Physics and
Algebraic Topology

Part I: 20th century

Yuji Tachikawa (Kavli IPMU)
MRENE—FRmYYRI DA 2021
November 5, 2021

1/57



Mathematics is unreasonably effective for us physicists.

COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, VOL.X11, 001-14 (1960)

The Unreasonable Effectiveness of Mathematics
in the Natural Sciences

Richard Courant Lecture in Mathematical Sciences delivered at New York University,
May 11, 1950

EUGENE P. WIGNER
Princeton University

“and it is probable that there is some secret here
which remains to be discovered.” (C. S. Peirce)

There is a story about two friends, who were classmates in high school,
talking about their jobs. One of them became a statistician and was working
on population trends. He showed a reprint to his former classmate. The
reprint started, as usual, with the Gaussian distribution and the statistician
explained to his former classmate the meaning of the symbols for the actual
population, for the average population, and so on. His classmate was a
bit incredulous and was not quite sure whether the statistician was pulling
his leg. “How can you know that?” was his query. “And what is this
symbol Here?”” “Oh,” said the statistician, “thisis . “What is that?”
“The ratio of the circumference of the circle to its diameter.” “Well, now
you are pushing your joke too far,” said the classmate, “‘surely the pop-
ulation has nothing to do with the circumference of the circle.”

https://doi.org/10.1002/cpa.3160130102
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https://doi.org/10.1002/cpa.3160130102

But the usefulness depends on the subfields of math.
Ordinary/partial differential equations are obviously effective.
Group theory is also obviously effective to describe symmetry.

Differentiable manifolds are the basis of general relativity.
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Algebraic geometry?

Heavily used in some parts of string theory,
but real physicists won’t call it physics.

(I am a string theorist, so it's OK to disparage string theory.)
Number theory?

Appears here and there, but will it ever be integral to physics?
Mathematical Logic?

Will some theoretical physics question be undecidable within ZFC?
cf. [Shiraishi-Matsumoto 2012.13889]
[Cubitt, 2105.09854]

(If you download the slides, texts in purple are linked to journal webpages etc.)
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http://arxiv.org/abs/2012.13889
http://arxiv.org/abs/2105.09854
https://en.wikipedia.org/wiki/Purple

How about algebraic topology?

Some use have been made in the past.

Notably, homotopy groups were used
to understand topological solitons in 1970s.

Not much else has been used until late 1990s,
when string theorists started to use K-theory.

(We can debate whether string theory is physics, though.)

More recently, in the last 10 years,
physicists started to use algebraic topology more fully.
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A youtube channel run by a grad student in Kyoto:
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https://www.youtube.com/channel/UCi4Zot0OnAla-lorulQkeyMw/videos
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https://www.youtube.com/channel/UCi4ZotOnAla-loruLQkeyMw/videos

Today | would like to review the relationship
between physics and algebraic topology.

Concrete homotopy groups are useful in studying topological solitons.

(math: 1930s, physics: 1970s)

Chern classes are useful in understanding integer quantum Hall effect.

(math: 1940s, physics: 1980s)

(math: 1960s, physics: 2000s)
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Anderson duals of bordism homologies classify SPT phases.

(math: 1960s, physics: 2010s)

TMF and 2d supersymmetric field theories.

(math: 2000s, physics: 2020s)

We're trailing behind, but slowly catching up.
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Pre-history

up to 1970s
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Math side

Hopf invariant / fibration (1931)

§* = {(a,b) € C? | |a|]® + |b]* = 1}
— 8% ={(z,y,2) € R® |2 +-y? 4 2% = 1},

where
(a,b) — (2Reab,2Imab, |a|?® — |b|?)

(a,b) and €*®(a, b) map to the same point on S2.

S3 is an S* bundle over S? with c1 = 1.
S2
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https://doi.org/10.1007/BF01457962

Physics side

Dirac’s quantization condition (1931)
The magnetic charge of a magnetic monopole is
an integer multiple of a fixed constant.

Modern paraphrase of Dirac’s argument:
Wavefunction of an electron is a section of
a complex line bundle L over space.

Electromagnetic field is the U (1) connection of this line bundle,
and the magnetic field strength F' is its curvature . Therefore,

/S2271'_/ c1(L) € Z.
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https://doi.org/10.1098/rspa.1931.0130

Math side

Steady progress in algebraic topology.

Stiefel-Whitney / Pontryagin / Chern classes ('30s — "40s)
Eilenberg-Steenrod axiom for (co)homology (1945)
H*(G) := H*(BG) for finite G (Eilenberg-Mac Lane 1947)
Bordism groups (Pontryagin, Thom "50s)
Adams spectral sequence (1958)

K-theory (Atiyah-Hirzebruch 1959, 1961)
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Physics side

Not much happens in this area until 1970s,
when some concrete homotopy groups were used

to study topological solitons.
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What are topological solitons?

