mathbf{R} \end{array} \right]$$

- Pure 5-brane heterotic theories identical
- For CICY 3-folds bridging curves for 5-brane correspond to the intersection of the two CY 3-folds in an ambient space.
- General heterotic conifold duality induced from this phenomenon by small instanton transitions





Questions:

- We observe correlated geometry and matching massless spectra.
- Is this a true duality? Or distinct theories with intersecting vacuum spaces?
- Can we use the geometry of these bridging branes in other string compactifications?

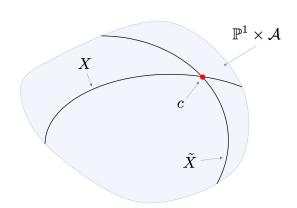
A moduli map for bridging branes

- ◆We'll explore now the pure NS 5-brane heterotic theories and attempt to determine a mapping of fields.
- Recall mirror symmetry (map: Comp. Struc. ← Kahler). What happens here with manifold + branes?
- This can be generalized to bundles directly via SIT (won't go through this)
- This is hard to do directly since some parts of the EFT unknown (e.g. matter field Kahler potential):
- Two primary tools:
 - Full geometries (manifold+brane) must "meet in the middle" at the conifold locus
 - Geometric d.o.f. live in intricate equivalence classes. Must map physical to physical d.o.f.

The rough idea

Example Brane/manifold system of eqns:

Deformation:



$$G_{1,3}^{(D)} = G_{0,5}^{(D)} = 0$$
 (manifold) $P_{1,4}^{(D)} = P_{1,4}^{(D)} = 0$ (brane)

$$h^{1,1} + h^{2,1} + h^0(\mathcal{N}_{C_D}) = 1 + 101 + 38 = 140$$

Resolution:

$$G_{1,4}^{(R)} = G_{1,4}^{(R)} = 0$$
 (manifold) $P_{1,3}^{(R)} = P_{0,5}^{(R)} = 0$ (brane)

$$h^{1,1} + h^{2,1} + h^0(\mathcal{N}_{C_R}) = 2 + 86 + 52 = 140$$

 Tempting guess: Interchange brane <-> manifold defining equations...

Problem with interchanging polynomials

- What goes wrong with naive interchange of polynomials?
- ·丹桑formationoside; Consider fluctuating the brane defining equation:

This change List Burphysical

• Resolution side: Same fluctuation of the manifold

Manifold	$G_{1,3}^{(D)}, G_{0,5}^{(D)}$	$G_{1,4}^{lpha(R)}$
Brane	$P_{1,4}^{lpha(D)}$	$P_{1,3}^{(R)}, P_{0,5}^{(R)}$

More generally, fluctuations defined by geometric equivalence classes

$$H^1(TX_D) : \left\{ egin{array}{l} \delta P_{0,5} \sim \delta P_{0,5} + h P_{0,5}^{(D)} + l_{0,1}^i \partial_{y^i} P_{0,5}^{(D)} \ \delta P_{1,3} \sim \delta P_{1,3} + m P_{1,3}^{(D)} + l_{0,1}^i \partial_{y^i} P_{1,3}^{(D)} \ + l_{1,3} \partial_{x^0} P_{1,3}^{(D)} + l_{1,0} \partial_{x^1} P_{1,3}^{(D)} \end{array}
ight.$$

$$H^{0}(\mathcal{N}_{\mathcal{C}_{D}}|_{\mathcal{C}_{D}}): \delta P_{1,4}^{\alpha} \sim \delta P_{1,4}^{\alpha} + A_{\beta}^{\alpha} P_{1,4}^{(D)\beta} + L_{0,1}^{\alpha} P_{1,3}^{(D)} + l_{1,0}^{i} \partial_{y^{i}} P_{1,4}^{(D)\alpha} + l_{1,3} \partial_{x^{0}} P_{1,4}^{(D)\alpha} + l_{1,0} \partial_{x^{1}} P_{1,4}^{(D)\alpha}$$

Res:

$$H^{1}(TX_{R}) : \delta P_{1,4}^{\alpha} \sim \delta P_{1,4}^{\alpha} + A_{\beta}^{\alpha} P_{1,4}^{(R)\beta}$$
$$+ l_{0,1}^{i} \partial_{y^{i}} P_{1,4}^{(R)\alpha} + l_{1,3} \partial_{x^{0}} P_{1,4}^{(R)\alpha} + l_{1,0} \partial_{x^{1}} P_{1,4}^{(R)\alpha}$$

$$H^{0}(\mathcal{N}_{\mathcal{C}_{R}}|_{\mathcal{C}_{R}}): \left\{ \begin{array}{l} \delta P_{0,5} \sim \delta P_{0,5} + h P_{0,5}^{(R)} + B P_{\mathrm{nodal}}^{(R)} \\ + L_{0,1}^{\alpha} \left(q^{(R)\alpha}\right) + l_{0,1}^{i} \partial_{y^{i}} P_{0,5}^{(R)} \\ \delta P_{1,3} \sim \delta P_{1,3} + m P_{1,3}^{(R)} + l_{0,1}^{i} \partial_{y^{i}} P_{1,3}^{(R)} + \\ l_{1,3} \partial_{x^{0}} P_{1,3}^{(R)} + l_{1,0} \partial_{x^{1}} P_{1,3}^{(R)} \end{array} \right.$$

Proposed mapping

◆ Field mapping almost interchanging, but with important correlation:

$$G_{1,4}^{(R)\alpha} = P_{1,4}^{(D)\alpha} = P_{1,4}^{\alpha} = l^{\alpha}x_0 + q^{\alpha}x_1$$
 $P_{1,3}^{(R)} = G_{1,3}^{(D)} = P_{1,3} = x_0$
 $P_{0,5}^{(R)} = G_{0,5}^{(D)} = \alpha\epsilon_{\alpha\beta}l^{\alpha}q^{\beta} + P_{0,5}'$
(Trivial in X_R but not X_D)

- This decomposition of the quintic correlates the deformation and resolution complex structure (as expected by conifold geometry).
- Maps physical <-> physical degrees of freedom
- Decomposition of $G_{0,5}$ non-unique (polynomial long division only defined up to multiples of q^{α}). As we'll see this ambiguity drops out of the N=1 theory's superpotential.

