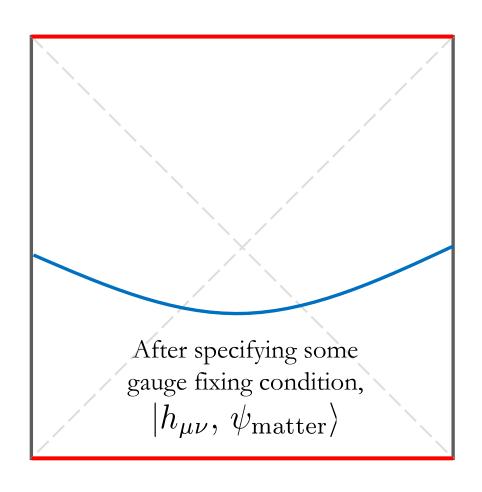
How the Hilbert space of two-sided black holes factorises

Luca V. Iliesiu

Work with Jan Boruch, Guanda Lin, and Cynthia Yan. Teaser for work with Ahmed Abdalla, Stefano Antonini, and Adam Levine.

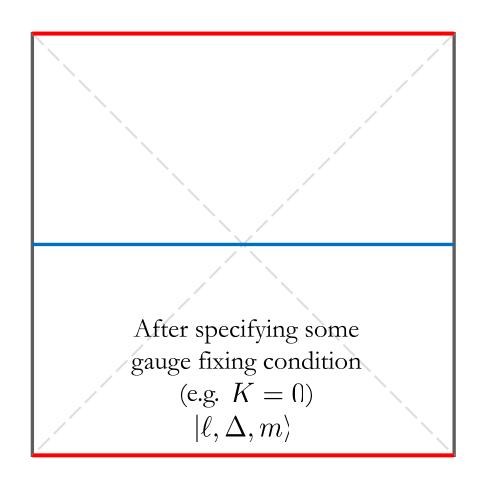
The Hilbert space of two-sided black holes: The factorisation puzzle



Consider the Hilbert space of two-sided black holes.

In AdS/CFT, according to ER=EPR
$$\neq$$
 Bulk Hilbert space, in a G_N^{-1} expansion $\mathcal{H}_{\text{bulk}} = \mathcal{H}_L \otimes \mathcal{H}_B$

An example that makes things concrete: 2D gravity coupled to matter



For example, in the simplest model of gravity (JT gravity) coupled to matter,

$$\mathcal{H}_{\mathrm{bulk}}^{\mathrm{pert}} = L^2(\mathbb{R}) \otimes \mathcal{H}_{\mathrm{matter}}$$

 $\mathcal{H}_{\mathrm{matter}}$ can be decomposed into unitary irreps of $\widetilde{SL}(2,\mathbb{R})$

Different basis choices,
$$|\ell, \Delta, m\rangle \Leftrightarrow |E_L, E_R, \Delta\rangle \Leftrightarrow |\beta_L, \beta_R, \Delta\rangle$$

The fact that the Hilbert space of two-sided black holes seems different than the factorised boundary Hilbert space is known as the factorisation puzzle.

It was often thought that resolving this puzzle requires a detailed knowledge about the UV.

[Harlow `16, Guica, Jafferis `17, Harlow, Jafferis `18]

The purpose of this talk is to propose a resolution to this puzzle using the low-energy theory.

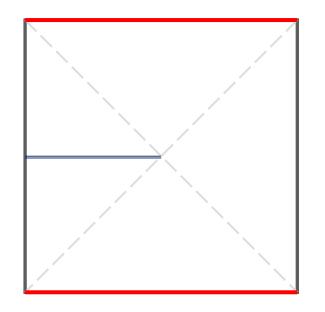
We will show that non-perturbative corrections to the gravitational path integral lead to

$$\mathcal{H}_{\mathrm{bulk}} = \mathcal{H}_L \otimes \mathcal{H}_R$$

... different than the factorization puzzle.

$$Z(\beta_L)Z(\beta_R) \neq Z(\beta_L, \beta_R)$$

Another way to describe the lack of factorisation: Algebraic classification of gravitational observables



What is the algebra of observables in the left sub-region?

Type III $G_N = 0$

Familiar notions cannot be defined: $\text{Tr}, \, \rho, \, |\psi\rangle, \, S$

Factorisation

Type II $G_N o 0$

Familiar notions become better defined but still no pure states.

