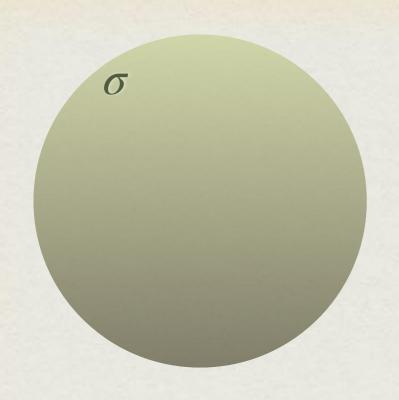
THE HOLOGRAPHIC COVARIANT ENTROPY BOUND

Ronak M Soni

Chennai Mathematical Institute

Based on 2407.16769 and 250x.xxxxx with Aron C. Wall

WHAT'S THE CONNECTION BETWEEN ENTROPY AND AREA?

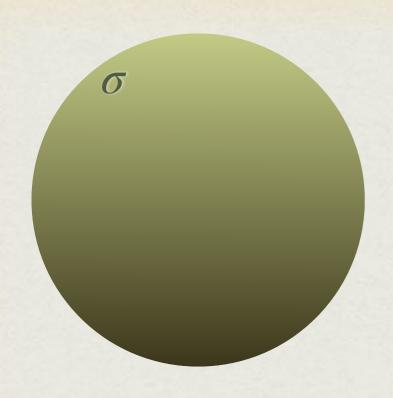


A cartoon explanation:

 $\frac{A(\sigma)}{4G_N}$ = The amount of entropy you

can throw into a surface σ before it collapses into a black hole.

WHAT'S THE CONNECTION BETWEEN ENTROPY AND AREA?

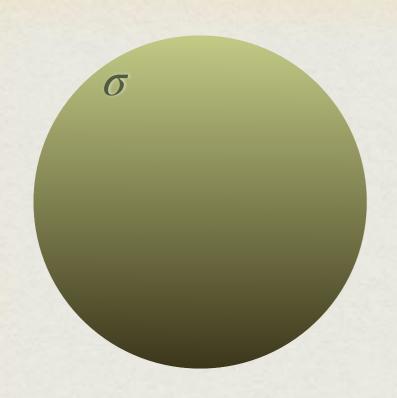


A cartoon explanation:

 $\frac{A(\sigma)}{4G_N}$ = The amount of entropy you

can throw into a surface σ before it collapses into a black hole.

WHAT'S THE CONNECTION BETWEEN ENTROPY AND AREA?



A cartoon explanation:

 $\frac{A(\sigma)}{4G_N}$ = The amount of entropy you

can throw into a surface σ before it collapses into a black hole.

Two important things:

- Area is an *upper bound* on entropy inside σ .
- It is an upper bound given that σ
 - a. has area A (and is spherically symmetric).
 - b. is outside a black hole.

THERMODYNAMICS FROM MAXENT

This sort of thing is familiar:

- Thermodynamic entropy is a function of the macrostate: it is the maximum entropy among microstates with the right macroscopic properties.
- If we are **given** only that $\operatorname{tr} \rho H = E$,

thermal entropy =
$$\max_{\rho \mid \text{tr } \rho H = E} S(\rho) = S_{\text{vN}} \left(\frac{e^{-\beta(E)H}}{Z(\beta(E))} \right)$$
.

• If we are **also given** that energy has small fluctuations, we get instead the microcanonical entropy.

THIS TALK

Today I want to explain a MaxEnt question that provides a (hopefully) new perspective on gravitational entropy.

1. Bulk: Maximise entropy over spacetimes.

Similar to outer entropy (Engelhardt-Wall-Bousso-Nomura-Remmen-Wang) but a little more general.

2. "Boundary": Maximise entropy **over states** in a strange field theory that lives on a Cauchy slice.

Extends work by Caputa-Kruthoff-Parrikar

These are the same maximisation, related by Cauchy slice holography.

Araujo-Regado

Araujo-Regado—Khan—Wall 2022

Comments on holographic tensor networks and black hole information.

The Bulk Story

ALGORITHM TO MAKE NEW ENTROPY BOUNDS

To generalise the cartoon, we decompose into three steps:

Definition

1. Define a (D-2)-dim surface σ by some local properties.

Cartoon: intrinsic metric.

2. For any D-dim on-shell spacetime $\mathcal{M} \supset \sigma$, define some (sensible) "entropy of \mathcal{M} " $S(\mathcal{M}, \sigma)$.

Cartoon: entropy of matter inside σ .

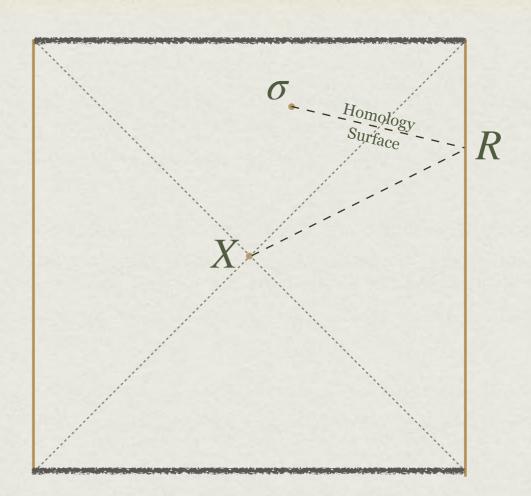
3. Upper-bound this entropy,

Result

$$S_{\mathrm{bd}}(\sigma) \equiv \sup_{\mathcal{M} \supset \sigma} S(\mathcal{M}, \sigma).$$

OUR CHOICE OF ENTROPY (STEP 2)

