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Modern times
2010s
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Integer quantum Hall system is an example of

(n + 1)-dimensional quantum field theory (QFT)
with unique gapped ground state with G-symmetry.

Often called
SPT phases

and/or
invertible phases.

(SPT= symmetry protected topological)
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A more general (n + 1)-dimensional quantum field theory (QFT) Q
assigns a Hilbert space to a spatial manifold Nn:

Nn 7→ HQ(Nn),

and for

it assigns
ZQ(Mn+1) : HQ(Nn) → HQ(N ′

n).

The manifold can be equipped with various structures of your choice,
metric, orientation, spin structure, G-bundle with connection, etc.,
giving rise to different flavors of QFTs.
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Corresponding to

◦ =

we require
ZQ(M ′)ZQ(M) = ZQ(M ′ ◦ M).

So, a QFT Q has a functor from a suitable bordism category to the
category of vector spaces as part of its data.
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We assume HQ(∅) = C, then

ZQ( ) : HQ(∅) → HQ(∅)

determines a complex number

ZQ( ) ∈ C,

called the partition function.
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A QFT Q is SPT/invertible/with unique gapped ground state
⇔ HQ(N) is always 1-dimensional.

Integer quantum Hall material is a (2 + 1)-dimensional
spin invertible QFT with U(1) symmetry:

ZQ( ) : HQ(N) → HQ(N ′)

N , N ′ are 2-dimensional; M is 3-dimensional;
they come with spin structure and U(1) bundle with connection,

and HQ(N) is always 1-dimensional.
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We would like to understand

Invn+1
S,G := π0({

(n + 1)-dim. invertible QFTs
with structure S and symmetry G

})

Here S can be spin structure, orientation only, etc.

As invertible QFTs form a group under tensor product

HQ×Q′(N) = HQ(N) ⊗ HQ′(N),

ZQ×Q′(M) = ZQ(M) ⊗ ZQ′(M), etc.,

Invn+1
S,G will be an Abelian group.
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Dijkgraaf-Witten (1990)

Invn+1
?,G

proposal
= Hn+2(BG,Z)

Dependence on S not appreciated at that time.
Wrong if taken too literally.

Integer quantum Hall effect is the case n = 2, G = U(1). Then

H4(BU(1),Z) ' Z

is generated by (c1)
2, but we need 1

2
(c1)

2 as we saw,
for which the spin structure was crucial.
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https://projecteuclid.org/journals/communications-in-mathematical-physics/volume-129/issue-2/Topological-gauge-theories-and-group-cohomology/cmp/1104180750.full


[Chen-Gu-Liu-Wen 1106.4772]

Invn+1
oriented,G

proposal
= Hn+2(BG,Z)

An influential paper, which introduced
and popularized the notion of SPT phases.

(The terminology “invertible phases” originates
from [Freed-Moore hep-th/0409135].)

Now known to be wrong for n ≥ 4.

How about the spin case?
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[Freed hep-th/0607134], [Gu-Wen 1201.2648]

Invn+1
spin,G

proposal
= En+2(BG)

where Ed is a cohomology theory given by

Ed(X) =

{
(a, b) ∈ Cd−3(X,Z/2) × Cd(X,Z) | δa= 0,

δb= β ◦ Sq2 a

}
certain equiv. relation

where
β is the Bockstein for 0 → Z → Z → Z/2 → 0 and
Sq2 is the Steenrod square.

(Amazingly, Gu and Wen rediscovered
the cochain-level expression of Sq2 by themselves! )
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http://arxiv.org/abs/hep-th/0607134
http://arxiv.org/abs/1201.2648


Another way to define Ed(X) is to write it as

Ed(X) = [X,Ed]

where Ed is a two-stage Postnikov tower

K(Z, d) → Ed → K(Z/2, d − 2)

whose Postnikov invariant

Ed → K(Z/2, d − 2)
x→ K(Z, d + 1)

is given by
x = β ◦ Sq2 ◦ι

where ι is the generator of Hd−2(K(Z/2, d − 2),Z/2).
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[Schnyder-Ryu-Furusaki-Ludwig 0803.2786], [Kitaev 0901.2686]

KOn−2(pt) → Invn+1
spin,pt

They classified free spin invertible phases without additional symmetry.

They also considered structures related but not quite spin
(such as imposing time reversal, corresponding to considering pin±)
so that the classification is KOn+i(pt) for arbitrary i mod 8.

