Main points of [2305.06196] for string theorists

Yuji Tachikawa in collaboration with Mayuko Yamashita

May, 2023

The paper is written as a math paper, so I'd like to present a summary for string theorists.

It touches upon the following topics:

- non-susy heterotic branes
- classification of 2d spin holomorphic CFTs
- discrete part of the Green-Schwarz coupling
- Stolz-Teichner conjecture,
- and more ...

[2303.17623] [2303.16917] The Segal-Stolz-Teichner conjecture says

$$\mathbf{TMF}_{d} = \frac{\left\{\begin{array}{c} 2d \,\mathcal{N}=(0,1) \text{ supersymmetric theory} \\ \text{with } d = 2(c_{R} - c_{L}) \end{array}\right\}}{\text{continuous deformation}}$$

[Segal 1988] [Stolz-Teichner 2002] [Stolz-Teichner 1108.0189]

Question:

How do we detect the deformation classes?

General answer:

Find functions

$f: {SQFTs} \rightarrow numbers$

which are invariant under deformations.

Classic example:

Elliptic genus

[Witten 1989]

 the generating function of the Witten index of the system on R-sector S¹ for each value of L₀:

$$egin{aligned} Z_{ ext{elliptic}} &= ext{tr}_{\mathcal{H}^R_{S^1}} (-1)^{F_R} q^{L_0 - c_L/24} ar{q}^{ar{L}_0 - c_R/24} \ &= ext{tr}_{\mathcal{H}^R_{S^1}|_{ ext{right-moving vac.}}} (-1)^{F_R} q^{L_0 - c_L/24} \end{aligned}$$

• Nonzero only when $d = 2(c_R - c_L) \equiv 0 \mod 4$.

Another example:

Mod-2 elliptic genus

[YT-Yamashita-Yonekura 2302.07548]

• the generating function of the **mod-2** Witten index of the system on R-sector S^1 for each value of L_0

$$egin{aligned} Z_{ ext{elliptic}} &= ext{``tr}_{\mathcal{H}^R_{S1}}(+1)^{F_R} ext{''}q^{L_0-c_L/24}ar{q}^{ar{L}_0-c_R/24} \ &= ext{``tr}_{\mathcal{H}^R_{S1}|_{ ext{right-moving vac.}}}(+1)^{F_R} ext{''}q^{L_0-c_L/24} \end{aligned}$$

• Nonzero only when $d = 2(c_R - c_L) \equiv 1, 2 \mod 8$.

Question:

Do ordinary and mod-2 elliptic genus characterize deformation classes ?

Answer:

No, if you believe the Stolz-Teichner conjecture.

Bunke-Naumann invariant

[Bunke-Naumann 0912.4875] [Gaiotto,Johnson-Freyd,Witten1902.10249] [Gaiotto,Johnson-Freyd 1904.05788] [Yonekura 2207.13858]

considered a subtler invariant, which assigns e.g.

$$\mathcal{N}{=}(0,1)~S^3~\sigma ext{-model}$$
 with $\int H=k$

the value

 $k \in \mathbb{Z}_{24}.$

Can be non-zero when $d = 2(c_R - c_L) \equiv 3 \mod 24$.

Question:

Does the combination of **ordinary or mod-2 elliptic genus** and **Bunke-Naumann invariant** completely detect deformation classes?

Answer:

Still no, assuming Stolz-Teichner conjecture.

In the range $-31 \le d \le 9$, the nonzero cases are:

 $A_3 = \mathbb{Z}_{24}$ is detected by Bunke-Naumann invariant, but what are the others?

In the range $-31 \le d \le 9$, the nonzero cases are:

 $A_3 = \mathbb{Z}_{24}$ is detected by Bunke-Naumann invariant, but what are the others?

 $A_{3,6,8,9}$ are $\mathcal{N}=(0,1)$ WZW models on

SU(2) $SU(2)^2$ SU(3) $SU(2)^3$

In the range $-31 \le d \le 9$, the nonzero cases are:

$$A_3 = \mathbb{Z}_{24}, A_6 = \mathbb{Z}_2, A_8 = \mathbb{Z}_2, A_9 = \mathbb{Z}_2, \dots$$
$$A_{-28} = \mathbb{Z}_2, A_{-30} = \mathbb{Z}_2, A_{-31} = \mathbb{Z}_2, \dots$$
$$A_3 = \mathbb{Z}_{24} \text{ is detected by Bunke-Naumann invariant,}$$
but what are the others?
$$A_{3,6,8,9} \text{ are } \mathcal{N} = (0,1) \text{ WZW models on}$$
$$SU(2) \qquad SU(2)^2 \qquad SU(3) \qquad SU(2)^3$$

In the range $-31 \le d \le 9$, the nonzero cases are:

$$A_3 = \mathbb{Z}_{24}, A_6 = \mathbb{Z}_2, A_8 = \mathbb{Z}_2, A_9 = \mathbb{Z}_2, \dots$$
$$A_{-28} = \mathbb{Z}_2, A_{-30} = \mathbb{Z}_2, A_{-31} = \mathbb{Z}_2, \dots$$
$$A_3 = \mathbb{Z}_{24} \text{ is detected by Bunke-Naumann invariant, but what are the others?}$$
$$A_{3,6,8,9} \text{ are } \mathcal{N} = (0,1) \text{ WZW models on}$$
$$SU(2) \qquad SU(2)^2 \qquad SU(3) \qquad SU(2)^3$$

What are $A_{-28,-30,-31}$?

