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Introduction

Quantum field theory deals with particles moving in the space-time.

In the first quantized approach, what we do is:
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7→
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Instead, string theory deals with strings moving in the space-time.

What we do is:
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Two noteworthy features of string theory:

1. It contains quantized gravity.

String theory wasn’t devised to quantize gravity.

But treating relativistic strings quantum mechanically,
you’re force-fed with quantized gravity.
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2. It’s mysteriously consistent.

If you start analyzing string theory,
you find many places where it can fail to be consistent.

But it somehow manages to remain consistent,
thanks to various mysterious mathematical coincidences.

Today’s talk is about one of such instances,

the absence of anomalies in string theory.
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Anomalies

A D-dimensional QFT T can have anomalies.

Let ZT [MD, g] be its partition function
on the manifold MD with a metric g.

Let g′ ∼ g be a metric diffeomorphic to g.

In an anomalous theory,

ZT [MD; g′] = eiθ(M ;g′,g)ZT [MD; g],

where the phase θ is computable but nonzero.

This poses a problem in quantum gravity, since we’d like to perform
the path integral of ZT [MD; g′] over the diffeomorphism class of g.
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In a more modern perspective, an anomalous theory T on MD lives on
the boundary of another theory AT on ND+1, where MD = ∂ND+1:

The partition function of the combined system is well-defined,
but that of the boundary theory alone is not.

Then you can’t perform the path integral of the metric
only on the boundary.

String theory is inconsistent unless Astring is trivial.
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The theory AT characterizing the anomaly of a theory T is invertible.
It consists of two parts, the perturbative part and the global part.

The perturbative part specifies AT on ND+1 = ∂XD+2

via
ZAT [ND+1] = exp(2πi

∫
XD+2

IT )

where I is a polynomial of characteristic classes, known as
the anomaly polynomial of T .
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The same IT gives the following relation: if

then
ZAT [ND+1] = exp(2πi

∫
XD+2

IT )ZAT [N
′
D+1].
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Assuming the perturbative part IT vanishes, we see that

implies
ZAT [ND+1] = ZAT [N

′
D+1].

This means that AT determines a map

ZAT : Ωstructure
D+1 → U(1)

where Ωstructure
D+1 is the group of equivalence classes ND ∼ N ′

D,
known as the bordism group. This is the global anomaly.

(“structure” can be spin, oriented, …, depending on your setup.)
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Anomalies of 10d heterotic string theory
10d heterotic string theory is an elaborate machine with

Input: a modular invariant 2d CFT Tworldsheet

with (cL, cR) = (16, 0)

Output: a 10d quantum gravity QG[Tw.s.]
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Let us first discuss the anomaly of the worldsheet theory.

The 10d spacetime is equipped with a three-form H with

dH =
p1(Mtarget space)

2
.

Why?

The heterotic worldsheet has 10 right-moving fermions coming from the
pullback f∗(TMtarget space) of the tangent bundle of the spacetime.
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These fermions, taking values in the pullback of TMt.s., has the anomaly

ZAw.s.fermion[Y3] = exp(−2πi

∫
X4

f∗(p1(Mtarget space))

2
).

which prevents us from doing the path integral over the worldsheet.
Luckily, heterotic string theory has a 3-form field H with the coupling

ZAfrom H
[Y3] = exp(2πi

∫
Y3

f∗(H)).

and dH = p1(Mtarget space)/2, so

ZAtot = ZAw.s.fermionZAfrom H
= 1.

Now you can path-integrate over the worldsheet.
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Anomaly of the spacetime theory

10d heterotic string theory is an elaborate machine with

Input: a modular invariant 2d CFT Tworldsheet

with (cL, cR) = (16, 0)

Output: a 10d quantum gravity QG[Tw.s.]

The 2d theory Tw.s. has one state with L0 = 0, i.e. the vacuum.
Let N be the number of states with L0 = 1.

The 2d vacuum state gives 10d gravitino (a spin-3/2 fermion).
Each 2d state with L0 = 1 gives a 10d fermion (of spin-1/2).
So there will be N 10d fermions.
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The anomaly polynomial of a 10d gravitino is

Igravitino =
p3
1

3780
−

13p1p2

756
+

31p3

3780
=

31p3

3780

while that of N spin-1/2 fermions is

NI1/2 = N

[
−

31p3
1

967680
+

11p1p2

241920
−

p3

60480

]
= −

Np3

16 · 3780
.

