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Mathematics is unreasonably effective for us physicists.

COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, VOL. XIII, 001-14 (1960) 

The Unreasonable Effectiveness of Mat hematics 
in the Natural Sciences 

Richard Courant Lecture in Mathematical Sciences delivered at New York University, 
May 11,  1959 

E U G E N E  P. WIGNER 
Princeton University 

“and it i s  probable that there i s  some secret here 
which remains to be discovered.” (C. S .  Peirce) 

There is a story about two friends, who were classmates in high school, 
talking about their jobs. One of them became a statistician and was working 
on population trends. He showed a reprint to his former classmate, The 
reprint started, as usual, with the Gaussian distribution and the statistician 
explained to  his former classmate the meaning of the symbols for the actual 
population, for the average population, and so on. His classmate was a 
bit incredulous and was not quite sure whether the statistician was pulling 
his leg. “How can you know that?” was his query. “And what is this 
symbol iere?” “Oh,” said the statistician, “this is n.” “What is that?” 
“The ratio of the circumference of the circle to its diameter.” “Well, now 
you are pushing your joke too far,” said the classmate, “surely the pop- 
ulation has nothing to do with the circumference of the circle.” 

Naturally, we are inclined to smile about the simplicity of the classmate’s 
approach. Nevertheless, when I heard this story, I had to admit to an 
eerie feeling because, surely, the reaction of the classmate betrayed only 
plain common sense. I was even more confused when, not many days later, 
someone came to me and expressed his bewilderment1 with the fact that 
we make a rather narrow selection when choosing the data on which we 
test our theories. “How do we know that, if we made a theory which focusses 
its attention on phenomena we disregard and disregards some of the phe- 
nomena now commanding our attention, that we could not build another 
theory which has little in common with the present one but which, never- 
theless, explains just as many phenomena as the present theory.” It has 
to be admitted that we have not definite evidence that there is no such theory. 

The preceding two stories illustrate the two main points which are the 

‘The remark to be quoted was made by F. Werner when he was a student in Princeton. 

1 

https://doi.org/10.1002/cpa.3160130102
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But the usefulness depends on the subfields of math.

Ordinary/partial differential equations are obviously effective.

Group theory is also obviously effective to describe symmetry.

Differentiable manifolds are the basis of general relativity.
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Algebraic geometry?

Heavily used in some parts of string theory,
but real physicists won’t call it physics.

(I am a string theorist, so it’s OK to disparage string theory.)

Number theory?

Appears here and there, but will it ever be integral to physics?

Mathematical Logic?

Will some theoretical physics question be undecidable within ZFC?
cf. [Shiraishi-Matsumoto 2012.13889]

[Cubitt, 2105.09854]

(If you download the slides, texts in purple are linked to journal webpages etc.)
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How about algebraic topology?

Some use have been made in the past.

Notably, homotopy groups were used
to understand topological solitons in 1970s.

Not much else has been used until late 1990s,
when string theorists started to use K-theory.

(We can debate whether string theory is physics, though.)

More recently, in the last 10 years,
physicists started to use algebraic topology more fully.
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A youtube channel run by a grad student in Kyoto:

https://www.youtube.com/channel/UCi4ZotOnAla-loruLQkeyMw/videos
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Today I would like to review the relationship
between physics and algebraic topology.

Concrete homotopy groups are useful in studying topological solitons.

(math: 1930s, physics: 1970s)

Chern classes are useful in understanding integer quantum Hall effect.

(math: 1940s, physics: 1980s)

D-branes are classified by K-theory.

(math: 1960s, physics: 2000s)
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Anderson duals of bordism homologies classify SPT phases.

(math: 1960s, physics: 2010s)

TMF and 2d supersymmetric field theories.

(math: 2000s, physics: 2020s)

We’re trailing behind, but slowly catching up.
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Pre-history
up to 1970s
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Math side

Hopf invariant / fibration (1931)

S3 = {(a, b) ∈ C2 | |a|2 + |b|2 = 1}
→ S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1},

where
(a, b) 7→ (2Re ab̄, 2 Im ab̄, |a|2 − |b|2)

(a, b) and eiθ(a, b) map to the same point on S2.

S3 is an S1 bundle over S2 with
∫
S2

c1 = 1.
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Physics side

Dirac’s quantization condition (1931)
The magnetic charge of a magnetic monopole is
an integer multiple of a fixed constant.