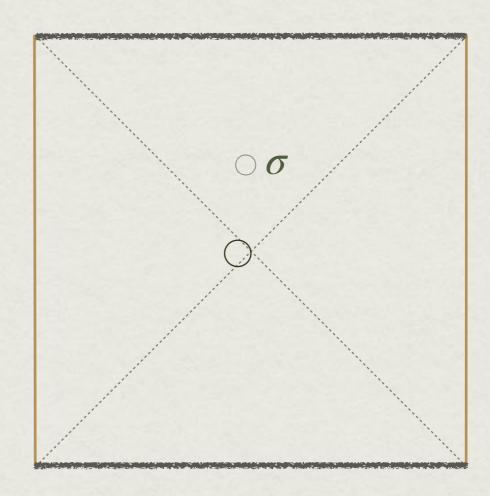
- We will stick to asymptotically AdS spacetimes, and take σ to be topologically a sphere.
- $S(\mathcal{M}, \sigma)$ is the area of the minimal extremal surface in the same homology class as σ .



$$S(\mathcal{M}, \sigma) = S_E(R) = \min_{X \sim R \sim \sigma} \frac{A(X)}{4G_N}$$

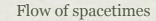
STEP 1 ATTEMPT 1: AREA IS NOT ENOUGH

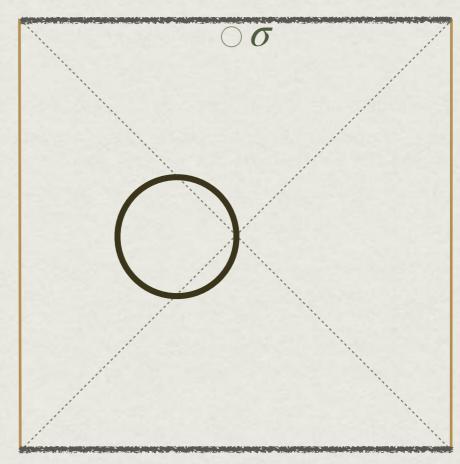
- Suppose we define σ just by its intrinsic metric $\gamma_{\mu\nu}$.
- The upper bound is ∞ !
- Not very useful.):



STEP 1 ATTEMPT 1: AREA IS NOT ENOUGH

- Suppose we define σ just by its intrinsic metric $\gamma_{\mu\nu}$.
- The upper bound is ∞ !
- Not very useful.):





BETTER DEFINITION FOR

 σ

- Define a surface by its intrinsic metric as well as its extrinsic curvature.
- Since σ is codim-2, there are two orthogonal null normals $k, l; k^2 = l^2 = 0, k \cdot l = -1.$

This defines two extrinsic curvatures

$$K_{(\alpha)\mu\nu} = (\nabla n_{(\alpha)})_{\mu\nu}, \ \alpha = k, l.$$

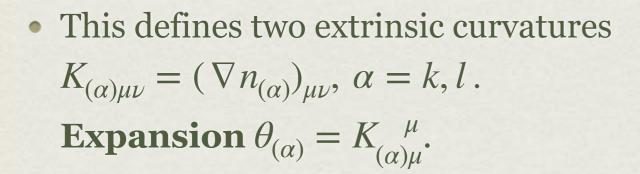
Expansion
$$\theta_{(\alpha)} = K_{(\alpha)\mu}^{\ \mu}$$
.

• σ is specified by its intrinsic metric $\gamma_{\mu\nu}$ and the two extrinsic curvatures $K_{\mu\nu}^{(\alpha)}$

BETTER DEFINITION FOR

 σ

- Define a surface by its intrinsic metric as well as its extrinsic curvature.
- Since σ is codim-2, there are two orthogonal null normals $k, l; k^2 = l^2 = 0, k \cdot l = -1.$

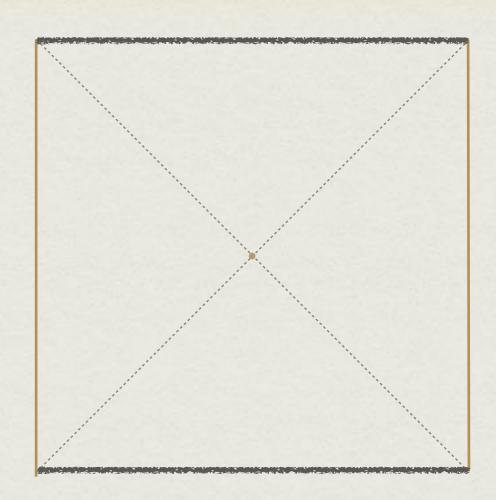


There's also something called the "twist," which is a gauge field for local boosts around σ . I will ignore this; see paper for more details.

• σ is specified by its intrinsic metric $\gamma_{\mu\nu}$ and the two extrinsic curvatures $K_{\mu\nu}^{(\alpha)}$ up to coordinate transformations.

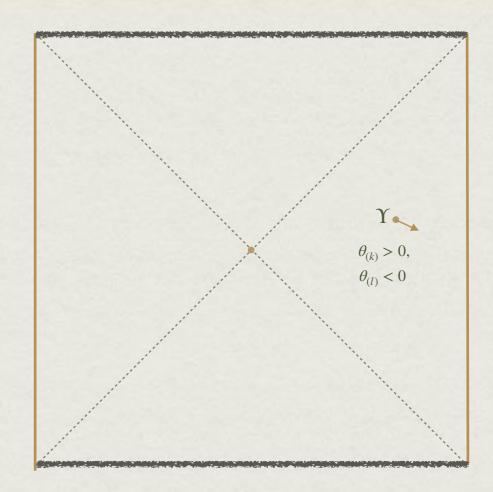
- Take σ to agree with a rotationally symmetric surface in non-rotating BTZ black hole.
- We find

$$S_{\mathrm{bd}}(\sigma) = \frac{A(\sigma)}{4G_N} \sqrt{1 + 2\theta_{(k)}\theta_{(l)}}.$$



- Take σ to agree with a rotationally symmetric surface in non-rotating BTZ black hole.
- We find