Here we used the fact that heterotic string theory has 3-form field H
such that dH = p1/2. As recalled,
this was required for the anomaly cancellation on the worldsheet.

We see Igravitino + NI1/2 = 0 iff N = 31 · 16 = 496.
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10d heterotic string theory is an elaborate machine with

Input: a modular invariant 2d CFT Tworldsheet

with (cL, cR) = (16, 0)

Output: a 10d quantum gravity QG[Tw.s.]

There are only two such 2d CFTs,
based on E8 × E8 or SO(32) current algebra.
(This is now mathematically proved: [Dong-Mason, math.QA/0203005])

For both,

N =
# of states

with L0 = 1
= dimG = 496.

So Igravitino + 496I1/2 = 0.
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We can conclude this without the explicit classification.
For Tw.s. with cL = 16, its torus partition function

ZTw.s.(q) = tr qL0−c/24 = q−2/3(1 + Nq + · · · ).

should be modular invariant up to a phase.

The theory of modular functions tells us that the unique such function is

η(q)−16c4(q)
2 = q−2/3(1 − q + · · · )−16(1 + 240q + · · · )2

where η is the Dedekind eta and c4 is the normalized 4-th Eisenstein
series.

Then N is automatically 496,
guaranteeing the vanishing of the perturbative anomaly.
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How about the global anomaly?

We learned that the perturbative anomaly cancels. Therefore, when

,

we have
ZAheterotic[N11] = ZAheterotic[N

′
11].

This means that we have a homomorphism

ZAheterotic : Ω
string
11 → U(1)

where Ω
string
d is the string bordism group,

i.e. the group of equivalence classes Nd ∼ N ′
d where

every manifold in question is equipped with H solving dH = p1/2.
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Somehow Ω
string
d≤16 was computed already in [Giambalvo 1971]:

d 0 1 2 3 4 5 6 7

Ω
string
d Z Z2 Z2 Z24 0 0 Z2 0

d 8 9 10 11 12 13 14 15

Ω
string
d Z ⊕ Z2 (Z2)

2 Z6 0 Z Z3 Z2 Z2

Somehow it’s miraculously zero in the required place! Therefore

ZAheterotic : Ω
string
11 → U(1)

is automatically trivial, guaranteeing the vanishing of the global anomaly.
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Why was the bordism group of manifolds with dH = p1/2
interesting to mathematicians in 1971?

Consider tangent bundles (or more generally orthogonal bundles)
on manifolds M .

The first non-triviality is associated to π0(O(n)) = Z2,
corresponding to the class w1 ∈ H1(M,Z2).
If w1 is trivialized, we have the orientation.

The second non-triviality is associated to π1(SO(n)) = Z2,
corresponding to the class w2 ∈ H2(M,Z2).
If w2 is trivialized, we have the spin structure.

The third non-triviality is associated to π3(Spin(n)) = Z,
corresponding to the class p1/2 ∈ H4(M,Z).
If p1/2 is trivialized, we have the string structure.
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Summary so far

In 10d heterotic string theories,

The perturbative anomaly cancels,
because the theory of modular forms knew
the ratio 496 between Igravitino and Ispin-1/2 fermion.

The global anomaly vanishes,
because for some strange reasons Ωstring

11 is trivial.
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The rest of the talk: lower-dim’l compactifications

In lower-dimensional heterotic compactifications,

the perturbative anomaly is known to be canceled in a similar manner:
the theory of modular forms is known to produce precisely the required
number of fermion fields.

This was shown by various subsets of
{Lerche, Nilsson, Schellekens and Warner} in the late 1980s.

How about the global anomaly?
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Well, to start with, no general theory of global anomalies was known
until very recently, (except perhaps implicitly to a very, very small
number of people such as Freed or Witten).

Luckily, the study of SPT phases on the cond-mat side from around 2010
sparked a lot of activities in hep-th and math.AT, and we now have a
veritable understanding of it using bordisms, the viewpoint from which I
already used in this talk.