Called the periodic table of free topological superconductors.
(see e.g. a nice lecture by Ryu)

(see also [Gomi-Yamashita 2111.01377])
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http://arxiv.org/abs/0803.2786
http://arxiv.org/abs/0901.2686
https://topocondmat.org/w8_general/classification.html
http://arxiv.org/abs/2111.01377


Kitaev (2015)
Invn+1

S,G = En+2
S (BG)

where ES should be a generalized cohomology theory.

Kitaev only gave a talk and never wrote it up.

Fleshed out in [Xiong 1701.00004] and [Gaiotto, Johnson-Freyd
1712.07950] etc.
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http://www.ipam.ucla.edu/abstract/?tid=12389&pcode=STQ2015
http://arxiv.org/abs/1701.00004
http://arxiv.org/abs/1712.07950


[Kapustin-Thorngren-Turzillo-Wang 1406.7329]
[Freed-Hopkins 1604.06527]

Invn+1
S,G

proposal
= (IZΩ

S)n+2(BG)

where ΩS is the S-bordism homology and IZ is the Anderson dual.

Further discussions in [Yonekura 1803.10796],
[Yamashita-Yonekura 2106.09270], [Yamashita, 2110.14828]

People think this is the definitive version.
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http://arxiv.org/abs/1406.7329
http://arxiv.org/abs/1604.06527
http://arxiv.org/abs/1803.10796
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A generalized (co)homology theory hn(X), hn(X) satisfies
the Eilenberg-Steenrod axioms for the ordinary (co)homology
except the dimension axiom.

So hn(pt) = h−n(pt) can be nontrivial for n 6= 0.

Bordism group

ΩS
n(X) =

{
S-structured manifold Mn

together with f : Mn → X

} /
bordism

is an example, where

M
bordant∼ M ′ ⇔
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For a generalized homology theory h∗(−),
there is the Anderson dual cohomology theory IZh

∗(−)
which satisfies the analogue of the universal coefficient theorem:

0 → ExtZ(hd−1(X),Z)
→ (IZh)

d(X) →
HomZ(hd(X),Z) → 0

The universal coefficient theorem of H(−,Z) means that

IZH(−,Z) = H(−,Z).

Similarly, IZK = K and IZKO• = KO•+4.
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Construction of IZh from h

Note that

X 7→ Hom(πS
• (X),Q), X 7→ Hom(πS

• (X),Q/Z)

are generalized cohomology theories. Let us say that they are
represented by spectra

IQ, IQ/Z

and define IZ to be the homotopy fiber

IZ → IQ → IQ/Z.

Then,
IZh := [h, IZ]

represents IZh when h is the spectrum representing h.
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Classification of fermionic invertible phases

Invn+1
spin,G = (IZΩ

spin)n+2(BG)

Ωspin
• (pt) was determined in Anderson-Brown-Peterson (1967)

and the Anderson dual was introduced in Anderson (1969).

Physicists now need them!

That’s why graduate students in condensed matter physics learn
the Atiyah-Hirzebruch spectral sequence and
the Adams spectral sequence to compute them.
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http://doi.org/10.2307/1970690
http://faculty.tcu.edu/gfriedman/notes/Anderson-UCT.pdf


Relation to previous proposals:

[Freed hep-th/0607134], [Gu-Wen 1201.2648]

Invn+1
spin,G

?
= En+2(BG)

where Ed is a cohomology theory represented
by a two-stage Postnikov tower

K(Z, d) → Ed → K(Z/2, d − 2)

such that the associated Postnikov invariant

Ed → K(Z/2, d − 2)
x→ K(Z, d + 1)

is given by
x = β ◦ Sq2 ◦ι

where ι is the generator of H2(K(Z/2, d − 2),Z/2).
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http://arxiv.org/abs/hep-th/0607134
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Its relation to
Invn+1

spin,G = (IZΩ
spin)n+2(BG)

is that the said two-stage Postnikov tower

K(Z, d) → Ed → K(Z/2, d − 2)

is the truncation of the spectrum representing IZΩ
spin to its first two

nontrivial stages:

d 0 1 2 3 4 · · ·
(IZΩ

spin)d Z 0 Z/2 Z/2 Z · · ·
Ed Z 0 Z/2 0 0 · · ·

In particular, there is a natural transformation

Ed(BG) → (IZΩ
spin)d(BG).
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Relation to previous proposals:

[Schnyder-Ryu-Furusaki-Ludwig 0803.2786], [Kitaev 0901.2686]

KOn−2
G (pt) → Invn+1

spin,G

classifying free spin invertible phases without additional symmetry.