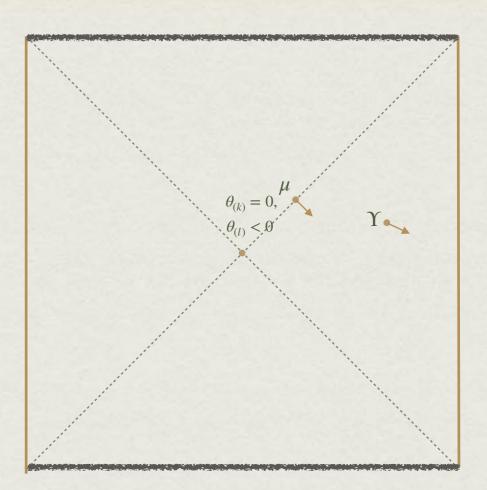
$$S_{\mathrm{bd}}(\sigma) = \frac{A(\sigma)}{4G_N} \sqrt{1 + 2\theta_{(k)}\theta_{(l)}}.$$



Normal surface Υ : $S_{\text{bd}} < A/4G_N$

- Take σ to agree with a rotationally symmetric surface in non-rotating BTZ black hole.
- We find

$$S_{\text{bd}}(\sigma) = \frac{A(\sigma)}{4G_N} \sqrt{1 + 2\theta_{(k)}\theta_{(l)}}.$$

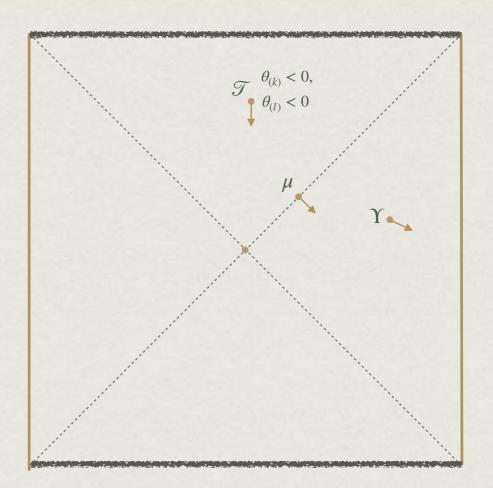


Normal surface $\Upsilon: S_{\text{bd}} < A/4G_N$

Marginal surface μ : $S_{\rm bd} = A/4G_N$

- Take σ to agree with a rotationally symmetric surface in non-rotating BTZ black hole.
- We find

$$S_{\text{bd}}(\sigma) = \frac{A(\sigma)}{4G_N} \sqrt{1 + 2\theta_{(k)}\theta_{(l)}}.$$



Normal surface $\Upsilon: S_{\text{bd}} < A/4G_N$

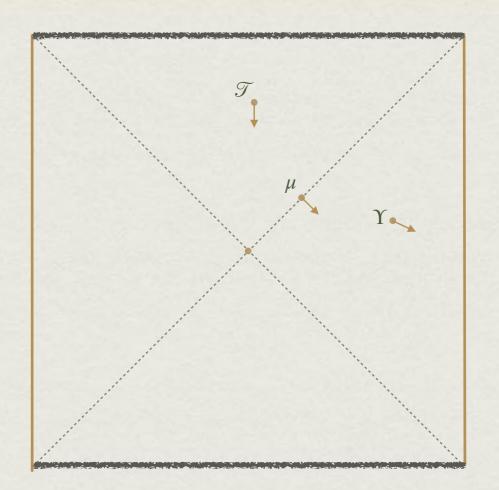
Marginal surface μ : $S_{\rm bd} = A/4G_N$

Anti-/trapped surface $\mathcal{T}: S_{bd} > A/4G_N$

- Take σ to agree with a rotationally symmetric surface in non-rotating BTZ black hole.
- We find

$$S_{\text{bd}}(\sigma) = \frac{A(\sigma)}{4G_N} \sqrt{1 + 2\theta_{(k)}\theta_{(l)}}.$$

• More generally, Ammon-Castro-Iqbal-Llabrés 2013-18 McGough-Verlinde 2013 Mertens-Simón-Wong 2022 $S_{\mathrm{bd}}(\sigma) = F\left(Pe^{i\oint_{\sigma}\mathbb{A}}\right)$, Hung's talk Akers-RMS-Wei 2024 where \mathbb{A} is an SO(2,2) gauge field.



Normal surface $\Upsilon: S_{\text{bd}} < A/4G_N$

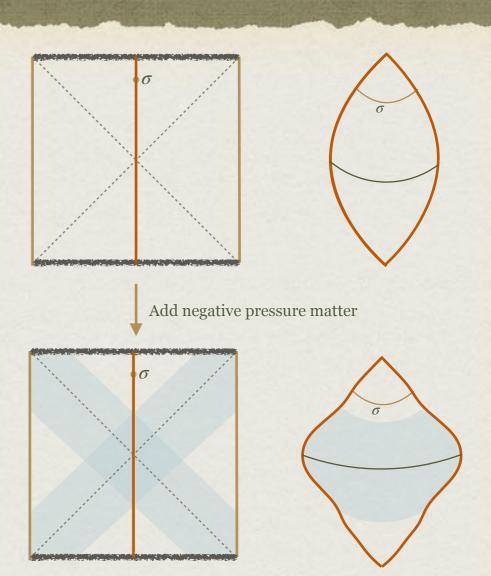
Marginal surface μ : $S_{\rm bd} = A/4G_N$

Anti-/trapped surface $\mathcal{T}: S_{bd} > A/4G_N$

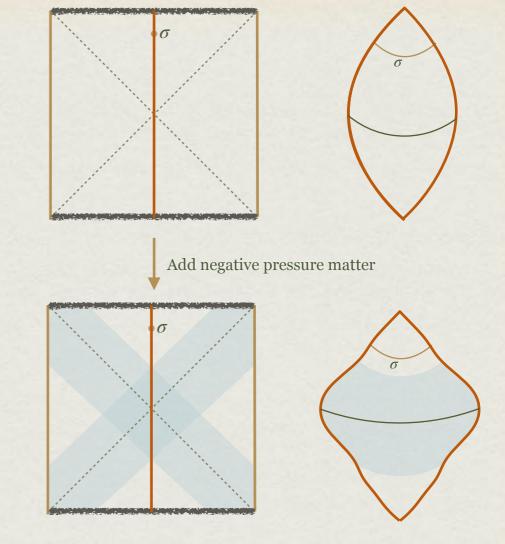
• Now, we also fix the values of bulk fields and derivatives on σ . E.g. φ , $k \cdot d\varphi$, $l \cdot d\varphi$.