This turns out to be crucial. Let us continue.
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Lower dimensional heterotic compactifications

10d heterotic string theory has the following structure
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A geometric compactifications to D dimensions have the form
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More general nongeometric compactifications have the form
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Anomalies are guaranteed to cancel in geometric compactifications,
since

30 / 73



This doesn’t work with more general compactifications

How should we proceed? Let us first proceed naively…

31 / 73



4d Witten anomaly

Consider the case D = 4. The worldsheet theory is a 2d N=(0, 1)
SCFT Tw.s. with

(cL, cR) = (16 + (10 − 4),
3

2
(10 − 4)) = (22, 9).

If Tw.s. has su(2) flavor symmetry, the resulting 4d quantum gravity
theory has su(2) gauge group.

The R-sector states of Tw.s. with (L0, L̄0) = (1, 0) give 4d chiral
fermions, where 4d chirality is given by the right-moving fermion
number (−1)FR on the worldsheet.
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A fermion in the doublet of su(2) has a global anomaly associated to

π4(SU(2)) = Ω
spin
4 (BSU(2)) = Z2.

Let us say the doublet irrep of su(2) appears N2 times in the R-sector
states of Tw.s. with (L0, L̄0) = (1, 0).

Then the 4d quantum gravity theory obtained from Tw.s. is afflicted with
Witten anomaly unless

N2 ≡ 0 mod 2.
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2d Z24 anomaly

Consider the case D = 2. The worldsheet theory is a 2d N=(0, 1)
SCFT Tw.s. with

(cL, cR) = (16 + (10 − 2),
3

2
(10 − 2)) = (24, 12).

The R-sector states of Tw.s. with (L0, L̄0) = (1, 0) give 2d spacetime
chiral fermions, where 2d spacetime chirality is given by the
right-moving fermion number (−1)FR on the worldsheet.

Let us say the net number of chiral fermions is N .
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Their combined anomaly polynomial is

N
p1

48
= 0

since dH = p1/2. The perturbative part of the anomaly
is automatically absent.

But this can leave a global anomaly, because this cancellation was
achieved by adding a term NH/24 in the 3d anomaly theory.

What I mean is the following:
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That is, the global anomaly of this 2d heterotic system is characterized by

ZAhet : Ω
string
3 = Z24 → U(1)

which is given by

Z24 3 1 7→ exp(2πi
N

24
) ∈ U(1).

Therefore, the theory is afflicted with the Z24 global anomaly
unless the worldsheet theory Tw.s. is such that

N := trV (−1)FR ≡ 0 mod 24

where V is the space of R-sector states with (L0, L̄0) = (1, 0).
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So the questions are:

Let Tw.s. be a 2d N=(0, 1) SCFT with central charge

(cL, cR) =

{
(22, 9) for D = 4,

(24, 12) for D = 2.

Let V be the space of R-sector states with (L0, L̄0) = (1, 0).
Heterotic string theory constructed from Tw.s. has an anomaly unless

V contains an even number of 2-dim’l irrep of SU(2) (D = 4),

trV (−1)FR is divisible by 24 (D = 2).

These are the kind of questions physicists don’t know how to answer at
present. Math comes to the rescue!
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Topological modular forms

Topological modular forms, TMF, generalize and refine
the ring of modular forms.

It was mathematically constructed around 2000 by Hopkins et al., using
an amalgam of algebraic topology and algebraic geometry.

[Hopkins math.AT/0212397]

We have Abelian groups TMFν for ν ∈ Z.

For our purpose, the conjecture of Segal-Stolz-Teichner is crucial:
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The Segal-Stolz-Teichner conjecture says

TMFν =

{ 2d N=(0, 1) supersymmetric theory
with ν = 2(cR − cL)

}
continuous deformation

[Segal 1988] [Stolz-Teichner 2002] [Stolz-Teichner 1108.0189]

Here allowed deformations are:

• relevant / marginal / irrelevant

• going up and down RG flows

• adding a sector which spontaneously breaks SUSY
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The Segal-Stolz-Teichner conjecture says

TMFν =

{ 2d N=(0, 1) supersymmetric theory
with ν = 2(cR − cL)

}
continuous deformation

[Segal 1988] [Stolz-Teichner 2002] [Stolz-Teichner 1108.0189]

An N=(0, 1) SCFT T with 2(cR − cL) = ν should then
determine an element

[T ] ∈ TMFν .