[for examples, see Witten `21]

Type I G_N finite
According to AdS/CFT
pure states are well defined

 $\overleftrightarrow{\mathcal{H}}_{ ext{bulk}} = \overleftrightarrow{\mathcal{H}}_L \otimes \mathcal{H}_R$

Strategy

Using the gravitational path integral, prove that

$$\operatorname{Tr}_{\mathcal{H}_{\text{bulk}}}(k_L k_R) = \operatorname{Tr}_{\mathcal{H}_L}(k_L) \operatorname{Tr}_{\mathcal{H}_R}(k_R), \quad \forall k_{L,R} \in \mathcal{A}_{L,R}$$

In this talk, we will only focus on

$$k_L = e^{-\beta_L H_L}, \quad k_R = e^{-\beta_R H_R}.$$

What is $\mathcal{H}_{\text{bulk}}$?

To have a hope of seeing factorisation, we need to break the gauge constraint $H_L = H_R$.

These are "Bag Of Gold" states.

Strategy: calculate the statistics of the trace

$$= \underbrace{(M^{-1})_{ij}}_{ij} \langle q_i | e^{-\beta_L H_L} e^{-\beta_R H_R} | q_j \rangle , \qquad M_{ij} \equiv \langle q_i | q_j \rangle .$$
Generalized inverse

While we might not know these inner-products exactly, we now believe that we can compute their statistics:

$$\overline{|\langle q_i|q_j
angle\,|^2}=$$
 $(1)^{i}$ $(1)^{i}$ $(1)^{i}$ $(2)^{i}$ $(3)^{i}$ $(3)^{i}$ $(4)^{i}$ $(4)^{i}$

Not necessarily an ensemble, maybe a coarse-graining of a regular UV complete theory.

Strategy: calculate the statistics of the trace

Using this assumption, we can compute,

$$\lim_{n \to -1} \overline{\langle q_i | q_{i_1} \rangle \dots \langle q_{i_{n-1}} | q_j \rangle \langle q_i | e^{-\beta_L H_L} e^{-\beta_R H_R} | q_j \rangle}$$

$$= \lim_{n \to -1} k_R \underbrace{\langle q_i | q_{i_1} \rangle \dots \langle q_{i_{n-1}} | q_j \rangle \langle q_i | e^{-\beta_L H_L} e^{-\beta_R H_R} | q_j \rangle}_{\text{Leading geometry in } e^{S_0}}$$

No factorisation from the leading geometries in $e^{S_{\mathbb{C}}}$

If we only included the leading geometries in e^{S_0} , then we would never see factorization:

$$= \sum_{i=1}^{K} \frac{\langle q_i | e^{-\beta_L H_L} e^{-\beta_R H_R} | q_i \rangle_{\text{pert}}}{\langle q_i | q_i' \rangle_{\text{pert}}} \propto K$$

This verifies that perturbatively we will never see that the Hilbert space factorises. This is because when we cannot ignore subleading contributions in e^{-S_0} .

Which geometries contribute?

$$\overline{\operatorname{Tr}_{\mathcal{H}_{\operatorname{bulk}}(K)}(k_L \, k_R)} = \lim_{n \to -1} + \underbrace{\begin{pmatrix} k_R & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & &$$

Therefore, to probe factorisation we need to resum all wormhole geometries in the limit

[similar computations analysis seen in in Pennington, Shenker, Stanford, Yang `20, **Iliesiu**, Hsin, Yang `21, Balasubramanian, Lawrence, Magan, Sasieta `22, Boruch, **Iliesiu**, Yan `23]

Strategy: from statistics to exact results

How do we prove factorization through statistics?

Step 1. To leading order in $e^{\#G_N^{-1}}$,

$$\operatorname{Tr}_{\mathcal{H}_{\text{bulk}}(K)}(e^{-\beta_L H_L} e^{-\beta_R H_R}) = \begin{cases} \operatorname{Tr}_{\mathcal{H}_L}(e^{-\beta_L H_L}) \operatorname{Tr}_{\mathcal{H}_R}(e^{-\beta_R H_R}), & \forall \beta_L, \beta_R, \\ \operatorname{Complicated non-factorising trace}, & \text{when } K < d^2, \end{cases}$$

We can also go beyond leading order.

Strategy: from statistics to exact results

Define,

$$\mathcal{H}_{bulk} = \mathcal{H}_L \otimes \mathcal{H}_R$$
(If eigenenergies are non-degenerate)

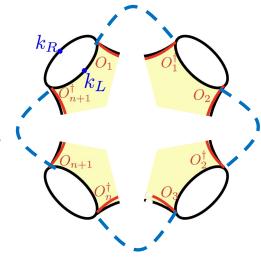
Step 2. To all orders in $e^{\#G_N^{-1}}$, $\overline{(\beta_L, \beta_R)} = 0$.