Its relation to
Invn+1

spin,G = (IZΩ
spin)n+2(BG)

is that it is the Anderson dual to the APS orientation

(Ωspin)d(X) → KOd(X)

which is

KOd−4(X) = (IZKO)d(X) → (IZΩ
spin)d(X).
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Relation to previous proposals:

[Chen-Gu-Liu-Wen 1106.4772]

Invn+1
oriented,G

?
= Hn+2(BG,Z)

We now believe

Invn+1
oriented,G=(IZΩ

oriented)n+2(BG)

Again
d 0 1 2 3 4 · · ·

(IZΩ
oriented)d(pt) Z 0 0 0 Z · · ·

Hd(pt,Z) Z 0 0 0 0 · · ·
and there is a homomorphism

Hd(X,Z) → (IZΩ
oriented)d(X).
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The homomorphism

H̃n+2(X,Z) → ˜(IZΩoriented)n+2(X).

for X = BG with finite groups G
fails to be surjective starting at n + 2 = 6.

SPT phases associated to these points are discussed e.g. in
[Fidkowski-Haah-Hastings 1912.05565] and [Chen-Hsin, 2110.14644]

These correspond to n + 1 = 4 + 1 dimensional systems.
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http://arxiv.org/abs/1912.05565
http://arxiv.org/abs/2110.14644


Present
2020s
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The last topic of the talk is about physics and elliptic cohomology.

There are three types of complex curves with Abelian group law:

C, C×, elliptic curves.

Correspondingly, there are three types of cohomology theories:

H∗(−,Z), K∗(−), elliptic cohomologies.

They are all complex orientable: a complex n-fold M2n has
the fundamental class [M2n] ∈ E2n(M).

All these cohomology theories have the 1st Chern class
c1(L) ∈ E∗(X) for complex line bundles L → X.

The group law dictates how c1(L ⊗ L′) is expressed
in terms of c1(L) and c1(L′).
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Today I would like to discuss their real analogues:

H∗(−,Z), KO∗(−), TMF ∗(−).

TMF is the topological modular form, constructed by Hopkins et al.
in late 1990s. (cf. [Hopkins’ talk at ICM 2002, math/0212397])

I hear the construction uses a sheaf of E∞-ring specta
over the moduli stack of elliptic curves over Z.

I don’t understand any of the words in the last sentence.
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Mn has a fundamental class in Hn(M,Z)
if M is oriented. = the trivialization of w1(TM) is given.

Mn has a fundamental class in KOn(M)
if M is spin. = the trivialization of w2(TM) is given.

Mn has a fundamental class in TMFn(M)
if M is string. = the trivialization of p1(TM) is given.

Note that the first three nontrivial homotopy group of O is

π0(O) = Z/2, π1(O) = Z/2, π3(O) = Z

and w1, w2, p1 are the corresponding obstruction classes.
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Adams spectral sequences computing them have the form

Es,t
2 = Exts,tA(0)(H

∗(X,Z/2),Z/2) ⇒ Ht−s(X,Z)2̂
Es,t

2 = Exts,tA(1)(H
∗(X,Z/2),Z/2) ⇒ kot−s(X)2̂

Es,t
2 = Exts,tA(2)(H

∗(X,Z/2),Z/2) ⇒ tmft−s(X)2̂

where A(n) is the subalgebra of the Steenrod algebra
generated by Sq1, Sq2, …, Sq2n

.

TMF is the natural next entry after H(−,Z) and KO.
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N.B. there are no cohomology theories such that

Es,t
2 = Exts,tA(n)(H

∗(X,Z/2),Z/2) ⇒ Et−s(X)2̂

for n ≥ 3. If so, the corresponding spectrum E should have

H•(E,Z/2) = A//A(n),

whose first two nonzero elements would be e at degree zero
and Sq2n+1

e. But the latter can be rewritten using lower Sq2k
e in

terms of secondary cohomology operations (used in Adams’ solution to
the Hopf-invariant one problem), leading to a contradiction.

[see this MO answer]

So the sequence H, KO, TMF seems to stop here.
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KO is 8-periodic:

KOn+8(X) ' KOn(X)

TMF is 242 = 576-periodic:

TMFn+576(X) ' TMFn(X)
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TMF is called the topological modular form since there is a
homomorphism

TMF∗ → MF∗[∆
−1]

where
MF = Z[c4, c6,∆]/(c34 − c26 − 1728∆).

is the ring of integral modular forms, with

c4 = 1 + 240q + · · · , c6 = 1 − 504q − · · ·

are the Eisenstein series and

∆ = q − 24q2 + · · ·

is the modular disciminant.

32 / 58



TMF∗ → MF∗[∆
−1] is rationally isomorphic

TMF∗ ⊗ Q ' MF∗[∆
−1] ⊗ Q,

and it is isomorphic at degree 0

TMF0 = Z[J ]

where J is the modular J -invariant,
but not surjective in general.