Why is this conjecture plausible?
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Mathematicians constructed a map ϕW ,
which for us extracts the elliptic genus

ϕW : TMFν →
{ modular forms of

weight ν
2
with

integer coeff.s and poles

}
∈ ∈

a theory T 7→ ϕW (T ) = η(q)νZell(T ; q)

where
Zell(T ; q) = trR(−1)FRqL0−cL/24

is physicists’ elliptic genus;
the factor of η(q)ν is to improve modular invariance properties.

Mathematicians call ϕW the Witten genus.
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Mathematicians also constructed a map σ,
which is the quantization map under the conjecture:

σ :
{ ν-dim’l manifold

with dH = p1

2

}
→ TMFν

∈ ∈

(M,H) 7→ N=(0, 1) sigma model
on (M,H)

Physicists know that there is a sigma model anomaly unless
dH = p1/2. Mathematicians know this condition in their own way.
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And the composition

{ ν-dim’l manifold
with dH = p1

2

}
σ→ TMFν

ϕW→
{ modular forms of

weight ν
2
with

integer coeff.s and poles

}
∈ ∈ ∈

(M,H) 7→ sigma model
on (M,H)

7→ ϕW (σ(M,H)) =

η(q)νZell(σ(M,H); q)

does what physicists expect.

The computation of this part
goes back to [Witten’s elliptic genus paper].
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Solution to the 2d Z24 anomaly issue

Let Tw.s. be a 2d N=(0, 1) SCFT with central charge

(cL, cR) = (24, 12).

Let V be the space of R-sector states with (L0, L̄0) = (1, 0).
Heterotic string theory constructed from Tw.s. has an anomaly
unless trV (−1)FR is divisible by 24.

In other words, unless the elliptic genus of Tw.s.

Zell(Tw.s.; q) = trR(−1)FRqL0−cL/24

= aq−1 + b + O(q1)

is such that b is divisible by 24.
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Let Tw.s. be a 2d N=(0, 1) SCFT with central charge

(cL, cR) = (24, 12).

It determines a class [Tw.s.] ∈ TMF2(cR−cL) = TMF−24, and

ϕW ([Tw.s.]) = η(q)24Zell(Tw.s.; q) = η(q)−24(aq−1 + b + · · · ).

This is a modular form
of weight −12
with integer coefficients
and poles of order at most 2.
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Using standard facts about modular functions, we can conclude

ϕW (Tw.s.; q) = aΘ3
E8

∆−2 + (−744a + b)∆−1

where
ΘE8 = 1 + 240q + · · ·

is the theta function of the E8 lattice and

∆ = η(q)24

is the modular discriminant.

Now, a theorem of Hopkins concerning ϕW says that

b∆k is in the image of ϕW from TMF24k

iff b is a multiple of
24

gcd(24, k)
.

Here k = −1, so b is a multiple of 24. Done.
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4d question?

Let Tw.s. be a 2d N=(0, 1) SCFT with central charge

(cL, cR) = (22, 9)

with su(2) symmetry.
Let V be the space of R-sector states with (L0, L̄0) = (1, 0).

Heterotic string theory constructed from Tw.s. has an anomaly
unless V contains an even number of 2-dim’l irrep of SU(2).
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TMF should be able to answer that, since such a Tw.s

should determine a class

[Tw.s.] ∈ TMF
SU(2)
2(9−22)

whose image under ϕW should know this mod-2 behavior,
just as in the case of Z24 anomaly we discussed.

But this approach hasn’t worked yet, since

• TMF
SU(2)
−26 has not been computed.

• The image under ϕW has not been determined either.

Even if it worked, you would then be forced to analyze different
spacetime dimensions D with different symmetry groups G one by one.
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General solution

Again, math comes to the rescue: there is a way to solve the anomaly
question, once and for all, for every (D,G) at once.

This is where the help from my wonderful collaborator
Mayuko Yamashita was essential.