- Now, we also fix the values of bulk fields and derivatives on σ . E.g. φ , $k \cdot d\varphi$, $l \cdot d\varphi$.
- We also assume that the bulk matter satisfies the dominant energy condition (DEC): for u, v future-directed timelike vectors, $T_{uv} \ge 0$.

- Now, we also fix the values of bulk fields and derivatives on σ . E.g. φ , $k \cdot d\varphi$, $l \cdot d\varphi$.
- We also assume that the bulk matter satisfies the dominant energy condition (DEC): for u, v future-directed timelike vectors, $T_{uv} \ge 0$.



- Now, we also fix the values of bulk fields and derivatives on σ . E.g. φ , $k \cdot d\varphi$, $l \cdot d\varphi$.
- We also assume that the bulk matter satisfies the dominant energy condition (DEC): for u, v future-directed timelike vectors, $T_{uv} \ge 0$.
- We find that a surface inside a black hole does not constrain the area of the black hole at all, so



$$S_{\rm bd}(\sigma) \ge \begin{cases} S_{\rm bd}^{(GR)} & \theta_{(k)}\theta_{(l)} \le 0 \text{ (normal/marginal/extremal surface)} \\ \infty & \theta_{(k)}\theta_{(l)} > 0 \text{ (anti-/trapped surface)} \end{cases}$$

WHY DOES THIS WORK?

Why does local data on σ know anything about areas far away?

Because gravity has **constraints**: a set of initial data on a Cauchy slice Σ , the metric $g_{\mu\nu}$ and conjugate momenta $\pi_{\mu\nu} \propto K_{\mu\nu} - g_{\mu\nu} K_{\rho}^{\rho}$, is physical only if it satisfies certain relations.

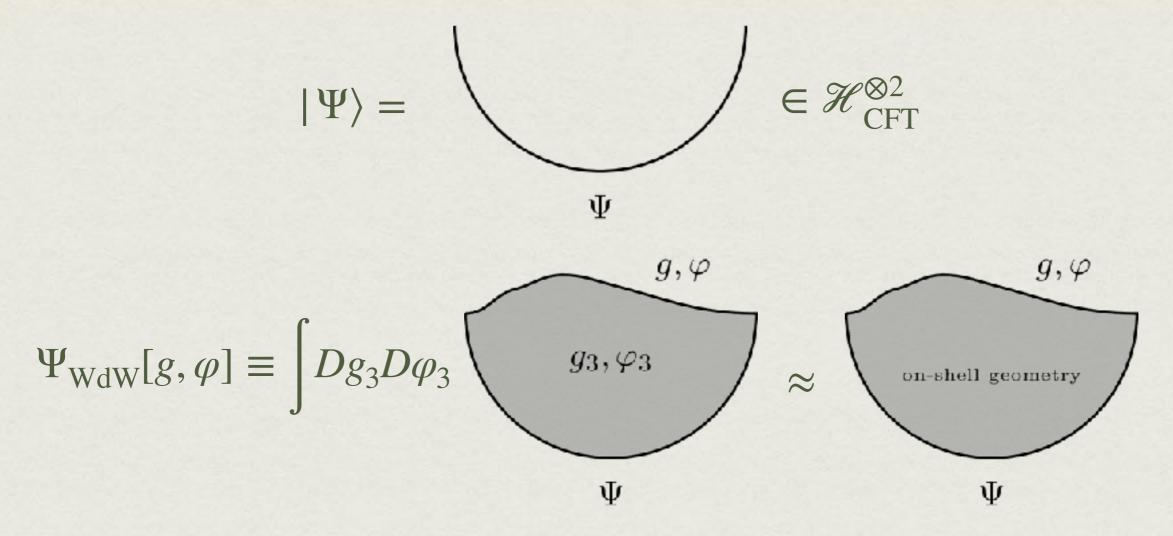
Hamiltonian constraint :
$$H = \det K - \frac{1}{2}R(\Sigma) + \Lambda = 0$$

Momentum constraint :
$$P_{\mu} = \nabla^{\mu} \pi_{\mu\nu} = 0$$

We find the bounds by solving these constraints.

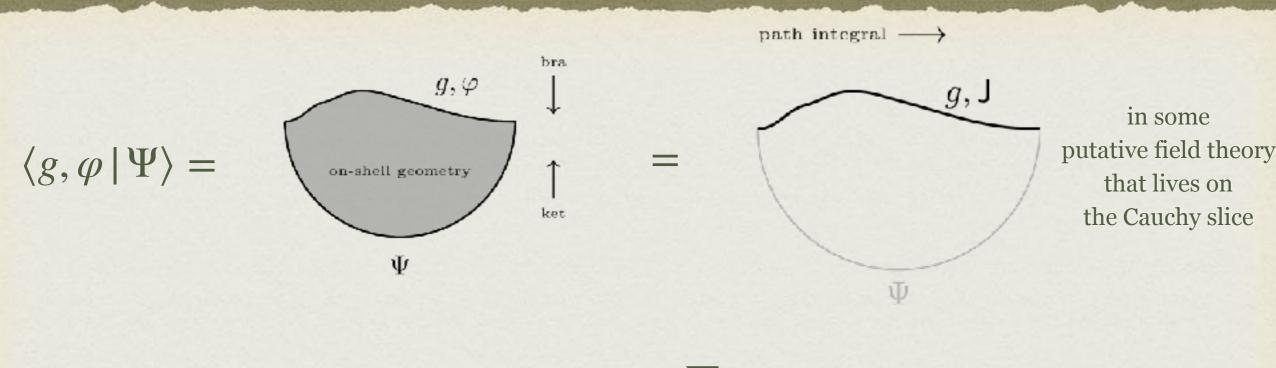
The Cauchy Slice Story

WHEELER-DEWITT WAVEFUNCTION



Diff-invariance $\implies \hat{H}\Psi_{\text{WdW}} = \hat{P}_{\mu}\Psi_{\text{WdW}} = 0.$