Modern paraphrase of Dirac’s argument:
Wavefunction of an electron is a section of
a complex line bundle L over space.

Electromagnetic field is the U(1) connection of this line bundle,
and the magnetic field strength F is its curvature . Therefore,∫

S2

F

2π
=

∫
S2

c1(L) ∈ Z.

11 / 57

https://doi.org/10.1098/rspa.1931.0130


Math side

Steady progress in algebraic topology.

Stiefel-Whitney / Pontryagin / Chern classes (’30s – ’40s)

Eilenberg-Steenrod axiom for (co)homology (1945)

H∗(G) := H∗(BG) for finite G (Eilenberg-Mac Lane 1947)

Bordism groups (Pontryagin, Thom ’50s)

Adams spectral sequence (1958)

K-theory (Atiyah-Hirzebruch 1959, 1961)
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Physics side

Not much happens in this area until 1970s,

when some concrete homotopy groups were used

to study topological solitons.
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What are topological solitons?

Solitons are ‘solitary’ wave configurations
which are stable for some reasons:

• Non-topological solitons
KdV equations, integrable systems …

• Topological solitons
Today’s focus.
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Topological solitons

Consider a configuration
ϕ : R3 → S3

where R3 is our space, and S3 is the target space of the field ϕ.

When ϕ is basically a constant map plus a fluctuation,

its quantization describes pions, a type of elementary particles.
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More generally, for a finite energy configuration,
most of the region of R3 needs to map to a single point on S3.

But the rest can map to anywhere:

effectively describing a map

ϕ : S3 → S3

characterized by the degree ∈ π3(S
3) = Z.
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Skyrme (1961) suggested to identify a configuration

ϕ : S3 → S3

whose degree is 1 ∈ π3(S
3) = Z as a proton.

This would explain proton’s stability:
the degree can’t change continuously.

Not the best model of protons now;
but it is the first example of topological solitons.

Now known as skyrmions.
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Another large class of topological solitons arises as follows.

A G-symmetric system can come with a G-bundle.

There are situations where having anH-bundle forH ⊂ G is
energetically more favorable.

G is said to be “spontaneously broken toH” in physics.
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i.e.
Dn−1 → G
∪ ∪

Sn−2 → H

which determines a class in

πn−1(G/H).
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A topological soliton

gives a class in
πn−1(G/H).
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Example 1

In a superconducting material,
the electromagnetic G = U(1) symmetry is broken toH = {±1}.

U(1)-bundle in the interior; {±1}-bundle outside.

Measured by n ∈ π1(U(1)/{±1}) = Z, which translates
to the magnetic flux ∫

D2

F

2π
=

∫
D2

c1 =
n

2
.

Known as Abrikosov vortex (1957) in condensed matter physics
and Nielsen-Olsen vortex (1973) in high energy physics.
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signature of short-range ordering. In addition, we have unexpectedly
found groups of closely spaced vortices which show an appearance of
interacting currents. These groups are also examined and discussed.

Methods
A scanning SQUID microscope consisting of a m-SQUID magnetometer with a 3 mm
3 5 mm pickup loop is raster scanned at a distance of approximately 5 mm from the
YBCO sample surface at an angle of 30u. The SSM measurements were performed in a
crystat equipped with a m-metal shield with an approximate shielding factor of 25.
This reduces the Earth’s magnetic field to a constant background field during cooling
and scanning. The vertical component of this background field was measured to be
approximately 2 mT by a Bartington Mag-03MS three-axis magnetic field sensor,
with other components negligibly small, and this background field value was con-
firmed as 2.73 mT by preliminary scanning SQUID measurements on our samples.
That is the field of 22.73 mT was found to reduce the number of observed vortices to a
minimum, this was also found to be the field value at which the vortex direction
reversed. The root-mean-square (RMS) variation of the background field was found
to be less than 30 nT by antiferromagnetic scanning SQUID microscopy. All sub-
sequent field values stated in this paper are given after compensating for this back-
ground field.

All measurements were taken at a temperature of 4.2 K in the field-cooled state,
with applied fields in the range 0.1 mT , Ba , 5.5 mT perpendicular to the film’s
surface.

Local current distribution in the samples was calculated from the magnetic field
data using a program15 based on an inverse Biot-Savart procedure16,17. The arrange-
ment of vortices was further analysed by autocorrelation and Delaunay triangulation
based on vortex positions.

