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Modern times

2010s
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Integer quantum Hall system is an example of

(n 4+ 1)-dimensional quantum field theory (QFT)

with unique gapped ground state with G-symmetry.

Often called
SPT phases

and/or
invertible phases.

(SPT= symmetry protected topological)
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A more general (n + 1)-dimensional quantum field theory (QFT) Q
assigns a Hilbert space to a spatial manifold IN,,:

Ny — Hgo(Nn),

M

ZQ(Mny1) : HQ(Nn) — He(IV,).

and for

it assigns

The manifold can be equipped with various structures of your choice,
metric, orientation, spin structure, G-bundle with connection, etc.,
giving rise to different flavors of QFTs.
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Corresponding to

we require
ZQ(M')ZQ(M) = ZQ(M' (9] M)

So, a QFT @ has a functor from a suitable bordism category to the
category of vector spaces as part of its data.
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We assume Hg (@) = C, then

ZQ(®) : Ho(2) — Ho(2)

determines a complex number

ZQ( @) € C,

called the partition function.
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A QFT Q is SPT/invertible/with unique gapped ground state
< Hg(IN) is always 1-dimensional.

Integer quantum Hall material is a (2 + 1)-dimensional
spin invertible QFT with U (1) symmetry:

Zaf > : Ho(N) = Ho(N)

N, N’ are 2-dimensional; M is 3-dimensional;
they come with spin structure and U (1) bundle with connection,

and Hq(IN) is always 1-dimensional.
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We would like to understand

(n 4+ 1)-dim. invertible QFTs

Inv2tt = mo({ )
S,G with structure S and symmetry G

b

Here S can be spin structure, orientation only, etc.
As invertible QFTs form a group under tensor product

Haoxq (N) = Hq(N) @ Heo/ (N),
Zoxq' (M) = Zqg(M) ® Zg/ (M), etc,
n+1
G

Invg o will be an Abelian group.
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Dijkgraaf-Witten (1990)

|
Invy et BT H P (BG, 7)

Dependence on S not appreciated at that time.
Wrong if taken too literally.

Integer quantum Hall effect is the case n = 2, G = U(1). Then
H*(BU(1),Z) ~ 7Z

is generated by (¢1)?, but we need %(cl)2 as we saw,
for which the spin structure was crucial.
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https://projecteuclid.org/journals/communications-in-mathematical-physics/volume-129/issue-2/Topological-gauge-theories-and-group-cohomology/cmp/1104180750.full

[Chen-Gu-Liu-Wen 1106.4772]

n+1 proposa[ 2
Invoriented,G Hn+ (BG Z)

An influential paper, which introduced
and popularized the notion of SPT phases.

(The terminology “invertible phases” originates
from [Freed-Moore hep-th/0409135].)

Now known to be wrong for n > 4.

How about the spin case?
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http://arxiv.org/abs/1106.4772

[Freed hep-th/0607134], [Gu-Wen 1201.2648]

v P pri2 pa)

spin,G
where E is a cohomology theory given by

da= 0, }

d—3 d
(a,b) € C43(X,2/2) X CUX,Z) | ‘= g2y

EY(X) =

certain equiv. relation

where
3 is the Bockstein for0 —+ Z — Z — Z/2 — 0 and
Sq? is the Steenrod square.

(Amazingly, Gu and Wen rediscovered
the cochain-level expression of Sq? by themselves! )
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http://arxiv.org/abs/hep-th/0607134
http://arxiv.org/abs/1201.2648

Another way to define E4(X) is to write it as
EYX) = [X, Ed]
where Eg is a two-stage Postnikov tower
K(Z,d) - Eq — K(Z/2,d — 2)
whose Postnikov invariant
Eq — K(Z/2,d —2) 5 K(Z,d + 1)

is given by \
x=B0Sq“oL

where ¢ is the generator of HY2(K (Z/2,d — 2),7/2).
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[Schnyder-Ryu-Furusaki-Ludwig 0803.2786], [Kitaev 0901.2686]
_ 1
KO™ ?(pt) — Inv;;i;,pt
They classified spin invertible phases without additional symmetry.