Solitons are ‘solitary’ wave configurations
which are stable for some reasons:

® Non-topological solitons
KdV equations, integrable systems ...

® Topological solitons
Today’s focus.
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Topological solitons

Consider a configuration
¢:R3— 83

where R is our space, and S? is the target space of the field ¢.

When ¢ is basically a constant map plus a fluctuation,

57— &

its quantization describes pions, a type of elementary particles.
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More generally, for a finite energy configuration,
most of the region of R® needs to map to a single point on S3.

But the rest can map to anywhere:

/”"7—»@

effectively describing a map
¢:8% 83

characterized by the degree € 73(S%) = Z.
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Skyrme (1961) suggested to identify a configuration
¢:8%— 8°
whose degree is 1 € 73(S%) = Z as a proton.

This would explain proton’s stability:
the degree can’t change continuously.

Not the best model of protons now;
but it is the first example of topological solitons.

Now known as skyrmions.
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https://doi.org/10.1098/rspa.1961.0018

Another large class of topological solitons arises as follows.

A G-symmetric system can come with a G-bundle.

™
|
(
( —_—
4 e bond (o
C —buu\dLL eN ‘AM
'~ C:cm.‘l.we_& regiiang nyezk{/

There are situations where having an H-bundle for H C G is
energetically more favorable.

G is said to be “spontaneously broken to H” in physics.
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w locolined g else
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which determines a class in

ﬂ'n_l(G/H).
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A topological soliton
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gives a class in
mn—1(G/H).
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Example 1

In a superconducting material,
the electromagnetic G = U (1) symmetry is broken to H = {%1}.

U (1)-bundle in the interior; {#£1}-bundle outside.

Measured by n € 71 (U (1)/{£1}) = Z, which translates
to the magnetic flux

/ F n
= Cl = —
D2 27 D2 2

Known as Abrikosov vortex (1957) in condensed matter physics
and Nielsen-Olsen vortex (1973) in high energy physics.
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https://doi.org/10.1016/0022-3697(57)90083-5
https://doi.org/10.1016/0550-3213(73)90350-7

Figure 1| Images of vortices in 200 nm thick YBCO film taken by
Scanning SQUID Microscopy after field cooling at 6.93 4T to 4 K. (b) is
taken after heating above T and re-cooling. The sample edge at the left
side of the images is used as a reference for scan location.

Wells, Pan, Wang, Fedoseev, Hilgenkamp (2015)
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https://doi.org/10.1038/srep08677

Example 2

Taking G = SU(2) and H = U (1) C SU(2), you can consider

x
0 =6und (o

S0 - bund Lo everyuheas

w localined e U\/ezk{/

which is classified by
m2(SU(2)/U(1)) = 72(S?) = Z.

Known as the 't Hooft-Polyakov monopole (1974).
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https://doi.org/10.1016/0550-3213(74)90486-6
http://jetpletters.ru/ps/1789/article_27297.shtml

Example 3

The A-phase of the superfluid helium-3 (Osheroff-Richardson-Lee 1972)

is characterized by

G=S03)xSO0B)xU(1)~C*xC?
and
H = stabilizer at e1 ® (e2 + ie3)

so we have
vortices : w1 (G/H) = 7/4Z,
“monopoles” : wo(G/H) = Z.

Furthermore, 71 (G /H) acts nontrivially on w2 (G/H).

Volovik-Mineev (1976)
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https://doi.org/10.1103/PhysRevLett.28.885
http://jetpletters.ru/ps/1818/article_27785.shtml

Instantons

Instantons are a somewhat different class of topological solitons.

In the Standard Model of particle physics,
the strong force and the

are described by
SU(3) and

gauge theories.

This means that our spacetime R* is equipped with
an SU (3) bundle and an bundle with connections.
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The Chern-Weil representative of ¢z of an SU (n) bundle is
F
co o tr(—)?
27
where F is the curvature of the bundle.

There are spacetime configurations where ¢ is localized

T ] gt bedined
: ‘on hero
4 — N%J‘“
. =,
t _ Cy = f"(%‘\
'_' T l.s now-y-ero
ARA—

and integrates to 0 # /cz € 7.
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These are known as instantons, since it is localized also on an instant

J—
: R}
[l
iwa | -
wi&’
C?ka-

and not just localized along the spatial direction.

Physical interpretations are rather different,
but it can be treated very similarly to other solitons.

First discussed by [Belavin-Polyakov-Schwarz-Tyupkin (1975)].
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https://doi.org/10.1016/0370-2693(75)90163-X

It is natural to impose an additional constraint
F=—xF

where # is the Hodge star on R*.