The YBa2Cu3O7 2 x thin films used in this work have been grown by pulsed laser
deposition18,19 with the thickness of ,200 nm. The critical temperature (Tc) of the
films has been measured by magnetisation measurements to be 90.0 6 0.5 K. The

surface of the films has been observed by atomic force microscopy, showing an
average grain size of about 200 nm.

Scanning squid microscopy
Figure 1 shows the local magnetic field data obtained by the scanning
SQUID microscope. The brightness of each point in the image shows
the magnetic field strength at the corresponding point above the
sample. Vortices are seen as round dark spots over the right-hand
side of the images. An identifiable position at the edge of the film was
chosen for scanning to ensure that repeat scans were taken at the
same position on the film. This edge is seen at the left side of the
images.

Since the SQUID magnetometer scans at a constant height of
5 mm above the sample, the magnetic features observed are those
of the stray field. In this paper the term ‘‘stray field’’ refers to the
observed magnetic field at the scan height as opposed to the field
directly at the film’s surface, and ‘‘stray current’’ refers to the current
in the film as calculated from the stray field. This distance from the
sample surface increases the apparent size of the vortices in Fig. 1.
The vortices also appear slightly asymmetrical in Fig. 1 due to the tilt
of the SQUID pick-up loop with respect to the field direction.

Figure 2 shows the current distribution in the sample calculated
from the magnetic field data of figure 1. The brightness of each point
in the image is proportional to the magnitude of current at the
corresponding point in the sample. The dark spots seen throughout
the sample and the bright regions around them are the current-free
vortex cores and the circulating current of the vortices, respectively.

The distance between the midpoints of neighbouring vortices has
been determined from the field maps in Fig. 1. At Ba^6:93 mT, the
average intervortex spacing is 32 mm, with a significant spread in
nearest neighbour distances as expected in glassy distributions.
However, there were a disproportionately large number of vortices
with nearest neighbour distances in the range of , 15 mm. The
groups of these closely spaced vortices in Fig. 2 are mapped to have
overlapping stray supercurrents that are continuous around the peri-
meter of the whole group. However, in this strongly diluted vortex
regime the magnetic field penetration depth (l)20 and the individual
vortex depinning radius in YBCO films are of the order of 0.5 mm21,22,
being too small to have any profound effect at such large intervortex
distance within the group21,22. Thus, the supercurrent overlap is
probably due to the spread of stray fields at the SQUID scanning
height23.

Figure 1 | Images of vortices in 200 nm thick YBCO film taken by
Scanning SQUID Microscopy after field cooling at 6.93 mT to 4 K. (b) is
taken after heating above Tc and re-cooling. The sample edge at the left
side of the images is used as a reference for scan location.

Figure 2 | Supercurrents calculated from the field map in Fig. 1(a). Some
closely-spaced vortex groups are highlighted by the circles.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 8677 | DOI: 10.1038/srep08677 2
Wells, Pan, Wang, Fedoseev, Hilgenkamp (2015)
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Example 2

Taking G = SU(2) andH = U(1) ⊂ SU(2), you can consider

which is classified by

π2(SU(2)/U(1)) = π2(S
2) = Z.

Known as the ’t Hooft-Polyakov monopole (1974).
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Example 3

The A-phase of the superfluid helium-3 (Osheroff-Richardson-Lee 1972)
is characterized by

G = SO(3) × SO(3) × U(1) ↷ C3 ⊗ C3

and
H = stabilizer at e1 ⊗ (e2 + ie3)

so we have
vortices : π1(G/H) = Z/4Z,

“monopoles” : π2(G/H) = Z.

Furthermore, π1(G/H) acts nontrivially on π2(G/H).

Volovik-Mineev (1976)
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Instantons

Instantons are a somewhat different class of topological solitons.

In the Standard Model of particle physics,

the strong force and the weak force

are described by
SU(3) and SU(2)

gauge theories.

This means that our spacetime R4 is equipped with
an SU(3) bundle and an SU(2) bundle with connections.
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The Chern-Weil representative of c2 of an SU(n) bundle is

c2 ∝ tr(
F

2π
)2

where F is the curvature of the bundle.

There are spacetime configurations where c2 is localized

and integrates to 0 6=
∫
c2 ∈ Z.
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These are known as instantons, since it is localized also on an instant

and not just localized along the spatial direction.