They also considered structures related but not quite spin
(such as imposing time reversal, corresponding to considering pin)
so that the classification is KO™1*(pt) for arbitrary ¢ mod 8.

Called the of topological superconductors.
(see e.g. a nice lecture by Ryu)
(see also [Gomi-Yamashita 2111.01377])

13/58


http://arxiv.org/abs/0803.2786
http://arxiv.org/abs/0901.2686
https://topocondmat.org/w8_general/classification.html
http://arxiv.org/abs/2111.01377

Kitaev (2015)
Inviey = Ext*(BG)

where Eg should be a generalized cohomology theory.

Kitaev only gave a talk and never wrote it up.

Fleshed out in [Xiong 1701.00004] and [Gaiotto, Johnson-Freyd
1712.07950] etc.
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http://www.ipam.ucla.edu/abstract/?tid=12389&pcode=STQ2015
http://arxiv.org/abs/1701.00004
http://arxiv.org/abs/1712.07950

[Kapustin-Thorngren-Turzillo-Wang 1406.7329]
[Freed-Hopkins 1604.06527]

|
v "B (195" (BG)

where Q5 is the S-bordism homology and I is the Anderson dual.

Further discussions in [Yonekura 1803.10796],
[Yamashita-Yonekura 2106.09270], [Yamashita, 2110.14828]

People think this is the definitive version.
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http://arxiv.org/abs/1406.7329
http://arxiv.org/abs/1604.06527
http://arxiv.org/abs/1803.10796
http://arxiv.org/abs/2106.09270
http://arxiv.org/abs/2110.14828

A generalized (co)homology theory h™(X), hy(X) satisfies
the Eilenberg-Steenrod axioms for the ordinary (co)homology
except the dimension axiom.

So hy(pt) = h™"(pt) can be nontrivial for n # 0.

Bordism group

s . S-structured manifold M, .
0(X) = { together with f : M,, — X / bordism

is an example, where

T
M

N

-

ML A o

X «—
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For a generalized homology theory h.(—),
there is the Anderson dual cohomology theory Izh*(—)
which satisfies the analogue of the universal coefficient theorem:

0— Eth(hd_l(X), Z)
— (I;h)4(X) —
Homz(hd(X),Z) —0
The universal coefficient theorem of H (—, Z) means that
I;H(—,Z) = H(—, 7).

Similarly, I;K = K and I; KO® = KO®**4.
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Construction of Izh from h

Note that
X +— Hom(w?(X),Q), X +— Hom(w%(X),Q/7)

are generalized cohomology theories. Let us say that they are
represented by spectra

1Q, IQ/Z
and define IZ to be the homotopy fiber

17 — IQ — IQ/Z.

Then,
I;h := [h, IZ]

represents Izh when h is the spectrum representing h.
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Classification of fermionic invertible phases

Inviibl = (L") H(BG)

Q" (pt) was determined in Anderson-Brown-Peterson (1967)
and the Anderson dual was introduced in Anderson (1969).

Physicists now need them!

That's why graduate students in condensed matter physics learn
the Atiyah-Hirzebruch spectral sequence and
the Adams spectral sequence to compute them.
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http://doi.org/10.2307/1970690
http://faculty.tcu.edu/gfriedman/notes/Anderson-UCT.pdf

Relation to previous proposals:
[Freed hep-th/0607134], [Gu-Wen 1201.2648]

vl = E"2(BG)

where E< is a cohomology theory represented
by a two-stage Postnikov tower

K(Z,d) —» Eq — K(Z/2,d — 2)
such that the associated Postnikov invariant
Eq — K(Z/2,d —2) 5 K(Z,d + 1)

is given by
x=PB08Sq?o
where ¢ is the generator of H*(K(Z/2,d — 2),7./2).
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http://arxiv.org/abs/hep-th/0607134
http://arxiv.org/abs/1201.2648