Step 3. To all orders in $e^{\#G_N^{-1}}$, $\overline{((\beta_L, \beta_R))^2} = 0$.

Today: We will mostly focus on Step 1.

Step 1: factorisation to leading order

To resum all geometries,



we define the resolvent for the matrix $M_{ij} \equiv \langle q_i | q_j \rangle$

$$\mathbf{R}_{ij}(\lambda) = \left(\frac{1}{\lambda - M}\right)_{ij} \qquad \overline{(M^n)_{ij} \langle q_i | e^{-\beta_L H_L} e^{-\beta_R H_R} | q_j \rangle} = \frac{1}{2\pi i} \oint_{C_0} d\lambda \, \lambda^n \, \overline{\mathbf{R}_{ij}(\lambda) \langle q_i | e^{-\beta_L H_L} e^{-\beta_R H_R} | q_j \rangle}$$

A Schwinger-Dyson equation

The resolvent can be expanded in a geometric series,

$$\overline{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle} = \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle}}_{k_L} + \underbrace{\phantom{\mathbf{R}_{ij} \langle q_i | k_L k_R | q_j \rangle$$

A Schwinger-Dyson equation

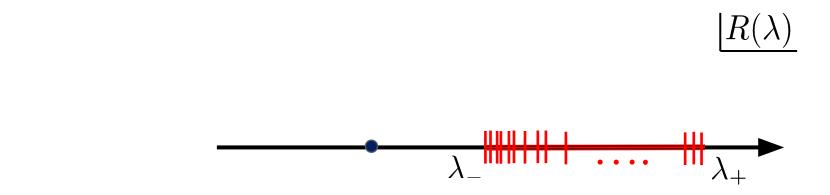
For the resolvent,

$$R(\lambda)$$

For the trace,

The analytic structure of the Schwinger-Dyson equation

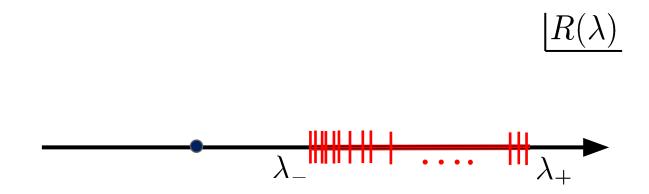
While we cannot solve the Schwinger-Dyson exactly, we can constrain the analytic structure of the resolvent.



$$R(\lambda) \sim \frac{K - d^2}{\lambda} \Theta(K - d^2) + R_0$$
 where $d^2 = e^{2S_0} \int_{E_L, E_R \in \mathcal{E}} \rho(E_L) \rho(E_R) dE_L dE_R$

...and that no other non-analyticities appear on the negative real axis. We have a semi-positive definite inner-product even non-perturbatively.

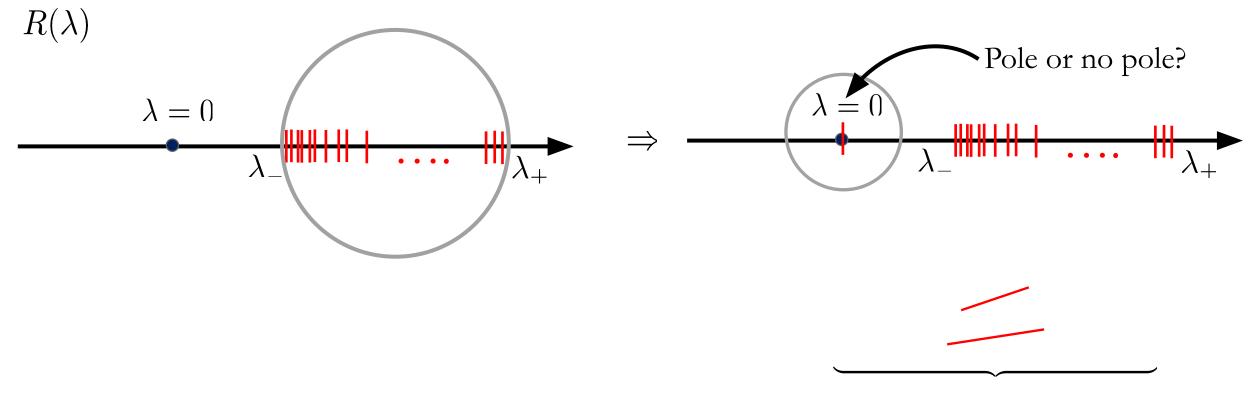
The Hilbert space is finite-dimensional



$$R(\lambda) \sim \frac{K - d^2}{\lambda} \Theta(K - d^2) + R_0$$

(∃ null states)