This is the famous anti-self-dual (ASD) equation.

On R*, solutions and their moduli spaces are completely known
[Atiyah-Drinfeld-Hitchin-Manin (1978)]

On closed 4-manifolds, the study of the moduli space led to the
Donaldson theory, starting from [Donaldson (1983)].
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https://doi.org/10.1016/0375-9601(78)90141-X
https://doi.org/10.4310/jdg/1214437665

Middle ages

1980s-2000s
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What you learn in high school:

o is called the conductivity.
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In a two-dimensional material, this can also happen:

9
|1

L = .V

om is called the Hall conductivity.
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Surprising discovery of von Klitzing, Dorda, Pepper (1980):

fe

9xe()
:,j§ |

6
MAGNETIC FIELD (T)

FIG. 14. Experimental curves for the Hall resistance Ry =p,
and the resistivity p., ~ R, of a heterostructure as a function of

the magnetic field at a fixed carrier density corresponding to a
gate voltage ¥, =0 V. The temperature is about 8 mK.

Figure is taken from a slightly later review, von Klitzing (1986)
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https://doi.org/10.1103/PhysRevLett.45.494
https://doi.org/10.1103/RevModPhys.58.519

When the ordinary conductivity o vanishes, i.e. the system is gapped,
the Hall conductivity has the universal value

where e is the electric charge of the electron
and h is the Planck constant.

Called the integer quantum Hall effect.

This is now the accepted method to calibrate
the experimental apparatus against the declared value of e /h.
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Why is v an integer?

There are both microscopic understanding
and macroscopic understanding.

Let’s start with the microscopic understanding.
In quantum mechanics, the Hamiltonian H acts on the Hilbert space H.
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Microscopic understanding

Two-dimensional materials have a lattice structure:

< < C N N
L % *  =» v
7[T L A
*r L w x
—>
W/
Therefore
72 " H

which allows us to decompose H in terms of the character

T? = Hom(Z2,U(1)).

36/57



This means that # is the space of sections
Y:T? > H
of a trivial Hilbert space bundle
T? x H’
and the Hamiltonian H has the form

(Hy)(p) = h(p)(¥(p)) pe€T?

where h(p) : H' — H’ is a self-adjoint operator.
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The gapped condition says that the lowest eigenvalue of h(p) is
non-degenerate, which determines a one-dimensional subspace

L(p) C H'
It forms a line bundle £ — T which is a sub-bundle of T? x #’.

A standard computation using the Kubo formula says that
the Hall conductivity is

2

e
o = h/Tzcl(L',)

and therefore it is an integer multiple of € /h.

Thouless-Kohmoto-Nightingale-den Nijs (1982)
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https://doi.org/10.1103/PhysRevLett.49.405

Macroscopic understanding

Consider an idealized situation where the quantum Hall material
fills the entire 2 4 1 dimensional spacetime M.

M comes with a U (1) bundle £ with connection A describing the
electromagnetic field.

The integer quantum Hall material is gapped with unique ground state.
This means that the system determines the partition function

Z(M,A) € UQ1).
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When the U (1) bundle is topologically trivial, A is a one-form.
The standard Kubo formula says that the coefficient v in

62

TH =V
appears in the partition function as
174
Z(M,A) = exp(’i/ AdA).
4

How do we know that v is an integer?

We use the fact that Ad A is not well-defined for a topologically
non-trivial U (1)-bundle L.
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Given

we have

.V .V . 2
i— AdA = i— FF = mwiv c1(L)=.
47 ) a7 Jw, Wi

(Note F = dA and ¢; = F/(27).)
The RHS makes sense for topologically nontrivial £,

but looks like it depends on Wjy.
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Let us compare the two different choices Wy and Wi:
5 g

exp(miv [y, c1 (£)?)

exp(miv fWi c1(£)?) = exp(n‘iu / C1(£)2)

The difference is
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So we need to ask:

@R

This seems to require v € 27,
but odd v has been experimentally observed.

C1 (ﬁ)

The resolution: ,
and therefore M3, Wy etc. require

The intersection form on a spin 4-manifold is ,
and therefore v € 7Z.
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This argument was implicitly known for a long time since late 80s,
but the crucial factor of two related to spin structure
was not appreciated very much until around 2000.

| think it is quite amazing that we see these facts experimentally in

T

MAGNETIC FIELD  (T)

FIG. 14. Experimental curves for the Hall resistance Ry =py,
and the resistivity py. ~R, of a heterostructure as a function of
the magnetic field at a fixed carrier density corresponding to a
gate voltage ¥, =0 V. The temperature is about 8 mK.
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D-branes and K-theory

2000s



Reconciling quantum mechanics and gravity is a big question in
theoretical physics.