Its relation to '
Inv;;iir;:,lG = (IZQSPIn)n+2(BG)

is that the said two-stage Postnikov tower
K(Z,d) - Eq — K(Z/2,d — 2)

is the truncation of the spectrum representing IzQP™ to its first two
nontrivial stages:

d |01 2 3 4
(I;QP™M 7 0 7Z/2 7/2 Z
E¢ Z 0 Z/2 0 0

In particular, there is a natural transformation

EY(BG) — (IQ2P™YBG).
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Relation to previous proposals:

[Schnyder-Ryu-Furusaki-Ludwig 0803.2786], [Kitaev 0901.2686]
—2 1
KOG “(pt) — Inv::;i';],c

classifying spin invertible phases without additional symmetry.

Its relation to .
InviEl = (197" " (BG)

spin,G
is that it is the Anderson dual to the APS orientation
(QPM 4 (X) = KOg(X)

which is

KO 4(X) = (I KO)4(X) — (Iz2P™M%(X).
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http://arxiv.org/abs/0803.2786
http://arxiv.org/abs/0901.2686

Relation to previous proposals:
[Chen-Gu-Liu-Wen 1106.4772]

vt L H"2(BG,7)

oriented,G =

We now believe

Invn—i—l — (Izﬂoriented)n—i—Z (BG)

oriented,G

Again
d |

o oiN
o oW
S N~

01
(IZQoriented)d(pt) 7 0

H4(pt,7) 7Z 0
and there is a homomorphism

Hd(X, Z) — (IZQoriented)d(X)‘
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http://arxiv.org/abs/1106.4772

The homomorphism

ﬁn+2(X, Z) — (IZQoriented)”HQ(X)'

for X = BG with finite groups G
fails to be surjective starting atn + 2 = 6.

SPT phases associated to these points are discussed e.g. in
[Fidkowski-Haah-Hastings 1912.05565] and [Chen-Hsin, 2110.14644]

These correspond to n + 1 = 4 4 1 dimensional systems.
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http://arxiv.org/abs/1912.05565
http://arxiv.org/abs/2110.14644

Present

2020s

25/58



The last topic of the talk is about physics and elliptic cohomology.
There are three types of complex curves with Abelian group law:
C, C*, elliptic curves.
Correspondingly, there are three types of cohomology theories:
H*(—,Z), K*(-), elliptic cohomologies.

They are all complex orientable: a complex n-fold Ma,, has
the fundamental class [May,] € E2pn(M).

All these cohomology theories have the 1st Chern class
c1(L) € E*(X) for complex line bundles £ — X.

The group law dictates how ¢1 (£ ® L') is expressed
in terms of ¢1(£) and ¢1 (L£).
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Today | would like to discuss their real analogues:

H*(—,Z), KO*(—), TMF*(-).

T M F is the topological modular form, constructed by Hopkins et al.
in late 1990s. (cf. [Hopkins’ talk at ICM 2002, math/02123971)

| hear the construction uses a sheaf of Ex-ring specta
over the moduli stack of elliptic curves over Z.

| don’t understand any of the words in the last sentence.
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http://arxiv.org/abs/math/0212397

M,, has a fundamental class in H,, (M, Z)
if M is oriented. = the trivialization of w1 (T'M) is given.
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M,, has a fundamental class in H,, (M, Z)
if M is oriented. = the trivialization of w1 (T'M) is given.

M, has a fundamental class in KO,, (M)
if M is spin. = the trivialization of wo (T M) is given.
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M,, has a fundamental class in H,, (M, Z)
if M is oriented. = the trivialization of w1 (T'M) is given.

M, has a fundamental class in KO,, (M)
if M is spin. = the trivialization of wo (T M) is given.

M, has a fundamental class in TM F,, (M)
if M is string. = the trivialization of p1 (T'M) is given.