The new Kahler modulus

- There is exactly one physical fluctuation of the complex structure on the deformation side which cannot map to physical comp. struc. or bundle mod. on the resolution side —> New Kahler modulus?
- $\delta G_{0,5} \sim \alpha \epsilon_{\alpha\beta} l^{\alpha} q^{\beta}$ (scaling of the nodal piece)
- In the limit $\alpha \to \infty$, approach the nodal limit. Corresponds to $T_{new} \to 0$
- Schematically (actually linear combinations):

Deformation		Resolution
86 C.S.	\rightarrow	C.S.
14 C.S.	\rightarrow	Brane mod.
1 C.S.	\rightarrow	Kahler

Testing a duality: Heterotic Superpotenials

- ◆ Explore whether the theories (not just their spectra) are identical? N=1 theories -> superpotential.
- Need a full mapping of fields to do this. Test of our proposal
- Perturbative Yukawa couplings
 - E.g. E6 theory, 27³ coupling: $H^1(V) \times H^1(V) \times H^1(V) \to H^3(\wedge^3 V)$
 - Complex functions of bundle/complex structure moduli
- Non-perturbative terms $W \sim \sum Pfaff(c,b)_i e^{-T}$
 - Could obstruct the transition? Agreement?

An E6 example:

Deformation side:

$$\left[\mathbb{P}^4|5\right]$$

$$0 \to V_D \to \mathcal{O}(1)^3 \oplus \mathcal{O}(2) \to \mathcal{O}(5) \to 0$$

Resolution side:

$$\begin{bmatrix} y_0 & y_1 & y_2 & y_3 & y_4 & x_0 & x_1 & p_1 & p_2 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 3 & 0 & 4 & 4 \end{bmatrix}$$

$$0 \to V_R \to \mathcal{O}(0,2)^2 \oplus \mathcal{O}(0,1) \oplus \mathcal{O}(1,0) \to \mathcal{O}(1,5) \to 0$$

Matching superpotentials

In this example we find that all 147,440 independent, non-vanishing, Yukawa couplings correctly match as holomorphic functions of the moduli on either side of the duality (95 families in this case).

- More generally, for instanton contributions, we can prove
- Potentially obstructing terms

$$W \sim \sum \psi_i e^{-T_{new}}$$

vanish

 Remaining non-perturbative terms have non-trivial matching of Pfaffians, moduli dependence (work in progress)

Other N=1 theories?

- Most of the above story is a feature of CY conifold geometries, not heterotic compactifications
- Generalize bridging branes to other N=1 vacua?
- Easy to see that SO(32) heterotic and Type I behave very similarly.
- What about Type IIB orientifolds? Try vacua with D5/O5 system.

Type IIB orientifolds (D5/O5)

CY3 Conifold pair

$$\begin{bmatrix} \mathbb{P}_{y}^{4} & 1 & 1 & 1 & 1 & 1 \\ \mathbb{P}_{z}^{4} & 1 & 1 & 1 & 1 & 1 \end{bmatrix}_{2,52} \leftrightarrow \begin{bmatrix} \mathbb{P}_{x}^{1} & 1 & 1 & 0 & 0 & 0 & 0 \\ \mathbb{P}_{z}^{4} & 1 & 0 & 1 & 1 & 1 & 1 \\ \mathbb{P}_{z}^{4} & 0 & 1 & 1 & 1 & 1 \end{bmatrix}_{3,47}$$

Orientifold actions

$$(y_0 \to -y_0 \ , \ z_1 \to -z_1) \leftrightarrow (x_0 \to -x_0 \ , \ y_0 \to -y_0 \ , \ z_1 \to -z_1)$$

- D5s (bridging curves) and O5s (by action above)
 - satisfy tadpoles
- Spectrum agrees

closed string d.o.f.			
chiral multiplets $h_{+}^{1,1} + h_{-}^{1,1} + h_{+}^{2,1} + 1$			
vector multiplets	$h^{2,1}$		
open string d.o.f.			

chiral multiplets	$h_{+}^{0}(C, N_{C}) + h^{1,0}(C)$
vector multiplets	1

Further questions

- ◆ We are developing new and intrinsically N=1 dualities(?)
- Not dual "pairs" of theories, but long chains.
- Of clear relevance for model building/scans. Computation of EFT. Large redundancy of theories
- Embedding of theories (low $h^{1,1}$ —> high $h^{1,1}$) is potentially powerful.
- What geometry matters? N=1 "Wall's Data"?
- Work to appear (ask me if curious):
- What about N=1 F-theory/CY 4-folds?
- Is the physical transition smooth across the geometric conifold? Could presence of bridging branes lift extra light states from branes wrapping collapsing cycles?

