Main points of [2305.06196] for string theorists

Yuji Tachikawa
in collaboration with Mayuko Yamashita

May, 2023

The paper is written as a math paper, so l'd like to present a summary for string theorists.

It touches upon the following topics:

- non-susy heterotic branes
- classification of 2d spin holomorphic CFTs
[2303.16917]
- discrete part of the Green-Schwarz coupling
- Stolz-Teichner conjecture,
- and more ...

The Segal-Stolz-Teichner conjecture says

$$
\mathrm{TMF}_{d}=\frac{\left\{\begin{array}{c}
2 \mathrm{~d} \mathcal{N}=(\mathbf{0}, \mathbf{1}) \text { supersymmetric theory } \\
\text { with } \boldsymbol{d}=2\left(c_{\boldsymbol{R}}-\boldsymbol{c}_{\boldsymbol{L}}\right)
\end{array}\right\}}{\text { continuous deformation }}
$$

[Segal 1988] [Stolz-Teichner 2002] [Stolz-Teichner 1108.0189]

Question:

How do we detect the deformation classes?

General answer:

Find functions
$f:\{$ SQFTs $\} \rightarrow$ numbers
which are invariant under deformations.

Classic example:

- the generating function of the Witten index of the system on R-sector \boldsymbol{S}^{1} for each value of \boldsymbol{L}_{0} :

$$
\begin{aligned}
Z_{\text {elliptic }} & =\operatorname{tr}_{\mathcal{H}_{S^{1}}^{R}}(-1)^{\boldsymbol{F}_{R}} q^{L_{0}-c_{L} / 24} \overline{\boldsymbol{q}}^{\bar{L}_{0}-c_{R} / 24} \\
& =\operatorname{tr}_{\left.\mathcal{H}_{S^{1}}^{R}\right|_{\text {right-moving vac. }}(-\mathbf{1})^{\boldsymbol{F}_{R}} q^{L_{0}-c_{L} / \mathbf{2 4}}}
\end{aligned}
$$

- Nonzero only when $d=2\left(c_{R}-c_{L}\right) \equiv 0 \bmod 4$.

Another example:
Mod-2 elliptic genus [YT-Yamashita-Yonekura 2302.07548]

- the generating function of the mod-2 Witten index of the system on R-sector \boldsymbol{S}^{1} for each value of $\boldsymbol{L}_{\mathbf{0}}$

$$
\begin{aligned}
Z_{\text {elliptic }} & ={ }^{"} \operatorname{tr}_{\mathcal{H}_{S^{1}}^{R}}(+1)^{F_{R}} " q^{L_{0}-c_{L} / 24} \bar{q}^{\bar{L}_{0}-c_{R} / \mathbf{2 4}} \\
& =" \operatorname{tr}_{\mathcal{H}_{S^{1}}^{R} \text { lright-moving vac. }}(+\mathbf{1})^{F_{R}} " q^{L_{0}-c_{L} / \mathbf{2 4}}
\end{aligned}
$$

- Nonzero only when $d=2\left(c_{R}-c_{L}\right) \equiv 1,2 \bmod 8$.

Question:

Do ordinary and mod-2 elliptic genus characterize deformation classes?
Answer:
No, if you believe the Stolz-Teichner conjecture.

Bunke-Naumann invariant

[Bunke-Naumann 0912.4875]
[Gaiotto,Johnson-Freyd,Witten1902.10249]
[Gaiotto,Johnson-Freyd 1904.05788]
[Yonekura 2207.13858]
considered a subtler invariant, which assigns e.g.

$$
\mathcal{N}=(0,1) S^{3} \sigma \text {-model with } \int \boldsymbol{H}=k
$$

the value

$$
k \in \mathbb{Z}_{\mathbf{2 4}}
$$

Can be non-zero when $d=2\left(c_{R}-c_{L}\right) \equiv 3 \bmod 24$.

Question:

Does the combination of ordinary or mod-2 elliptic genus and Bunke-Naumann invariant completely detect deformation classes?

Answer:

Still no, assuming Stolz-Teichner conjecture.

Let $\boldsymbol{A}_{\boldsymbol{d}}$ be the subgroup of $\mathbf{T M F}_{\boldsymbol{d}}$ whose ordinary/mod-2 elliptic genus is zero.

In the range $-\mathbf{3 1} \leq \boldsymbol{d} \leq \mathbf{9}$, the nonzero cases are:

$$
\begin{array}{rll}
A_{3}=\mathbb{Z}_{24}, & A_{6}=\mathbb{Z}_{2}, \quad A_{8}=\mathbb{Z}_{2}, \quad A_{9}=\mathbb{Z}_{2}, \ldots \\
& A_{-28}=\mathbb{Z}_{2}, \quad A_{-30}=\mathbb{Z}_{2}, \quad A_{-31}=\mathbb{Z}_{2}, \ldots
\end{array}
$$

$A_{3}=\mathbb{Z}_{24}$ is detected by Bunke-Naumann invariant, but what are the others?