Physical interpretations are rather different,
but it can be treated very similarly to other solitons.

First discussed by [Belavin-Polyakov-Schwarz-Tyupkin (1975)].
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It is natural to impose an additional constraint

F = − ∗ F

where ∗ is the Hodge star on R4.

This is the famous anti-self-dual (ASD) equation.

On R4, solutions and their moduli spaces are completely known
[Atiyah-Drinfeld-Hitchin-Manin (1978)]

On closed 4-manifolds, the study of the moduli space led to the
Donaldson theory, starting from [Donaldson (1983)].
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Middle ages
1980s–2000s
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What you learn in high school:

σ is called the conductivity.
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In a two-dimensional material, this can also happen:

σH is called the Hall conductivity.
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Surprising discovery of von Klitzing, Dorda, Pepper (1980):
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Figure is taken from a slightly later review, von Klitzing (1986)
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When the ordinary conductivity σ vanishes, i.e. the system is gapped,
the Hall conductivity has the universal value

σH = ν
e2

h
, ν ∈ Z

where e is the electric charge of the electron
and h is the Planck constant.

Called the integer quantum Hall effect.

This is now the accepted method to calibrate
the experimental apparatus against the declared value of e2/h.
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Why is ν an integer?

There are both microscopic understanding
and macroscopic understanding.

Let’s start with the microscopic understanding.
In quantum mechanics, the HamiltonianH acts on the Hilbert space H.

35 / 57



Microscopic understanding

Two-dimensional materials have a lattice structure:

Therefore
Z2 ↷ H

which allows us to decompose H in terms of the character

T 2 = Hom(Z2, U(1)).
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This means that H is the space of sections

ψ : T 2 → H′

of a trivial Hilbert space bundle

T 2 × H′

and the HamiltonianH has the form

(Hψ)(p) = h(p)(ψ(p)) p ∈ T 2

where h(p) : H′ → H′ is a self-adjoint operator.
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The gapped condition says that the lowest eigenvalue of h(p) is
non-degenerate, which determines a one-dimensional subspace

L(p) ⊂ H′.

It forms a line bundle L → T 2 which is a sub-bundle of T 2 × H′.

A standard computation using the Kubo formula says that
the Hall conductivity is

σH =
e2

h

∫
T 2

c1(L)

and therefore it is an integer multiple of e2/h.

Thouless-Kohmoto-Nightingale-den Nijs (1982)
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Macroscopic understanding

Consider an idealized situation where the quantum Hall material
fills the entire 2 + 1 dimensional spacetimeM .

M comes with a U(1) bundle L with connection A describing the
electromagnetic field.

The integer quantum Hall material is gapped with unique ground state.

This means that the system determines the partition function

Z(M,A) ∈ U(1).
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When the U(1) bundle is topologically trivial, A is a one-form.
The standard Kubo formula says that the coefficient ν in

σH = ν
e2

h

appears in the partition function as

Z(M,A) = exp(i
ν

4π

∫
M
AdA).

How do we know that ν is an integer?

We use the fact that AdA is not well-defined for a topologically
non-trivial U(1)-bundle L.
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Given

we have

i
ν

4π

∫
M3

AdA = i
ν

4π

∫
W4

FF = πiν

∫
W4

c1(L)2.

(Note F = dA and c1 = F/(2π).)

The RHS makes sense for topologically nontrivial L,
but looks like it depends onW4.
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Let us compare the two different choicesW4 andW ′
4:

The difference is

exp(πiν
∫
W4
c1(L)2)

exp(πiν
∫
W ′

4
c1(L)2)

= exp
(
πiν

∫
c1(L)2

)
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So we need to ask:

exp
(
πiν

∫
c1(L)2

)
?
= 1

This seems to require ν ∈ 2Z,
but odd ν has been experimentally observed.

The resolution: electrons are spinors,
and thereforeM3,W4 etc. require spin structure.

The intersection form on a spin 4-manifold is even,
and therefore ν ∈ Z.
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This argument was implicitly known for a long time since late 80s,
but the crucial factor of two related to spin structure
was not appreciated very much until around 2000.

I think it is quite amazing that we see these facts experimentally in
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D-branes and K-theory
2000s
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Reconciling quantum mechanics and gravity is a big question in
theoretical physics.

String theory is a framework where it can be done.

But it requires 9+1 dimensions. Some like it, some hate it.