String theory is a framework where it can be done.
But it requires 9+1 dimensions. Some like it, some hate it.

There are several different types of string theories:

Type lIA, Type 1IB, Type |, and heterotic
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It started in 1980s as a theory of strings (1+1 dimensional objects)
moving in spacetime.

A spacetime is given by Mg, together with metric, spin structure,
and a closed 3-form H such that [H] € H3(Mg1,7Z).

In mid-1990s, it was realized that it also has various other objects known
as D-branes [Polchinski hep-th/9510017].

The relation to K-theory was understood
by [Minasian-Moore hep-th/9710230] and [Witten hep-th/9810188].
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http://arxiv.org/abs/hep-th/9510017
http://arxiv.org/abs/hep-th/9710230
http://arxiv.org/abs/hep-th/9810188

Those which extend along p + 1 dimensions are called Dp-branes.

They also come with vector bundles on them.
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It was found that various string theories have the following set of
D-branes:

d:=9—p|0 1 2 345 6 7 8 9 10
TypellB |Z O Z 0 Z 0 Z 0 Z O Z
TypellA |0 Z 0 Z 0 Z 0 Z 0 Z 0O
Type | Z 7J2 7Z/2 0 Z 0 0 0 Z 7Z/2 7/2

The entry Z/2 means that if we take two Dp-branes,
they can pair-annihilate.

They should look familiar to algebraic topologists: they are
K~(pt), K'"%pt), KO~%(pt),

respectively.
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A Dp-brane extends along p + 1 dimensions within the
(9 + 1)-dimensional spacetime. Its codimension is d := 9 — p.

For a scalar field taking values in 3, topological solitons with
codimension d

e
rawy — B

were classified by 7q(%).
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D-branes of Type 1B, Type IIA, Type | string theories are instead
classified by

K°(s%), K'(s%), KO'(s%),
respectively.

Comparing these with 4(X), we find that
string theories have the classifying spaces of K-theories as X.
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On a more general manifold X , D-branes are classified by
K°(X), K'(X), KO'(X)
for Type IIB, Type lIA, and Type .

As | said, the string theory spacetime X can come with a class

[H] € H3(X,Z). Then D-branes are classified by twisted K-theories:

K%(X), Kh(X), KOy(X).

This finding rekindled math interests to
twisted K-theories originally found by [Donovan-Karoubi (1970)].
E.g. see the review [Gomi (2012)] in Japanese.
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http://www.numdam.org/item/PMIHES_1970__38__5_0/
https://doi.org/10.11429/sugaku.0641047

The spacetime (X, H) and another spacetime (X', H’) can be
T-dual to each other, meaning that

Type IIB on (X, H) and Type llA on (X', H') are the same, and
Type lIA on (X, H) and Type IIB on (X', H') are the same.

Then we should have

K% (X) = K}, (X),

K} (X) = K%, (X').
Many T-dual pairs of (X, H) and (X', H") were known. So the
equality above might be worth checking.

(T-duality is also known as mirror symmetry when H = H' = 0.)
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A simplest class of pairs have the following form. Take
S' X > B
whose first Chern class is ¢ € H?(B, Z). Then the spacetimes
(X,0)

and
(B x S',cu0)

are known to be T-dual. Here 6 is the generator of H*(S*,7) = Z.

Therefore we should have

K*(X) = Ky (B x 5%

This can be checked. [Bouwknegt-Evslin-Mathai hep-th/0306062]
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http://arxiv.org/abs/hep-th/0306062

It is also interesting to recall
the geometric K-homology of [Baum and Douglas (1982)].

An element of K4(X) in their description is given by

® a manifold Mg with a spin-c structure
® amap Mg — X
® 2 virtual vector bundle E © F on My

with various equivalence relations.

This is exactly what string theorists expect for a D-brane;
the spin-c condition was understood in [Freed-Witten hep-th/9907189].
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https://mathscinet.ams.org/mathscinet-getitem?mr=679698
http://arxiv.org/abs/hep-th/9907189

So far | reviewed the relationship
between physics and algebraic topology in 20c:

Concrete homotopy groups are useful in studying topological solitons.

(math: 1930s, physics: 1970s)

Chern classes are useful in understanding integer quantum Hall effect.

(math: 1940s, physics: 1980s)

(math: 1960s, physics: 2000s)
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In the second half, | would explain:

Anderson duals of bordism homologies classify SPT phases.

(math: 1960s, physics: 2010s)

TMF and 2d supersymmetric field theories.

(math: 2000s, physics: 2020s)

We're trailing behind, but slowly catching up.

57/57