CAUCHY SLICE HOLOGRAPHY



$$=\sum_{h_{L,R},\bar{h}_{L,R}}\langle h_{L,R},\bar{h}_{L,R}|\Psi\rangle\langle h_R\bar{h}_R|\mathbb{T}[g,\mathsf{J}=\varphi]|h_L,\bar{h}_L\rangle$$

Bd wavefunction

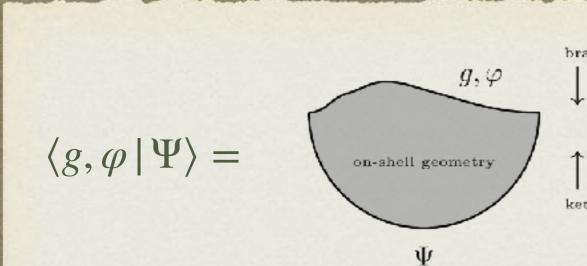
Transition matrix with sources, computed by path integral on the Cauchy slice

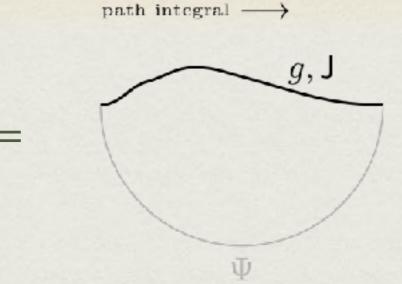
Constraints become relations among stress tensor expectation values

$$\langle \det T - R/2 + \Lambda_3 \rangle = \langle \nabla_{\mu} T^{\mu\nu} \rangle = 0.$$

This is known as a $T\overline{T}$ -deformed theory.

CAUCHY SLICE HOLOGRAPHY





in some
putative field theory
that lives on
the Cauchy slice

Araujo-Regado—Khan—Wall 2022

$$=\sum_{h_{L,R},\bar{h}_{L,R}}\langle h_{L,R},\bar{h}_{L,R}|\Psi\rangle\langle h_R\bar{h}_R|\mathbb{T}[g,\mathsf{J}=\varphi]|h_L,\bar{h}_L\rangle$$

Bd wavefunction

Transition matrix with sources, computed by path integral on the Cauchy slice

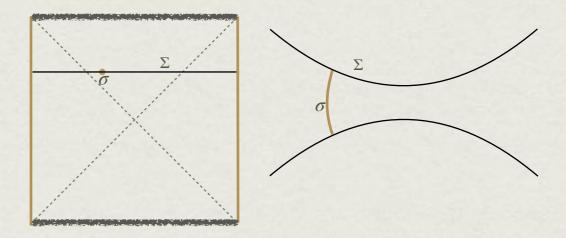
Constraints become relations among stress tensor expectation values

$$\langle \det T - R/2 + \Lambda_3 \rangle = \langle \nabla_{\mu} T^{\mu\nu} \rangle = 0.$$

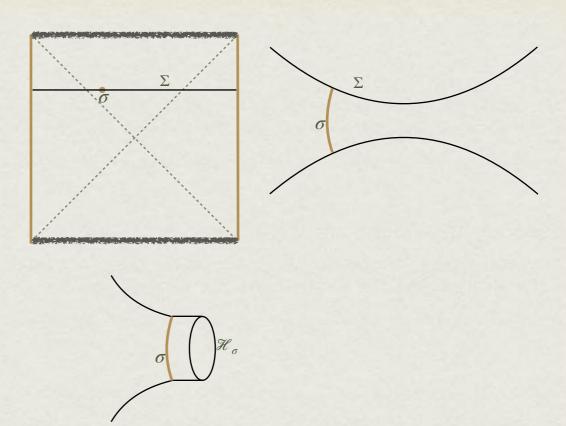
This is known as a $T\overline{T}$ -deformed theory.

Introduced more carefully in Torroba's talk

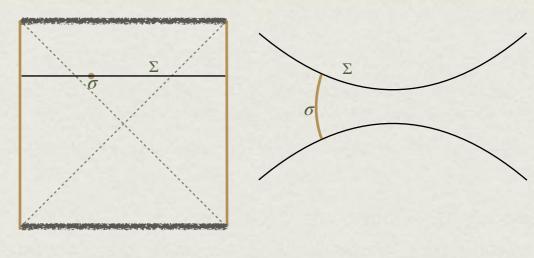
• Take $\Sigma \supset \sigma$.

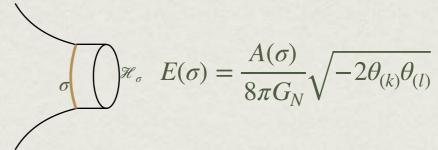


- Take $\Sigma \supset \sigma$.
- Cutting $\to \mathcal{H}_{\sigma}$.