In the range $-31 \le d \le 9$, the nonzero cases are:

In addition, mathematicians say that

 $A_d \longleftrightarrow A_{-22-d}$

are Pontryagin dual if $d \not\equiv 3 \mod 24$:

What is this pairing, physically?

Here the classification of spin holomorphic CFTs comes in.

Stolz-Teichner conjecture concerns $\mathcal{N}=(0,1)$ SQFTs and $d = 2(c_R - c_L)$.

Purely left-moving (i.e. $c_L > 0$, $c_R = 0$) **non-supersymmetric** modular-invariant spin CFTs are **actually** $\mathcal{N}=(0,1)$ **SQFTs with** $d = -2c_L$.

These are classified recently in [Boyle Smith, Lin, YT, Zheng 2303.16917] [Rayhaun 2303.16921] [Höhn-Möller 2303.17190]

 $egin{aligned} (c_L \leq 16) \ (c_L \leq 24) \ (c_L \leq 24) \ (c_L \leq 24) \end{aligned}$

- The red ones have zero ordinary and/or mod-2 elliptic genus,
- and appear exactly when A_{-d} are nontrivial.
- They are very likely SQFT representatives of $A_{-28,-30,-31}$.

Furthermore, these spin-CFTs provide the angular part of the non-supersymmetric heteortic p = 4-, 6- and 7-branes of [Kaidi-Ohmori-YT-Tachikawa 2303.17623].

	$\mathbb{R}^{p,1} imes\mathbb{R}_{>0}$	×	S^{8-p} + current algebra	
			↓RG	
A_9	d=9	\leftrightarrow	$(E_8)_2$	A_{-31}
A_8	d = 8	\leftrightarrow	su(16)	A_{-30}
A_6	d = 6	\leftrightarrow	$oldsymbol{E_7} imes oldsymbol{E_7}$	A_{-28}

This arises exactly on the places where the pairing $A_d \leftrightarrow A_{-d-22}$ mathematicians constructed arises.

Concretely, take the pair

 $A_6 \quad d = 6 \quad \leftrightarrow \quad E_7 \times E_7 \quad A_{-28}$

Question:

What would $A_6 \simeq \mathbb{Z}_2$ generated by

SU(2) imes SU(2) with H flux

provide for heterotic string compactification with $E_7 \times E_7$?

Answer:

 $SU(2) \simeq S^3$ is trivial in spin bordism, but is **not trivial** with $\int H = 1$ in **string bordism**, a bordism theory with $dH = \frac{1}{2}p_1(R)$ appropriate for heterotic string theory.

$$S^3 imes S^3$$
 with $\int H = 1$ on both sides is a \mathbb{Z}_2 string bordism class.

There can be discrete grativational/H-field theta angle which assigns -1 for this torsion class.

Once the internal CFT for the heterotic compactification is fixed, such discrete gravitational/*H*-field theta angle should be computable.

For a *d*-dimensional gravitational/*H*-field theta angle, the internal CFT should have

$$c_L = 26 - d, \qquad c_R = \frac{3}{2}(10 - d)$$

therefore it is an element in

 $\mathrm{TMF}_{2(c_R-c_L)=-22-d}$

which realizes exactly the pairing

 $d \longleftrightarrow -22 - d$

predicted by algebraic topologists!

So the natural guess is that the Pontryagin=Anderson dual pairing

 $A_d \longleftrightarrow A_{-22-d}$

mathematicians had constructed is actually the gravitational/*H*-field theta angle which is part of the Green-Schwarz coupling.

To show this, with Yamashita (and with a lot of help from Yonekura) we developed **the theory of discrete, global part of Green-Schwarz cancellation and coupling** using stable homotopy theory.

Very schematically, the perturbative Green-Schwarz cancellation and coupling goes as:

- P_{d+2} has a factor of $\frac{1}{2}p_1(R) n(F)$
- therefore can be divided by it and has the form

 $P_{d+2} = (\frac{1}{2}p_1(R) - n(F))X_{d-2}$

• then we have $\int B \wedge X_{d-2}$

Including the global part, we need to show

- The global version of P_{d+2} has a factor of $\frac{1}{2}p_1(R) n(F)$. This we already did in [YT-Yamashita 2108.13542].
- The global version of P_{d+2} can be divided by it in an appropriate sense.
- It gives the global version of G.S. coupling, and furthermore
- It equals the Anderson duality of TMF.

Interestingly for me, the step that

• the global version of P_{d+2} can be divided by $\frac{1}{2}p_1(R) - n(F)$ in an appropriate sense

was pointed out by Prof. Kawazumi while Yamashita was giving a seminar on [YT-Yamashita 2108.13542] to mathematicians, in the form

A primary invariant vanished so there should be a nonzero secondary invariant. What's the physics interpretation?

This was when I was working on non-supersymmetric heterotic strings. After a while, I realized that this might be the Green-Schwarz coupling.

The rest is history.