Note that the first three nontrivial homotopy group of O is
m(0) =2/2, w1 (0)=1Z/2, m3(0)=L

and w1, wae, p1 are the corresponding obstruction classes.
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Adams spectral sequences computing them have the form

Ey" = Extlo) (H*(X,Z/2),Z/2) = Hi—s(X,Z);
Ey" = Ext’, (H*(X,Z/2),2/2) = kot—s(X)3

Ey" = Ext’, (H*(X,2/2),Z2/2) = tmf;—s(X),

where A(n) is the subalgebra of the Steenrod algebra
generated by Sqt, Sq?, ..., Sq*".

T MF is the natural next entry after H(—,7Z) and KO.
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N.B. there are no cohomology theories such that

By' = Bxt® (H*(X,2/2),2/2) = Er_a(X)s

for n > 3. If so, the corresponding spectrum E should have
H*(E,7/2) = A//A(n),

whose first two nonzero elements would be e at degree zero

and Sq2n+1 e. But the latter can be rewritten using lower quk ein
terms of secondary cohomology operations (used in Adams’ solution to
the Hopf-invariant one problem), leading to a contradiction.

[see this MO answer]

So the sequence H, KO, T M F seems to stop here.
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https://mathoverflow.net/questions/393249/

KO is 8-periodic:

KO"™3(X) ~ KO™(X)

TMF is 24* = 576-periodic:

TMF"578(X) ~ TMF"(X)
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TMF is called the topological modular form since there is a
homomorphism
TMF, — MF,[A™!]

where
MF = Zcy,ce, A/ (c3 — c2 — 1728A).

is the ring of integral modular forms, with
c4=1+4+240q+ -+, cg=1—504q — ---
are the Eisenstein series and
A=gq—24¢> +---

is the modular disciminant.
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TMF, — MF,[A™'] is rationally isomorphic
TMF, @ Q~ MF,[A™']®Q,
and it is isomorphic at degree 0
TMF, = 7Z[J)

where J is the modular J-invariant,
but not surjective in general.

For example, kA is in the image only when 24 divides k.

TMF, — MF,[A™'] also has a lot of torsion.
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KO™(X) has a geometric realization: forn = 0,
it is given by virtual differences of real vector bundles over X.

Is there a similarly nice realization of TM F™(X)?
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https://mathscinet.ams.org/mathscinet-getitem?mr=992209
https://doi.org/10.1017/CBO9780511526398.013
https://arxiv.org/abs/1108.0189

KO"(X) has a geometric realization: for n = 0,
it is given by virtual differences of real vector bundles over X.

Is there a similarly nice realization of TM F"™(X)?

Segal-Stolz-Teichner conjecture

2-dim’l QFT }

TMF™(X) = FO{ of degree n parameterized by X

Segal 1988, Stolz-Teichner 2002, 2011

This is a very difficult conjecture. The RHS isn’t even defined yet.
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https://mathscinet.ams.org/mathscinet-getitem?mr=992209
https://doi.org/10.1017/CBO9780511526398.013
https://arxiv.org/abs/1108.0189

An easier version is:

1-dim’| time-reversal invariant
KO™(X) = no{ QFT
of degree n parameterized by X

which was rigorously formulated and proved.

Roughly: a 1-dim’l supersymmetric QFT is just
a supersymmetric quantum mechanics, and
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An easier version is:

1-dim’| time-reversal invariant
KO™(X) = no{ QFT
of degree n parameterized by X

which was rigorously formulated and proved.

Roughly: a 1-dim’l supersymmetric QFT is just
a supersymmetric quantum mechanics, and

Time-reversal invariant means that
everything is defined over R instead of C.

means that the Hilbert space ‘H is Z/2-graded,
and an odd self-adjoint operator Q is given,
called the supersymmetry generator.

Degree n means that there is an action of Cl(n, R).
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Therefore the statement becomes

family of Q
n k4 parameterized over X
KO™(X) = Tro{ onaZ/2 real Hilbert space H }

commuting with Cl(n,R) action

and the RHS is more or less the definition of KO in terms of Fredholm
operators.