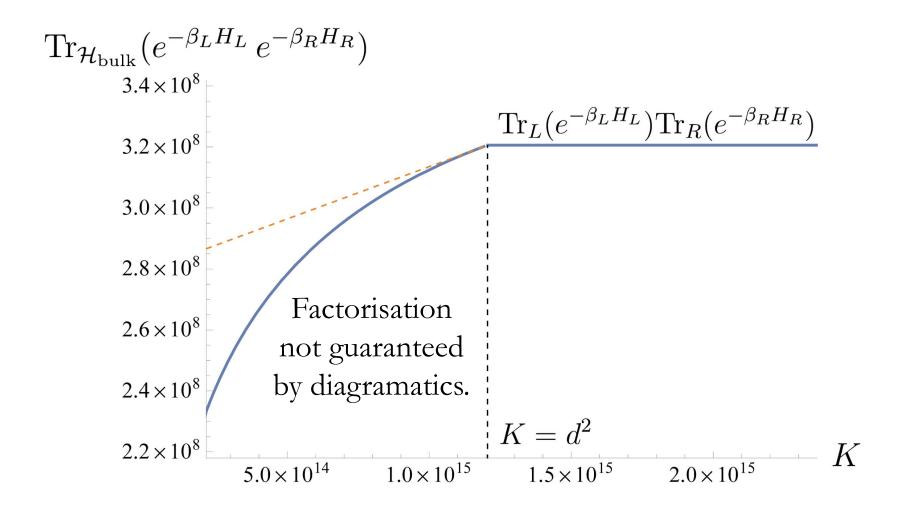
The physical mechanism for factorisation



$$= \begin{cases} \Rightarrow \text{ No null states } \Rightarrow \text{ Ugly non-factorising answer!} \\ \Rightarrow \exists \text{ null states } \Rightarrow \text{ Factorising answer!} \end{cases}$$

The physical mechanism for factorisation

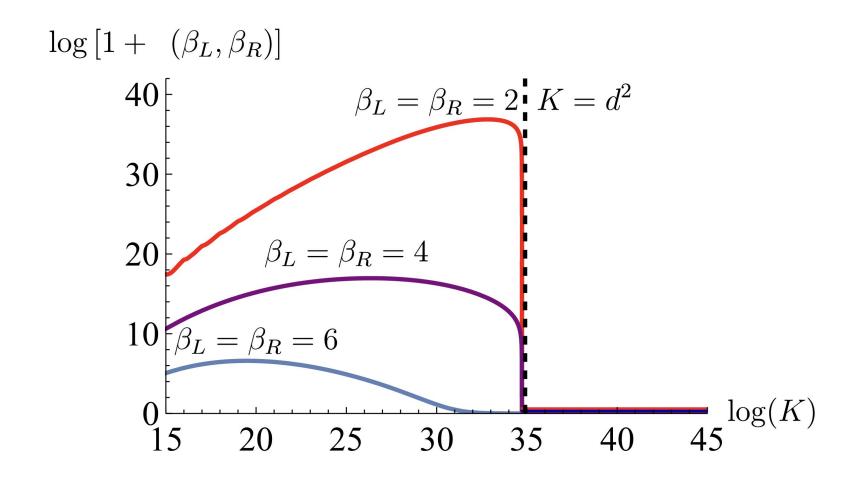
The "Page curve" of factorisation



Just like the Page curve: a consistency condition for $\mathcal{H}_{\text{bulk}} = \mathcal{H}_L \otimes \mathcal{H}_R$

Tracking the differential

We can analyze whether factorisation is exact by studying,



Proving steps 2 and 3

For large enough , we can also show that

$$\frac{\operatorname{Tr}_{\mathcal{H}_{\text{bulk}}(K)}(e^{-\beta_L^{(1)}H_L}e^{-\beta_R^{(1)}H_R})\dots\operatorname{Tr}_{\mathcal{H}_{\text{bulk}}(K)}(e^{-\beta_L^{(n)}H_L}e^{-\beta_R^{(n)}H_R})}{\operatorname{Tr}_L(e^{-\beta_L^{(1)}H_L})\operatorname{Tr}_R(e^{-\beta_R^{(1)}H_R})\dots\operatorname{Tr}_L(e^{-\beta_L^{(n)}H_L})\operatorname{Tr}_R(e^{-\beta_R^{(n)}H_R})} =$$

to all orders in

Conclusion

Despite only having access to statistics, we can prove that factorisation occurs exactly before coarse-graining.