For example, k∆ is in the image only when 24 divides k.

TMF∗ → MF∗[∆
−1] also has a lot of torsion.
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KOn(X) has a geometric realization: for n = 0,
it is given by virtual differences of real vector bundles over X.

Is there a similarly nice realization of TMFn(X)?

Segal-Stolz-Teichner conjecture

TMFn(X) = π0

{ 2-dim’l supersymmetric QFT
of degree n parameterized by X

}
Segal 1988, Stolz-Teichner 2002, 2011

This is a very difficult conjecture. The RHS isn’t even defined yet.
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An easier version is:

KOn(X) = π0

{ 1-dim’l time-reversal invariant
supersymmetric QFT

of degree n parameterized by X

}
which was rigorously formulated and proved.

Roughly: a 1-dim’l supersymmetric QFT is just
a supersymmetric quantum mechanics, and

Time-reversal invariant means that
everything is defined over R instead of C.

Supersymmetric means that the Hilbert space H is Z/2-graded,
and an odd self-adjoint operator Q is given,
called the supersymmetry generator.

Degree n means that there is an action of Cl(n,R).
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Therefore the statement becomes

KOn(X)
?
= π0

{ family of odd self-adjoint operators Q
parameterized over X

on a Z/2-graded real Hilbert space H
commuting with Cl(n,R) action

}

and the RHS is more or less the definition of KO in terms of Fredholm
operators.

(For a detailed proof,
see e.g. [Cheung 0811.2267] or [Ulrickson 1901.02110]).
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The TMF version is much harder:

TMFn(X) = π0

{ 2-dim’l supersymmetric QFT
of degree n parameterized by X

}

The LHS involves sheaves of spectra over the moduli stack of elliptic
curves over Z.

The RHS involves QFTs, which seem to me a purely characteristic-0
phenomenon.

Still, nontrivial physics motivation and checks.
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For example, take
TMF3(pt) = Z/24,

which is naturally isomorphic to

Ωframed
3 (pt) = πS

3 (pt) = limπn+3S
n.

In the standard math definition, the computation involves
elliptic curves in characteristic 2 and 3.

The same Z/24 also follows from an intricate construction in QFT.

[Gaiotto, Johnson-Freyd 1904.05788]
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Historically, elliptic cohomologies / TMF came from two strands of ideas.

One is purely from within algebraic topology, called chromatic
phenomena, about which I have no clue.

Another is from Witten.

(This part of the story is nicely summarized in Landweber 1988.)
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https://doi.org/10.1007/BFb0078036


In string theory we consider strings moving in a manifold:

This should be described by a 2-dim’l supersymmetric QFT on the
worldsheet of the string.

It gives rise to a sequence of Dirac operators acting on the spinor bundle
SM tensored with tensor powers of the tangent bundle TM .
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In 1984, Witten asked the property of the index of these operators to
Landweber and Stong, who then informed Ochanine about the question.

By 1986, they realized that there is a generalization of the Â genus∫
M

Â ∈ Z

which takes the values in modular forms∫
M

ϕW ∈ MF.

Here, M needs to be spin (i.e. w2 = 0) for the former
and string (i.e. p1 = 0) for the latter.

Â was known to come from KO.
There should be some nice cohomology theory for ϕW .
It took about 15 years for mathematicians to construct TMF .
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But physicists were almost completely detached from these
developments until very recently.

Only in November 2018 papers on this topic appeared (by Gaiotto,
Johnson-Freyd and Gukov-Pei-Putrov-Vafa), in which some physics
checks of the Segal-Stolz-Teichner conjecture were made.

Instead, assuming the Segal-Stolz-Teichner conjecture, we can use
the known properties of TMF to deduce the properties
of 2d supersymmetric QFTs and of string theory.

In particular, with Yamashita at RIMS, I showed that there is no anomaly
in heterotic string theory. [YT-Yamashita 2108.13542]
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https://arxiv.org/abs/1811.00589
https://arxiv.org/abs/1811.00589
https://arxiv.org/abs/1811.07884
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Anomalies of heterotic string theories

What is an anomaly?

I said that an n-dim’l QFT Q assigns the partition function

ZQ( ) ∈ C,

but the partition function of an anomalous QFT Q is instead given as

ZQ( ) ∈ HA(M)

where A is an (n + 1)-dim’l invertible QFT and
HA is its Hilbert space which is one dimensional.
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There are many anomalous QFTs.
Notable examples are free massless fermions, for which
HA(M) is the determinant line bundle of the Dirac operator.