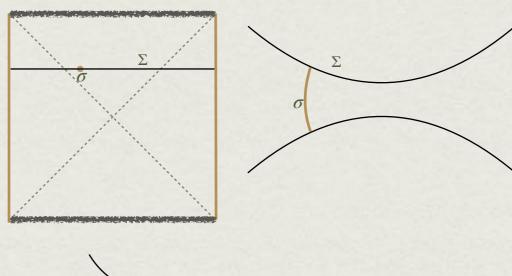


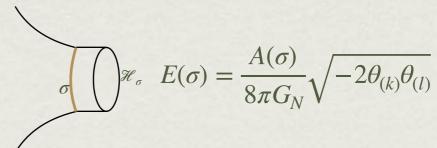
- Take $\Sigma \supset \sigma$.
- Cutting $\to \mathcal{H}_{\sigma}$.
- $K_{(\alpha)\mu\nu} \rightarrow \text{energy in this Hilbert}$ space.



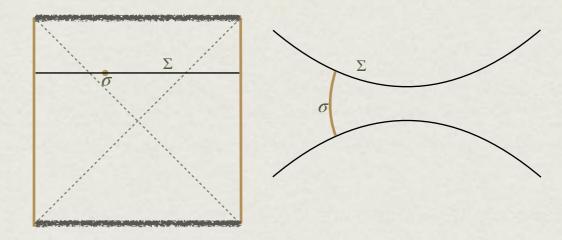


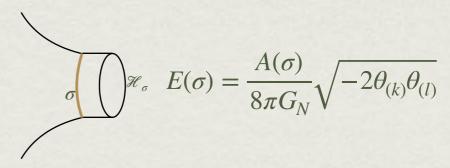
- Take $\Sigma \supset \sigma$.
- Cutting $\to \mathcal{H}_{\sigma}$.
- $K_{(\alpha)\mu\nu} \rightarrow \text{energy in this Hilbert}$ space.
- Spacetime is classical → energy has small fluctuations.





- Take $\Sigma \supset \sigma$.
- Cutting $\to \mathcal{H}_{\sigma}$.
- $K_{(\alpha)\mu\nu} \rightarrow \text{energy in this Hilbert}$ space.
- Spacetime is classical → energy has small fluctuations.
- MaxEnt then gives μ canonical entropy, which agrees with previous formulas for GR w/out matter.





$$S_{\text{bd}}(\sigma) = S_{\text{Cardy}} \left(h = \bar{h} = \frac{A^2 \pi^2}{64G_N} - G_N E^2 \right)$$
$$= \frac{A(\sigma)}{4G_N} \sqrt{1 + 2\theta_{(k)}\theta_{(l)}}$$

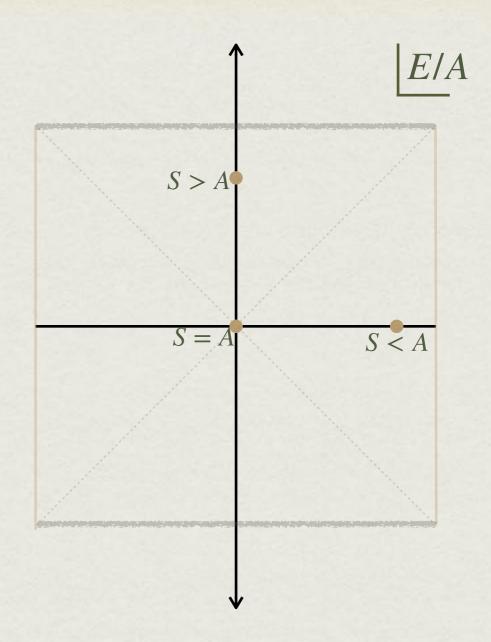
A RADICAL SPECTRUM

$$E = \frac{A}{8\pi G_N} \sqrt{-2\theta_{(k)}\theta_{(l)}}$$

 $S < A \leftrightarrow \text{real non-zero energy}$

 $S = A \leftrightarrow \text{zero energy}$

 $S > A \leftrightarrow \text{imaginary energy}$

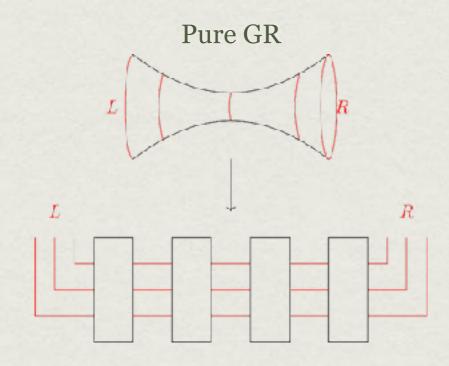


Tensor Networks

TENSOR NETWORK

Can create TN by discretising the path integral.

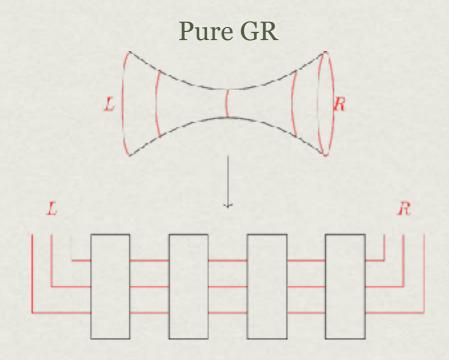
Log Bond dimension = S_{bd} .



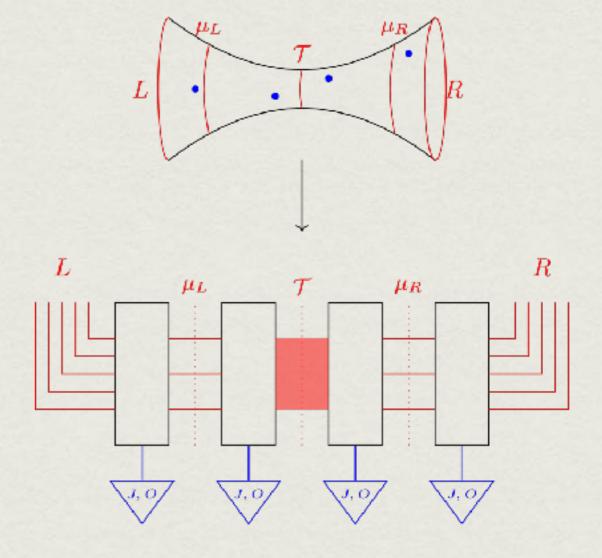
TENSOR NETWORK

Can create TN by discretising the path integral.