It uses a lot of algebraic topology.

Let me first try to give some rough ideas behind the derivation.
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Rough ideas behind the general solution

Recall that Witten’s SU(2) global anomaly in 4d is associated to
a nontrivial loop in the space of gauge configurations:

In particular, there is a loop associated to π4(SU(2)) = Z2,
which was responsible for the gauge anomaly.
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Now consider heterotic compactifications:

The global anomaly (of traditional type) is associated to
nontrivial loops in such configurations.
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In fact, this is just a special case of

and the global anomaly (of traditional type) is associated to
nontrivial loops in such configurations.
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So, what can cause the global anomaly (of traditional type) is
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Now, the Stolz-Teichner conjecture in the form I quoted was

TMFν =

{ 2d N=(0, 1) supersymmetric theory
with ν = 2(cR − cL)

}
continuous deformation

But this can also be written as

TMFν = π0

 space of
2d N=(0, 1) supersymmetric theories

with ν = 2(cR − cL)


whose generalized form is

TMFν+k = πk

 space of
2d N=(0, 1) supersymmetric theories

with ν = 2(cR − cL)


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What can cause the global anomaly of heterotic strings is

TMFν+1 = π1

 space of
2d N=(0, 1) supersymmetric theories

with ν = 2(cR − cL)


where

ν = 2(15 − 26) = −22.

But it is known that TMF−21 = 0, so there is no such nontrivial loop in
the configuration space of heterotic string theories, and therefore there
can be no global anomaly.
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A more precise description

Recall the modern general theory of anomalies:
the anomaly of a D-dimensional theory with spacetime structure S
and internal symmetry G is characterized by

IZΩ
S
D+2(BG)

which fits into

0 →

global anomaly︷ ︸︸ ︷
Hom(ΩS

D+1(BG)|tor, U(1))

→ (IZΩ
S)D+2(BG) →

Hom(ΩS
D+2(BG)|free,Z)︸ ︷︷ ︸

perturbative anomaly

→ 0

This is the Anderson dual of the bordism group.
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So, the anomalies of D-dimensional string theories are characterized via
D-dimensional heterotic

string theories

with gauge symmetry G

 → (IZΩ
string)D+2(BG).
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Recall also that 2d SCFTs determine classes in TMF:
2d N=(0, 1) SCFTs with

(cL, cR) = (26 − D, 3
2
(10 − D))

with flavor symmetry G

 → TMF
2((26−D)−3

2
(10−D))

G

= TMFD+22
G

→ TMFD+22(BG).
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Recall that heterotic string theory is the machinery
2d N=(0, 1) SCFTs with

(cL, cR) = (26 − D, 3
2
(10 − D))

with flavor symmetry G

 →


D-dimensional heterotic

string theories

with gauge symmetry G

 .

60 / 73



We combine the ingredients:
2d N=(0, 1) SCFTs with

(cL, cR) = (26 − D, 3
2
(10 − D))

with flavor symmetry G




D-dimensional heterotic

string theories

with gauge symmetry G



TMFD+22(BG) (IZΩ
string)D+2(BG)

heterotic
construction

take TMF class extract anomaly

A

The homomorphism A characterizes anomalies (both perturbative and
global) of heterotic string theories. We would like to show it vanishes.
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Physically, we expect A to have various natural properties.

For example, with X → Y , the square

TMFD+22(Y )
A−→ (IZΩ

string)D+2(Y )
↓ ↓

TMFD+22(X)
A−→ (IZΩ

string)D+2(X)

should commute. Mathematically, this means that
A is a natural transformation of two
generalized cohomology theories, TMF and IZΩ

string.

As such, it is represented by an element

A ∈ [TMF,Σ−20IZΩ
string]

= [TMF ∧ Ωstring,Σ−20IZ].
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Also, D-dim’l heterotic string theory with Tw.s.,
further compactified on a d-dim’l manifold (M,H),
is (D − d)-dim’l heterotic string theory with Tw.s. × σ(M,H).

This determines a multiplication

[Tw.s.] ∈ TMF, [(M,H)] ∈ Ωstring

−→ [Tw.s.] × [σ(M,H)] ∈ TMF.