A n-dim’l possibly-anomalous spin QFT Q has

AQ: a (n + 1)-dim’l spin invertible QFT

as part of the data.

This is given by an element

AQ ∈ Invn+1
spin = (IZΩ

spin)n+2.
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Now, there is a procedure called the second quantization
we learn in the basic QFT course.

This is a machinery which does

{time-reversal-invariant quantum mechanics of degree n − 2}
↓

{possibly-anomalous n-dim’l spin QFT }
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7→

46 / 58



This is a machinery which does

{time-reversal-invariant quantum mechanics of degree n − 2}
↓

{possibly-anomalous n-dim’l spin QFT }

Applying the Stolz-Teichner for the source and the anomaly for the
target, we have a homomorphism

KOn−2 → (IZΩ
spin)n+2.

This is the Anderson dual to the spin orientation of the KO theory:

Ωspin → KOn

where we use IZKOn+4 = KOn.

We already encountered this before in a different context.

47 / 58



This is a machinery which does

{time-reversal-invariant quantum mechanics of degree n − 2}
↓

{possibly-anomalous n-dim’l spin QFT }

Applying the Stolz-Teichner for the source and the anomaly for the
target, we have a homomorphism

KOn−2 → (IZΩ
spin)n+2.

This is the Anderson dual to the spin orientation of the KO theory:

Ωspin → KOn

where we use IZKOn+4 = KOn.

We already encountered this before in a different context.

47 / 58



My interest is the anomaly of heterotic string theory, which is a
machinery which does

{2-dim’l supersymmetric QFT of degree n + 22}
↓

{possibly-anomalous n-dim’l quantum gravity with string structure}
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7→
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We’d like to consider

{2-dim’l supersymmetric QFT of degree n + 22}
↓

{possibly-anomalous n-dim’l quantum gravity with string structure}

Again applying the Stolz-Teichner for the source and the anomaly for the
target, we have a natural transformation

TMFn+22(X) → (IZΩ
string)n+2(X).

String theory is often non-anomalous from miraculous reasons.
So we would like to know whether this homomorphism is zero.
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TMFn+22(X) → (IZΩ
string)n+2(X)

The seminal paper of Green and Schwarz (1984),
which started superstring theory as we know it,
showed that the image of a particular element of TMF 10+22(pt)
is torsion.

The paper by Witten with an appendix by Stong (1986) proved that
the image of this particular element is actually zero.

51 / 58

https://doi.org/10.1016/0370-2693(84)91565-X
https://lib-extopc.kek.jp/preprints/PDF/1986/8607/8607427.pdf


TMFn+22(X) → (IZΩ
string)n+2(X)

Lerche-Nilsson-Schellekens-Warner (1988) showed that
the image in general is torsion (although not phrased in this language.)

With Yamashita at RIMS, we showed that it is always a zero map
[YT-Yamashita 2108.13542].

Physically this means that there is no anomaly in heterotic string theory.
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Let me give an outline of how it is done.

Physics tells us that

α : TMFn+22(X) → (IZΩ
string)n+2(X)

comes from a map of spectra

α : TMF → Σ−20IZMString

or equivalently by

α : TMF ∧ MString → Σ−20IZ.
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Physics also tells us that this factors through the natural MString-module
structure on TMF :

α : TMF ∧ MString → TMF
γ→ Σ−20IZ.

So we need to determine the element

γ ∈ [TMF,Σ−20IZ] = (IZTMF )−20(pt).

54 / 58



Physics paper Lerche-Nilsson-Schellekens-Warner (1988) already
showed that

γ ∈ [TMF,Σ−20IZ] = (IZTMF )−20(pt)

is at most torsion.

But (IZTMF )−20(pt) is freely generated over Z, because

TMF−21(pt) = 0.

So γ is zero.
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The hard part was

• to translate what I wanted to show physically
in terms of stable homotopy theory, and

• to find someone who knows stable homotopy theory
and also is interested in this problem.

It was then immediate for my collaborator Yamashita
to show it does vanish.
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Today I surveyed the interaction between physics and algebraic topology.

Concrete homotopy groups are useful in studying topological solitons.

(math: 1930s, physics: 1970s)

Chern classes are useful in understanding integer quantum Hall effect.

(math: 1940s, physics: 1980s)

D-branes are classified by K-theory.

(math: 1960s, physics: 2000s)
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Anderson duals of bordism homologies classify SPT phases.

(math: 1960s, physics: 2010s)

TMF and 2d supersymmetric field theories.

(math: 2000s, physics: 2020s)

We’re trailing behind, but slowly catching up.
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