Log Bond dimension = S_{bd} .



With Classical Matter

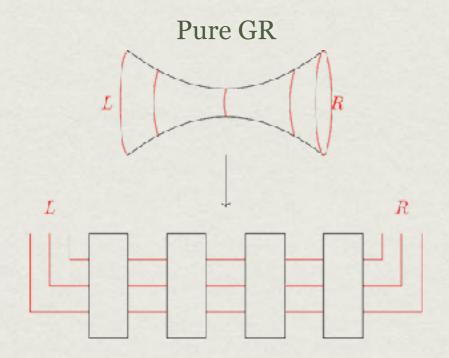


cf. Chandra-Hartman 2023

TENSOR NETWORK

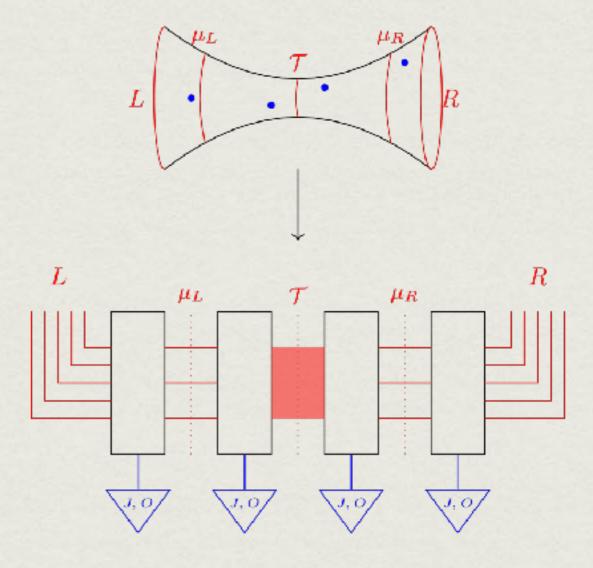
Can create TN by discretising the path integral.

Log Bond dimension = S_{bd} .



Works for any Cauchy slice (unlike other TNs).