(For a detailed proof,
see e.g. [Cheung 0811.2267] or [Ulrickson 1901.02110]).
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http://arxiv.org/abs/0811.2267
http://arxiv.org/abs/1901.02110

The T M F version is much harder:

TMF"(X) = Wo{ 2-dim’l supersymmetric QFT }

of degree n parameterized by X

The LHS involves sheaves of spectra over the moduli stack of elliptic
curves over Z.

The RHS involves QFTs, which seem to me a purely characteristic-0
phenomenon.

Still, nontrivial physics motivation and checks.
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For example, take
TMF;(pt) = Z/24,

which is naturally isomorphic to

anmed (pt) = 75 (pt) = lim 7,4 3S™.

In the standard math definition, the computation involves
elliptic curves in characteristic 2 and 3.

The same Z /24 also follows from an intricate construction in QFT.

[Gaiotto, Johnson-Freyd 1904.05788]
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http://arxiv.org/abs/1904.05788

Historically, elliptic cohomologies / TMF came from two strands of ideas.

One is purely from within algebraic topology, called chromatic
phenomena, about which I have no clue.

Another is from Witten.

(This part of the story is nicely summarized in Landweber 1988.)

39/58


https://doi.org/10.1007/BFb0078036

In string theory we consider strings moving in a manifold:

M\

Gw b evct
SFRQkﬁh«s

ma m’«}-oq-f J

This should be described by a 2-dim’l supersymmetric QFT on the
worldsheet of the string.

It gives rise to a sequence of Dirac operators acting on the spinor bundle
S M tensored with tensor powers of the tangent bundle T'M.
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In 1984, Witten asked the property of the index of these operators to
Landweber and Stong, who then informed Ochanine about the question.

By 1986, they realized that there is a generalization of the A genus

/ AecZ
M
which takes the values in modular forms

/M éw € MF.

Here, M needs to be spin (i.e. wa = 0) for the former
and string (i.e. p1 = 0) for the latter.

A was known to come from KO.
There should be some nice cohomology theory for ¢y .
It took about 15 years for mathematicians to construct TM F'.
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But physicists were almost completely detached from these
developments until very recently.

Only in November 2018 papers on this topic appeared (by Gaiotto,
Johnson-Freyd and Gukov-Pei-Putrov-Vafa), in which some physics
checks of the Segal-Stolz-Teichner conjecture were made.

Instead, assuming the Segal-Stolz-Teichner conjecture, we can use
the known properties of TM F' to deduce the properties
of 2d supersymmetric QFTs and of string theory.

In particular, with Yamashita at RIMS, | showed that there is no anomaly
in heterotic string theory. [YT-Yamashita 2108.13542]
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https://arxiv.org/abs/1811.00589
https://arxiv.org/abs/1811.00589
https://arxiv.org/abs/1811.07884
http://arxiv.org/abs/2108.13542

Anomalies of heterotic string theories

What is an anomaly?

| said that an n-dim’l QFT Q assigns the partition function

ZQ(@) € C,

but the partition function of an anomalous QFT @ is instead given as

ZQ(@) € Ha(M)

where A is an (n 4+ 1)-dim’l invertible QFT and
H 4 is its Hilbert space which is one dimensional.
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There are many anomalous QFTs.
Notable examples are free massless fermions, for which
H.a(M) is the determinant line bundle of the Dirac operator.

A n-dim’l possibly-anomalous spin QFT Q has

Ag: a (n + 1)-dim’l spin invertible QFT
as part of the data.
This is given by an element

AQ = Invn+1 — (IZQspin)n+2.

spin
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Now, there is a procedure called the second quantization
we learn in the basic QFT course.

This is a machinery which does

{time-reversal-invariant quantum mechanics of degree n — 2}

i

{possibly-anomalous n-dim’l spin QFT }
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This is a machinery which does

{time-reversal-invariant quantum mechanics of degree n — 2}

l

Applying the Stolz-Teichner for the source and the for the
target, we have a homomorphism

KO" 2 —
This is the Anderson dual to the spin orientation of the KO theory:
— KO"™
where we use I; KO™t* = KO™.