There are several different types of string theories:

Type IIA, Type IIB, Type I, and heterotic
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It started in 1980s as a theory of strings (1+1 dimensional objects)
moving in spacetime.

A spacetime is given byM9+1 together with metric, spin structure,
and a closed 3-formH such that [H] ∈ H3(M9+1,Z).

In mid-1990s, it was realized that it also has various other objects known
as D-branes [Polchinski hep-th/9510017].

The relation to K-theory was understood
by [Minasian-Moore hep-th/9710230] and [Witten hep-th/9810188].
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Those which extend along p+ 1 dimensions are called Dp-branes.

They also come with vector bundles on them.
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It was found that various string theories have the following set of
D-branes:

d := 9 − p 0 1 2 3 4 5 6 7 8 9 10

Type IIB Z 0 Z 0 Z 0 Z 0 Z 0 Z
Type IIA 0 Z 0 Z 0 Z 0 Z 0 Z 0
Type I Z Z/2 Z/2 0 Z 0 0 0 Z Z/2 Z/2

The entry Z/2 means that if we take two Dp-branes,
they can pair-annihilate.

They should look familiar to algebraic topologists: they are

K−d(pt), K1−d(pt), KO−d(pt),

respectively.
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A Dp-brane extends along p+ 1 dimensions within the
(9 + 1)-dimensional spacetime. Its codimension is d := 9 − p.

For a scalar field taking values in Σ, topological solitons with
codimension d

were classified by πd(Σ).
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D-branes of Type IIB, Type IIA, Type I string theories are instead
classified by

K̃0(Sd), K̃1(Sd), K̃O
0
(Sd),

respectively.

Comparing these with πd(Σ), we find that
string theories have the classifying spaces of K-theories as Σ.
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On a more general manifoldX , D-branes are classified by

K̃0(X), K̃1(X), K̃O
0
(X)

for Type IIB, Type IIA, and Type I.

As I said, the string theory spacetimeX can come with a class
[H] ∈ H3(X,Z). Then D-branes are classified by twisted K-theories:

K̃0
H(X), K̃1

H(X), K̃O
0

H(X).

This finding rekindled math interests to
twisted K-theories originally found by [Donovan-Karoubi (1970)].
E.g. see the review [Gomi (2012)] in Japanese.
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The spacetime (X,H) and another spacetime (X′,H ′) can be
T-dual to each other, meaning that
Type IIB on (X,H) and Type IIA on (X′,H ′) are the same, and
Type IIA on (X,H) and Type IIB on (X′,H ′) are the same.

Then we should have

K0
H(X) = K1

H′(X
′),

K1
H(X) = K0

H′(X
′).

Many T-dual pairs of (X,H) and (X′,H ′) were known. So the
equality above might be worth checking.

(T-duality is also known as mirror symmetry whenH = H ′ = 0.)
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A simplest class of pairs have the following form. Take

S1 → X → B

whose first Chern class is c ∈ H2(B,Z). Then the spacetimes

(X, 0)

and
(B × S1, c ∪ θ)

are known to be T-dual. Here θ is the generator ofH1(S1,Z) = Z.

Therefore we should have

K•(X) = K•+1
c∪θ (B × S1)

This can be checked. [Bouwknegt-Evslin-Mathai hep-th/0306062]

54 / 57

http://arxiv.org/abs/hep-th/0306062


It is also interesting to recall
the geometric K-homology of [Baum and Douglas (1982)].

An element ofKd(X) in their description is given by

• a manifoldMd with a spin-c structure

• a mapMd → X

• a virtual vector bundle E 	 F onMd

with various equivalence relations.

This is exactly what string theorists expect for a D-brane;
the spin-c condition was understood in [Freed-Witten hep-th/9907189].
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So far I reviewed the relationship
between physics and algebraic topology in 20c:

Concrete homotopy groups are useful in studying topological solitons.

(math: 1930s, physics: 1970s)

Chern classes are useful in understanding integer quantum Hall effect.

(math: 1940s, physics: 1980s)

D-branes are classified by K-theory.

(math: 1960s, physics: 2000s)
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In the second half, I would explain:

Anderson duals of bordism homologies classify SPT phases.

(math: 1960s, physics: 2010s)

TMF and 2d supersymmetric field theories.

(math: 2000s, physics: 2020s)

We’re trailing behind, but slowly catching up.
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