With Classical Matter

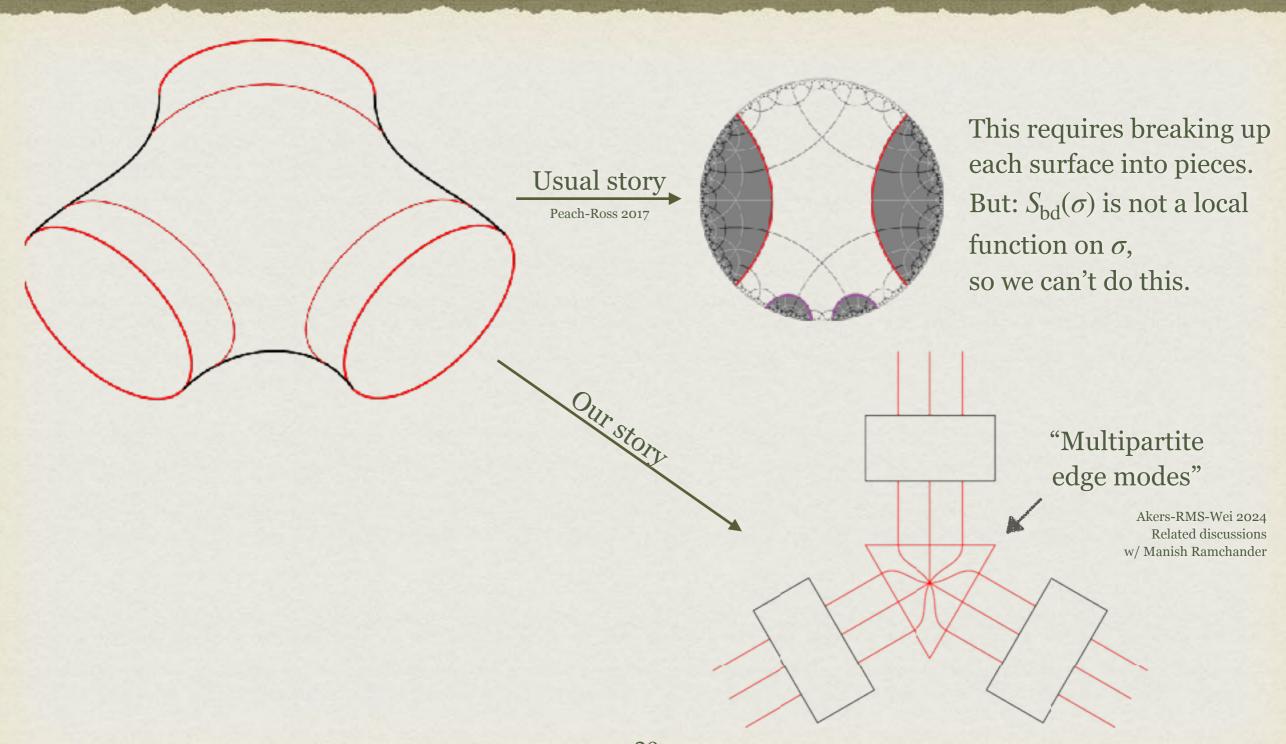


cf. Chandra-Hartman 2023

MULTIPARTITE TENSOR NETWORKS

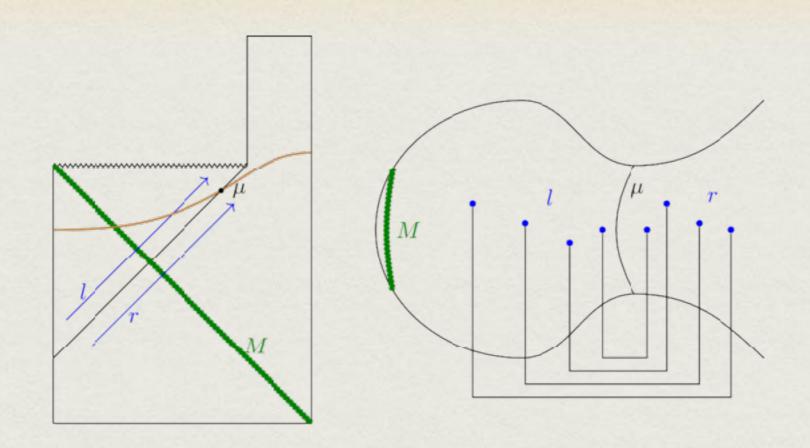
This requires breaking up each surface into pieces. But: $S_{\rm bd}(\sigma)$ is not a local function on σ , so we can't do this.

MULTIPARTITE TENSOR NETWORKS



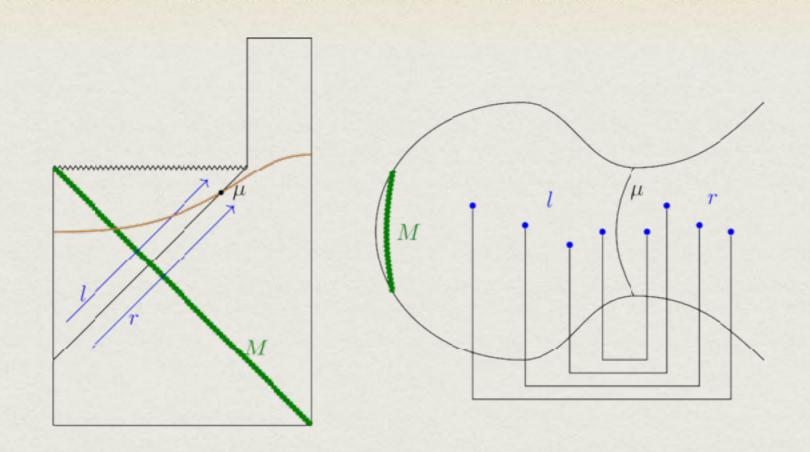
Black Hole Information

POSTSELECTION AT THE APPARENT HORIZON



At late times, $S(lM) > S_{bd}(\mu)$, so there is postselection at μ . Corroborates that bulk-boundary map is non-isometric without using Euclidean wormholes.

POSTSELECTION AT THE APPARENT HORIZON



At late times, $S(lM) > S_{bd}(\mu)$, so there is postselection at μ . Corroborates that bulk-boundary map is non-isometric without using Euclidean wormholes.

Brown-Gharibyan-Penington-Susskind 2019 PHEVA 2022 See also Chandra-Hartman 2023 for a similar story.

Conclusions

SUMMARY

- Explained a bulk MaxEnt question that genuinely upper-bounds UV entropy from data on a codimension-two surface.
- Found the entropy bound in some simple cases.
- Entropy can be bigger than area! Hilbert space dimension of a bulk surface is not constrained by area; area turns up only in a microcanonical entropy.
- There is a dual question in a Cauchy slice theory.
- Obtained TNs for arbitrary Cauchy slices.
- Can argue for non-isometry without using Euclidean wormholes.

AN ASIDE ON DS

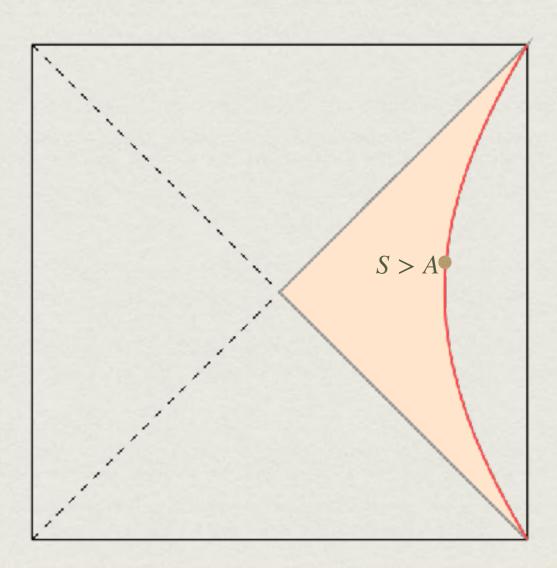
• In dS, entropy is bigger than area for normal surfaces.

Batra-Coleman-de Luca-Ma

Batra-Coleman-de Luca-Mazenc-Shyam -Silverstein-RMS 2021-4 Torroba's talk

• This means that we can put holographic screens far away from the horizon while still having the correct entropy. Important for any "observer holography" ideas.

$$S_{\text{bd}}(\sigma) = \frac{A}{4G_N} \sqrt{1-2\theta_{(k)}\theta_{(l)}}$$



OPEN QUESTIONS

- Higher dimensions without rotational symmetry?
- Understand infinitely big Python's lunch.
- Derive holographic map in more detail.
- Is there a boundary interpretation of different Cauchy slices?
 Subfactor theory might be useful.
- Use this to factorise the bulk Hilbert space?

OPEN QUESTIONS

Higher dimensions without rotational symmetry?

(Higher dimensions *with* rotational symmetry dealt with in the paper)

Bousso-Nomura-Remmen 2019

- Understand infinitely big Python's lunch.
- Derive holographic map in more detail.
- Is there a boundary interpretation of different Cauchy slices?

Subfactor theory might be useful.

Casini-Huerta-Magán-Pontello 2019 Magán's talk

Use this to factorise the bulk Hilbert space?

Wall 2021