$$\overline{(\beta_L, \beta_R)} = 0, \quad \sigma_{..(\beta_L, \beta_R)} = 0.$$

$$\log [1 + (\beta_L, \beta_R)]$$

$$40 \quad \beta_L = \beta_R = 2 \quad K = d^2$$

$$30 \quad \beta_L = \beta_R = 4$$
All non-perturbative orders
$$0 \quad \text{orders}$$

$$15 \quad 20 \quad 25 \quad 30 \quad 35 \quad 40 \quad 45$$

1) The one-sided trace is now well defined,

$$\operatorname{Tr}_{\mathcal{H}_{bulk}}(K_L K_R) = (\operatorname{Tr}_{\operatorname{one-sided}} K)^2, \qquad K_L = K_R = K \qquad \Rightarrow \begin{array}{c} \text{Requirement for} \\ \text{Type I algebra} \end{array}$$

2) Step 1 only involves saddle-points of the Euclidean path integral

Generalizable

⇒ to higher

dimensions

[Balasubramanian et al. '24, Li '24]

3) We assumed there are no degeneracies of the eigenenergies. What if there is a boundary global symmetry (and a bulk gauge symmetry)?

$$\operatorname{Tr}_{\mathcal{H}_{\text{bulk}}}(e^{-\beta_L H_L - \alpha_L^{(i)} Q_L^{(i)}} e^{-\beta_R H_R - \alpha_R^{(i)} Q_R^{(i)}}) = \operatorname{Tr}_{\mathcal{H}_L}(e^{-\beta_L H_L - \alpha_L^{(i)} Q_L^{(i)}}) \operatorname{Tr}_{\mathcal{H}_R}(e^{-\beta_R H_R - \alpha_R^{(i)} Q_R^{(i)}})$$

To define $\mathcal{H}_{\text{bulk}}$ we need to have particles in all irreps of the gauge group \Rightarrow Completeness conjecture

operator

4) There are exceptions to having degeneracies that can be split by bosonic charges: e.g. BPS states.

Simple

$$\operatorname{Tr}_{\mathcal{H}_{\text{bulk}}}(k_L k_R) = \operatorname{Tr}_{\mathcal{H}_L}(k_L) \operatorname{Tr}_{\mathcal{H}_R}(k_R), \qquad k_{L,R} = e^{-\alpha_{L,R} \pi_{\text{BPS}} \mathcal{O}_{L,R} \pi_{\text{BPS}}}.$$

we can prove that this occurs exactly when $K > d_{BPS}^2$. \Rightarrow Factorisation for two-sided BPS BHs

5) Null states galore! $|E_L, E_R, \Delta\rangle, |\ell, \Delta, m\rangle \Rightarrow |E_L^{(i)}, E_R^{(j)}\rangle$ [see **Iliesiu**, Levine, Lin, Maxfield, Mezei `24]

No linear operator measures connectedness and the length stops having a geometric meaning.

What does this imply for an infalling observer?

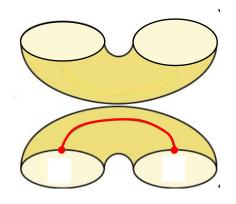
Do the observables they measure correspond to linear operators on

Issue: No good non-perturbative notion of an observer with respect to which we can dress the observables that they measure.

In two-sided black holes,

[see Iliesiu, Levine, Lin, Maxfield, Mezei `24 for examples]

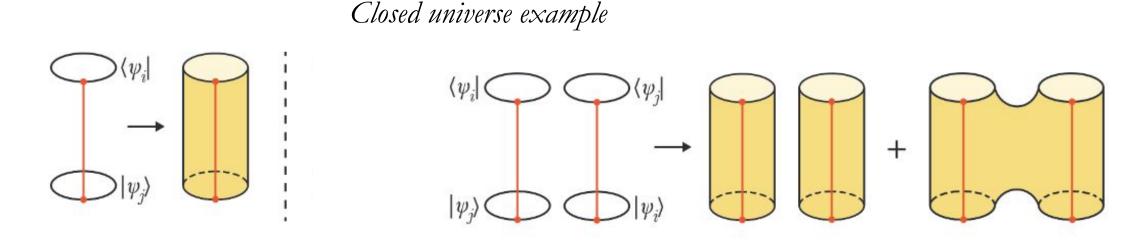
Even more problematic, in a closed universe,



[Marolf, Maxfield '20, Usatyuk, Wang, Zhao '24]

The inner-products in the Hilbert space

that describes the physics seen by an observer,



The same resolvent computation from before now yields,

Concrete framework to quantify the non-perturbative quantum gravity effects seen by a gravitating observer.