We already encountered this before in a different context.
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This is a machinery which does

{time-reversal-invariant quantum mechanics of degree n — 2}

l

{possibly-anomalous n-dim’l spin QFT }

Kon—2 — (I Q&|)m)n+2.

This is the Anderson dual to the spin orientation of the KO theory:
Qx‘pin — KO™

where we use I; KO™t* = KO™.

We already encountered this before in a different context.
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My interest is the anomaly of heterotic string theory, which is a
machinery which does

{2-dim’l supersymmetric QFT of degree n 4+ 22}
{

{possibly-anomalous n-dim’l quantum gravity with string structure}
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We'd like to consider

{2-dim’l supersymmetric QFT of degree n + 22}
1

{possibly-anomalous n-dim’l quantum gravity with string structure}

Again applying the Stolz-Teichner for the source and the anomaly for the
target, we have a natural transformation

TMFn—|—22(X) — (I;Qsll‘itwg)71/+2(X).

String theory is often non-anomalous from miraculous reasons.
So we would like to know whether this homomorphism is zero.

50/58



We'd like to consider

{2-dim’l supersymmetric QFT of degree n + 22}
1

{popsibly-anomalous n-dim’l quantum gravity with string structure}

Again applying the Stolz-Teichner for the source and the anomaly for the
target, wg have a natural transformation

TMFn—|—22(X) — (I;Qsll‘itwg)71/+2(X).

String theory is often non-anomalous from miraculous reasons.
So we would like to know whether this homomorphism is zero.

50/58



TMFn+22(X) — (IZQstring)n—{—Z(X)

The seminal paper of Green and Schwarz (1984),

which started superstring theory as we know it,

showed that the image of a particular element of T M F°122(pt)
is torsion.

The paper by Witten with an appendix by Stong (1986) proved that
the image of this particular element is actually zero.
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https://doi.org/10.1016/0370-2693(84)91565-X
https://lib-extopc.kek.jp/preprints/PDF/1986/8607/8607427.pdf

TMFn+22 (X) — (IZQstring)n+2(X)

Lerche-Nilsson-Schellekens-Warner (1988) showed that
the image in general is torsion (although not phrased in this language.)

With Yamashita at RIMS, we showed that it is always a zero map
[YT-Yamashita 2108.13542].

Physically this means that there is no anomaly in heterotic string theory.
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https://doi.org/10.1016/0550-3213(88)90468-3
http://arxiv.org/abs/2108.13542

Let me give an outline of how it is done.
Physics tells us that
a: TMF"?(X) — (I;Q""8)"t?(X)
comes from a map of spectra
a: TMF — X201, MString
or equivalently by

o : TMF A MString — 720717,
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Physics also tells us that this factors through the natural M String-module
structure on TM F":

a: TMF A MString — TMF 25 272017,
So we need to determine the element

~ € [TMF,x72°17] = (I;TMF)~%%(pt).
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Physics paper Lerche-Nilsson-Schellekens-Warner (1988) already
showed that

~ € [TMF,x72°17] = (I;TMF)~2%(pt)
is at most torsion.
But (IzT M F)~2°(pt) is freely generated over Z, because

TMF_21 (pt) =0.

So ~ is zero.
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https://doi.org/10.1016/0550-3213(88)90468-3

The hard part was

® to translate what | wanted to show physically
in terms of stable homotopy theory, and

® to find someone who knows stable homotopy theory
and also is interested in this problem.

It was then immediate for my collaborator Yamashita
to show it does vanish.
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Today | surveyed the interaction between physics and algebraic topology.

Concrete homotopy groups are useful in studying topological solitons.

(math: 1930s, physics: 1970s)

Chern classes are useful in understanding integer quantum Hall effect.

(math: 1940s, physics: 1980s)

(math: 1960s, physics: 2000s)
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Anderson duals of bordism homologies classify SPT phases.

(math: 1960s, physics: 2010s)

TMF and 2d supersymmetric field theories.

(math: 2000s, physics: 2020s)

We're trailing behind, but slowly catching up.
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