Compatibility of this multiplication with

A : TMF ∧ Ωstring → Σ−20IZ

means that A is determined by a single element B as in

A : TMF ∧ Ωstring multiplication
−−−−−−−→ TMF

B−−−−→ Σ−20IZ.
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This element B takes values in

B ∈ [TMF,Σ−20IZ] = (IZTMF)−20(pt),

which is given by

0 → Hom(TMF−21(pt)|tor, U(1))

i−−−→ (IZTMF)−20(pt)
p−−−−→

(Hom(TMF−20(pt)|free,Z) → 0.

Now, p(B) characterizes the perturbative part of the anomaly,
and is therefore known to be zero.

Therefore, B is in the image of i.

But mathematicians has computed that TMF−21(pt) = 0.

So B = 0. Done.
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Comments

Clearly we are not really done.

What I did was to transfer

the question of global anomalies of heterotic strings

to
the validity of the Segal-Stolz-Teichner conjecture

TMFν =

{ 2d N=(0, 1) supersymmetric theory
with ν = 2(cR − cL)

}
continuous deformation

65 / 73



TMFν =

{ 2d N=(0, 1) supersymmetric theory
with ν = 2(cR − cL)

}
continuous deformation

It will be very hard to get a mathematically rigorous proof.
The RHS isn’t even defined yet!

Instead, let us consider what it tells us, assuming its validity.

Many subtle properties on the LHS are known.

They translate to many subtle properties of 2d theories
which are not at all apparent to us.
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One example is the crucial input we used :

TMF−21 = 0.

This means that all 2d N=(0, 1) theories with 2(cR − cL) = −21
can be continuously connected.

How do we even begin to understand this in our own way?
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As another example, let us take TMF3 = Z24.

This means that 2d N=(0, 1) theories with 2(cR − cL) = 3
can be classified by Z24.

Examples in each class k ∈ Z24 are believed to be given by

N=(0, 1) sigma models on S3 = SU(2) with WZW level k.

How to see the mod-24 behavior in k was discussed
in [Gaiotto, Johnson-Freyd, Witten 1902.10249].

How to extract a Z24 invariant from such a theory was discussed
in [Gaiotto, Johnson-Freyd 1904.05788].
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Also, consider the theorem of Hopkins we used, concerning the image of

ϕW : TMFν →
{ modular forms of

weight ν
2
with

integer coeff.s and poles

}

∈ ∈

a theory T 7→ ϕW (T ) = η(q)νZell(T ; q).

Namely,

b∆k is in the image of ϕW from TMF24k

iff b is a multiple of
24

gcd(24, k)
.
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In our language it is given as follows.

Consider a 2d N=(0, 1) theory with 2(cR − cL) = 24k.

If its elliptic genus is constant, it is a multiple of 24/gcd(24, k).

The theories with Zell = 24/gcd(24, k) were constructed for
1 ≤ k ≤ 5 in [Gaiotto, Johnson-Freyd 1811.00589].

But even in that case, it isn’t understood
why Zell can’t be a smaller integer.
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In particular,

If the elliptic genus of 2d N=(0, 1) theory is simply 1,
then cL − cR is divisible by 288.

Conversely, there should be a 2d N=(0, 1) theory
whose elliptic genus is 1 and cL − cR = ±288.

Again the question is open.
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Summary

Today, I considered global anomalies in heterotic string theories.

Such questions can be answered using the mathematical theory of
TMF , using the Segal-Stolz-Teichner conjecture:

TMFν =

{ 2d N=(0, 1) supersymmetric theory
with ν = 2(cR − cL)

}
continuous deformation

This conjecture predicts many unexplored properties of 2d theories,
which I think are worth pursuing.
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The list of hep-th papers on TMF is not very long.

The exhaustive list is

Gaiotto, Johnson-Freyd 1811.00589
Gukov, Pei, Putrov, Vafa 1811.07884
Gaiotto, Johnson-Freyd, Witten 1902.10249
Gaiotto, Johnson-Freyd 1904.05788
Johnson-Freyd 2006.02922
YT 2108.13542
Lin, Pei 2112.10724

It’s a young field and newcomers are welcomed...
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