Let $\boldsymbol{A}_{\boldsymbol{d}}$ be the subgroup of $\mathbf{T M F}_{\boldsymbol{d}}$ whose ordinary/mod-2 elliptic genus is zero.

In the range $-\mathbf{3 1} \leq \boldsymbol{d} \leq \mathbf{9}$, the nonzero cases are:

$$
\begin{array}{lll}
A_{3}=\mathbb{Z}_{24}, & A_{6}=\mathbb{Z}_{2}, & A_{8}=\mathbb{Z}_{2},
\end{array} A_{9}=\mathbb{Z}_{2}, \ldots,
$$

$A_{3}=\mathbb{Z}_{24}$ is detected by Bunke-Naumann invariant, but what are the others?
$\boldsymbol{A}_{\mathbf{3 , 6 , 8}, \mathbf{9}}$ are $\boldsymbol{\mathcal { N }}=(\mathbf{0}, \mathbf{1}) \mathrm{W} Z \mathrm{~W}$ models on
$S U(2)$
$S U(2)^{2}$
$S U(3)$
$S U(2)^{3}$

Let $\boldsymbol{A}_{\boldsymbol{d}}$ be the subgroup of $\mathbf{T M F}_{\boldsymbol{d}}$ whose ordinary/mod-2 elliptic genus is zero.

In the range $-\mathbf{3 1} \leq \boldsymbol{d} \leq \mathbf{9}$, the nonzero cases are:

$$
A_{3}=\mathbb{Z}_{24}, \quad A_{6}=\mathbb{Z}_{2}, \quad A_{8}=\mathbb{Z}_{2}, \quad A_{9}=\mathbb{Z}_{2}, \ldots
$$

Let $\boldsymbol{A}_{\boldsymbol{d}}$ be the subgroup of $\mathbf{T M F}_{\boldsymbol{d}}$ whose ordinary/mod-2 elliptic genus is zero.

In the range $-\mathbf{3 1} \leq \boldsymbol{d} \leq \mathbf{9}$, the nonzero cases are:

$$
A_{3}=\mathbb{Z}_{24}, \quad A_{6}=\mathbb{Z}_{2}, \quad A_{8}=\mathbb{Z}_{2}, \quad A_{9}=\mathbb{Z}_{2}, \ldots
$$

What are $\boldsymbol{A}_{-28,-30,-31}$?

Let $\boldsymbol{A}_{\boldsymbol{d}}$ be the subgroup of $\mathbf{T M F}_{\boldsymbol{d}}$ whose ordinary/mod-2 elliptic genus is zero.

In the range $-\mathbf{3 1} \leq \boldsymbol{d} \leq \mathbf{9}$, the nonzero cases are:

In addition, mathematicians say that

$$
A_{d} \longleftrightarrow A_{-22-d}
$$

are Pontryagin dual if $d \not \equiv 3 \bmod 24$:

\[

\]

What is this pairing, physically?

Here the classification of spin holomorphic CFTs comes in.
Stolz-Teichner conjecture concerns $\boldsymbol{\mathcal { N }}=(\mathbf{0}, \mathbf{1})$ SQFTs and $d=2\left(c_{R}-c_{L}\right)$.

Purely left-moving (i.e. $c_{L}>0, c_{R}=0$) non-supersymmetric modular-invariant spin CFTs are actually $\mathcal{N}=(0,1)$ SQFTs with $d=-2 c_{L}$.

These are classified recently in
[Boyle Smith, Lin, YT, Zheng 2303.16917]
[Rayhaun 2303.16921]
[Höhn-Möller 2303.17190]

$$
\begin{aligned}
& \left(c_{L} \leq 16\right) \\
& \left(c_{L} \leq 24\right) \\
& \left(c_{L} \leq 24\right)
\end{aligned}
$$

c_{L}	$-2 c_{L}$			
16	-32	$E_{8} \times E_{8}$,	$s o(32)$,	so $(16) \times s o(16)$
$\frac{31}{2}$	-31	$\left(E_{8}\right)_{2}$		
15	-30	$s u(16)$		
14	-28	$E_{7} \times E_{7}$		
12	-24	$s o(24)$		
\vdots	\vdots	\vdots		

- The red ones have zero ordinary and/or mod-2 elliptic genus,
- and appear exactly when \boldsymbol{A}_{-d} are nontrivial.
- They are very likely SQFT representatives of $\boldsymbol{A}_{-\mathbf{2 8},-\mathbf{3 0},-\mathbf{3 1}}$.