Thank you!

Additional details

Going to even higher orders in

We can include higher genus corrections,

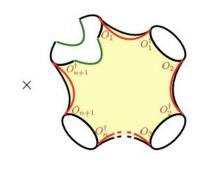
$$\overline{\mathbf{R}_{ij}\left\langle q_{i}\right|k_{L}k_{R}\left|q_{j}\right\rangle }=\begin{array}{c} \begin{pmatrix} \beta_{R} & \delta_{1} & \delta_{2} \\ \delta_{0} & \delta_{1} & \delta_{2} \\ \delta_{n+1} & \delta_{n+1} & \delta_{n+1} \\ \delta_{n+1} & \delta_{n+1} & \delta_{n+1$$

but suppress non-planar index contractions by taking $K \to \infty$ first.

We can perform a decomposition into geometries we've encountered before:

The same pinwheel geometry was encountered at finite K:

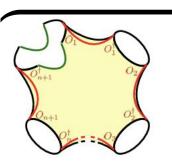
$$Tr(k_L k_R) = \langle eta_L | \hat{O} | eta_R
angle = \int d\ell_L d\ell_R e^{\ell_L} e^{\ell_R}$$



Projector onto infinite temperature state

Using the results,

when $K > d^2$.



$$\beta_R$$

$$= e^{2S_0} \varphi_{\beta=0}(\ell_L) \varphi_{\beta=0}(\ell_R),$$

Step 1: Going to even higher orders

$$= \int d\ell_L d\ell_R e^{\ell_L} e^{\ell_R} \qquad \times$$

$$\overline{\text{Tr}_{\mathcal{H}_{bulk}(K>d^2)}(e^{-\beta_L H_L} e^{-\beta_R H_R})} = \overline{\text{Tr}_{\mathcal{H}_L}(e^{-\beta_L H_L}) \text{Tr}_{\mathcal{H}_R}(e^{-\beta_R H_R})} + O\left(\frac{1}{K}\right).$$

Consistent with factorisation before coarse-graining. However, we want to probe factorisation more directly.

 $\int_{\mathcal{E}} dE_L dE_R \, \overline{\rho(E_L) \, \rho(E_R)} \, e^{-\beta_L E_L - \beta_R E_R}$

Step 2 & 3: Going to even higher orders

We can similarly show that,

$$\frac{\operatorname{Tr}_{\mathcal{H}_{\text{bulk}}(K)}(e^{-\beta_L^{(1)}H_L}e^{-\beta_R^{(1)}H_R})\dots\operatorname{Tr}_{\mathcal{H}_{\text{bulk}}(K)}(e^{-\beta_L^{(n)}H_L}e^{-\beta_R^{(n)}H_R})}{\operatorname{Tr}_L(e^{-\beta_L^{(1)}H_L})\operatorname{Tr}_R(e^{-\beta_R^{(1)}H_R})\dots\operatorname{Tr}_L(e^{-\beta_L^{(n)}H_L})\operatorname{Tr}_R(e^{-\beta_R^{(n)}H_R})}$$

Considering two 2-sided traces:

$$\overline{d(\beta_L, \beta_R)} \equiv \mathcal{D}_{\beta_L, \beta_R, \beta'_L, \beta'_R} \overline{Z_{\text{bulk}}(\beta_L, \beta_R) Z_{\text{bulk}}(\beta'_L, \beta'_R)} |_{\beta'_{L/R} = \beta_{L/R}} \qquad \mathcal{D}_{\beta_L, \beta_R, \beta'_L, \beta'_R} \equiv \partial_{\beta_L} \partial_{\beta_R} - \partial_{\beta_L} \partial_{\beta'_R} \overline{d(\beta_L, \beta_R)} = 0$$

Considering four 2-sided traces:

$$\overline{d(\beta_L, \beta_R)^2} = 0$$

Details about the dimension of

The same resolvent computation from before now yields,