Furthermore, these spin-CFTs provide the angular part of the non-supersymmetric heteortic $\boldsymbol{p}=4$-, 6 - and 7 -branes of [Kaidi-Ohmori-YT-Tachikawa 2303.17623].

$$
\begin{array}{lcccc}
& \underbrace{\mathbb{R}^{p, 1} \times \mathbb{R}_{>0}} & \times \underbrace{S^{8-p}+\text { current algebra }}_{\downarrow \text { RG }} & \\
A_{9} & d=9 & \leftrightarrow & \left(E_{8}\right)_{2} & A_{-31} \\
A_{8} & d=8 & \leftrightarrow & s u(16) & A_{-30} \\
A_{6} & d=6 & \leftrightarrow & E_{7} \times E_{7} & A_{-28}
\end{array}
$$

This arises exactly on the places where the pairing $\boldsymbol{A}_{\boldsymbol{d}} \leftrightarrow \boldsymbol{A}_{-\boldsymbol{d} \mathbf{2 2}}$ mathematicians constructed arises.

Concretely, take the pair

$$
A_{6} \quad d=6 \quad \leftrightarrow \quad E_{7} \times E_{7} \quad A_{-28}
$$

Question:

What would $A_{6} \simeq \mathbb{Z}_{2}$ generated by

$$
S U(2) \times S U(2) \text { with } H \text { flux }
$$

provide for heterotic string compactification with $\boldsymbol{E}_{\boldsymbol{7}} \times \boldsymbol{E}_{\boldsymbol{7}}$?

Answer:

$S U(2) \simeq S^{3}$ is trivial in spin bordism, but is not trivial with $\int \boldsymbol{H}=\mathbf{1}$ in string bordism, a bordism theory with $\boldsymbol{d H}=\frac{1}{2} p_{1}(\boldsymbol{R})$ appropriate for heterotic string theory.
$S^{3} \times S^{3}$ with $\int \boldsymbol{H}=1$ on both sides is a \mathbb{Z}_{2} string bordism class.

There can be discrete grativational/ \boldsymbol{H}-field theta angle which assigns $\mathbf{- 1}$ for this torsion class.

Once the internal CFT for the heterotic compactification is fixed, such discrete gravitational/ H-field theta angle should be computable.

For a \boldsymbol{d}-dimensional gravitational/ \boldsymbol{H}-field theta angle, the internal CFT should have

$$
c_{L}=26-d, \quad c_{R}=\frac{3}{2}(10-d)
$$

therefore it is an element in

$$
\mathbf{T M F}_{2\left(c_{R}-c_{L}\right)=-22-d}
$$

which realizes exactly the pairing

$$
d \longleftrightarrow-22-d
$$

predicted by algebraic topologists!

So the natural guess is that the Pontryagin=Anderson dual pairing

$$
A_{d} \longleftrightarrow A_{-22-d}
$$

mathematicians had constructed is actually the gravitational/ \boldsymbol{H}-field theta angle which is part of the Green-Schwarz coupling.

To show this, with Yamashita (and with a lot of help from Yonekura) we developed the theory of discrete, global part of Green-Schwarz cancellation and coupling using stable homotopy theory.

Very schematically, the perturbative Green-Schwarz cancellation and coupling goes as:

- \boldsymbol{P}_{d+2} has a factor of $\frac{1}{2} p_{1}(R)-n(F)$
- therefore can be divided by it and has the form

$$
P_{d+2}=\left(\frac{1}{2} p_{1}(R)-n(F)\right) X_{d-2}
$$

- then we have $\int B \wedge \boldsymbol{X}_{\boldsymbol{d - 2}}$

Including the global part, we need to show

- The global version of \boldsymbol{P}_{d+2} has a factor of $\frac{1}{2} p_{1}(R)-n(F)$. This we already did in [YT-Yamashita 2108.13542].
- The global version of $\boldsymbol{P}_{\boldsymbol{d + 2}}$ can be divided by it in an appropriate sense.
- It gives the global version of G.S. coupling, and furthermore
- It equals the Anderson duality of TMF.

Interestingly for me, the step that

- the global version of P_{d+2} can be divided by $\frac{1}{2} p_{1}(R)-n(F)$ in an appropriate sense
was pointed out by Prof. Kawazumi while Yamashita was giving a seminar on [YT-Yamashita 2108.13542] to mathematicians, in the form

A primary invariant vanished
so there should be a nonzero secondary invariant.
What's the physics interpretation?

This was when I was working on non-supersymmetric heterotic strings. After a while, I realized that this might be the Green-Schwarz coupling.

The rest is history.

